
 

All Sciences Proceedings 
http://as-proceeding.com/ 

5th International Conference on Applied 

Engineering and Natural Sciences 
 

July 10-12, 2023 : Konya, Turkey 

 
https://www.icaens.com/ © 2023 Published by All Sciences Proceedings 

 

395 

 

 

Twisted Surfaces Family in Euclidean 3-Space 

Erhan Güler 1,* and Mustafa Yıldız 2 

1Department of Mathematics, Faculty of Sciences, Bartın University, Turkey 

ORCID ID 0000-0003-3264-6239 
2Department of Mathematics, Faculty of Sciences, Bartın University, Turkey 

ORCID ID 0000-0003-3367-7176 
*eguler@bartin.edu.tr 

 

 

Abstract – In this study, we examine a distinct set of twisted surfaces in the three-dimensional Euclidean 

space 𝔼3. Our focus lies in the investigation of the differential geometry of this surface family, including 

the determination of their curvatures. Furthermore, we establish the essential conditions for minimal 

surfaces within this framework. Additionally, we calculate the Laplace−Beltrami operator for this 

particular surface family and provide an illustrative example. 
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I. INTRODUCTION 

 

Initially, Chen [4, 5, 6, 7] proposed the notion of 

sub-manifolds (𝓈𝓂) of finite order, which are 

immersed in Euclidean space 𝔼𝑚 or pseudo-

Euclidean space 𝔼𝑣
𝑚. This was accomplished by 

employing a limited set of eigenfunctions obtained 

from the Laplacian operator. Subsequently, 

significant attention and research efforts have been 

devoted to exploring and investigating this subject 

matter. 

 

Takahashi established that a Euclidean 

submanifold is categorized as 1-type if and only if it 

is either minimal or minimal within a hypersphere 

of 𝔼𝑚. The construction of minimal submanifolds 

was pioneered by Lawson [20]. Subsequently, 

Garay [16] investigated Takahashi's theorem in the 

context of 𝔼𝑚. Aminov [2] extensively examined 

the geometric properties of 𝓈𝓂. Chen et al. [8], 

throughout four decades, devoted their research 

endeavors to the study of 1-type submanifolds and 

the 1-type Gauss map (𝒢𝑚) within the framework of 

space forms. 

 

In the three-dimensional Euclidean space, 

denoted as 𝔼3, Takahashi [22] conducted an 

investigation into the properties of minimal 

surfaces. Ferrandez et al. [14] established that 

surfaces exhibiting specific characteristics are either 

minimal cross-sections of a sphere or a right circular 

cylinder. Choi and Kim [10] directed their research 

towards the study of the minimal helicoid, which 

demonstrates a pointwise 1-type Gauss map 𝒢𝑚 of 

the first kind. Garay [15] introduced a class of 

surfaces of finite type based on revolution. Dillen et 

al. [11] explored a distinct set of surfaces 

characterized by certain properties, including 

minimal surfaces, spheres, and circular cylinders. 

 

Moreover, significant research endeavors have 

been conducted by Berger and Gostiaux [3], Do 

Carmo [12], Gray [17], and Kreyszig [18] regarding 

the investigation of twisted surfaces named 

helicoids. 

 

The purpose of this research is to investigate the 

properties of a family of twisted surfaces in the 

three-dimensional Euclidean space 𝔼3. Our specific 

objectives are to compute the matrices associated 

with the fundamental form, 𝒢𝑚, and shape operator 

(𝔰𝔬) for this surface family. Utilizing the 

Cayley−Hamilton theorem, our aim is to determine 

the curvatures of these surfaces. Moreover, we seek 
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to establish the conditions for determining 

minimality within this framework. Additionally, we 

aim to explore the connection between the Laplace-

Beltrami operator and these specific types of 

surfaces. 

 

Section 2 provides an extensive elucidation of the 

fundamental principles and concepts that form the 

basis of three-dimensional Euclidean geometry. 

 

Section 3 is devoted to presenting the curvature 

formulas to surfaces in 𝔼3. 

 

In Section 4, we provide a comprehensive 

definition of the family of twisted surfaces, 

highlighting their unique properties and 

characteristics. 

 

Section 5 shifts the focus towards the discussion 

of the Laplace−Beltrami operator for a smooth 

function in 𝔼3, along with the application of the 

aforementioned surfaces in its computation. 

 

Lastly, we conclude the research in the final 

section. 

 

II. PRELIMINARIES 

 

In this work, we adopt the subsequent notations, 

formulas, equations (Eqs.), and other relevant 

expressions. 

 

Let 𝑀 be an oriented hypersurface in 𝔼𝑛+1 with 

its 𝔰𝔬 𝑆, position vector x. Consider a local 

orthonormal frame field {𝑒1, 𝑒2, … , 𝑒𝑛} consisting of 

principal directions of 𝑀 coinciding with the 

principal curvature 𝑘𝑖 for 𝑖 = 1,2, … , 𝑛.  

 

Let the dual basis of this frame field be 
{Ω1, Ω2, … , Ω𝑛}. Then, the first structural Eq. of 

Cartan is determined by 

 

𝑑Ω𝑖 = ∑ Ω𝑗

𝑛

𝑖,𝑗=1

⋀ω𝑖𝑗, 

 

where ω𝑖𝑗 indicates the connection forms 

coinciding with the chosen frame field. By the 

Codazzi Eq., we derive the Eqs.: 

 

𝑒𝑖(𝑘𝑗) = ω𝑖𝑗(𝑒𝑗)(𝑘𝑖 − 𝑘𝑗), 

ω𝑖𝑗(𝑒𝑙)(𝑘𝑖 − 𝑘𝑗) = ω𝑖𝑙(𝑒𝑗)(𝑘𝑖 − 𝑘𝑙), 

 

for different 𝑖, 𝑗, 𝑙 = 1,2, … , 𝑛. 

 

We assume 

 

𝑠𝑗 = 𝜎𝑗(𝑘1, 𝑘2, … , 𝑘𝑛), 

 

where 𝜎𝑗  denotes the 𝑗-th elementary symmetric 

function defined by 

 

𝜎𝑗(𝑎1, 𝑎2, … , 𝑎𝑛) = ∑ 𝑎𝑖1𝑎𝑖2 …𝑎𝑖𝑗
1≤𝑖1<𝑖2<⋯<𝑖𝑗≤𝑛

. 

 

We give the notation 

 

Φ𝑖
𝑗
= 𝜎𝑗(𝑘1, 𝑘2, … , 𝑘𝑖−1, 𝑘𝑖+1, … , 𝑘𝑛). 

 

We get  

 

Φ𝑖
0 = 1, 

 

and 

 

𝑠𝑛+1 = 𝑠𝑛+2 = ⋯ = 0. 
 

The 𝑠𝑘 is referred to as the 𝑘-th mean curvature 

(ℳ𝒞) of the hypersurface 𝑀. The ℳ𝒞 is described 

by 

 

𝐻 =
1

𝑛
𝑠1, 

 

and the Gauss−Kronecker curvature of 𝑀 is 

determined by 

 

𝐾 = 𝑠𝑛. 

 

If 𝑠𝑗 ≡ 0, the hypersurface 𝑀 is known as 𝑗-

minimal. 

 

In Euclidean (𝑛 + 1)-space, to obtain the 

curvature formulas 𝒦𝑖 (See [1] and [19] for details.), 

𝑖 = 0,1, … , 𝑛, we have the following characteristic 

polynomial Eq.: 
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𝑃𝑆(𝜒) = ∑(−1)𝑘
𝑛

𝑘=0

𝑠𝑘𝜒
𝑛−𝑘 = 0, 

 

 

that is, 

 

det(𝑆 − 𝜒)ℐ𝑛 = 0.                      (2.1) 
 

Here, 𝑖 = 0,1, … , 𝑛, ℐ𝑛 denotes the identity matrix. 

Hence, we obtain the curvature formulas 

 

(
𝑛
𝑖
)𝒦𝑖 = 𝑠𝑖. 

 

We consider the immersion 𝔯 = 𝔯(𝑢, 𝑣) from 

𝑀2 ⊂ 𝔼2 to 𝔼3. 

 

Definition 1. An inner product of two vectors 

 

𝖆 = (a1, a2, a3) and 𝖇 = (b1, b2, b3) 
 

of 𝔼3 is determined by 

 

〈𝖆, 𝖇〉 = a1b1 + a2b2 + a3b3. 
 

Definition 2. A vector product of 

 

𝖆 = (a1, a2, a3) and 𝖇 = (b1, b2, b3) 
 

of 𝔼3 is defined by 

 

𝖆 × 𝖇 = det (

𝑒1 𝑒2 𝑒3
a1 a2 a3

b1 b2 b3
). 

 

Definition 3. The matrix 

 

(𝔤𝑖𝑗)
−1
(𝔥𝑖𝑗) 

 

describes the 𝔰𝔬 matrix 𝑆 of surface 𝔯 in Euclidean 

3-space 𝔼3, where 

 

(𝔤𝑖𝑗)2×2 and (𝔥𝑖𝑗)2×2 

 

determine the first and the second fundamental form 

matrices, respectively, and  

 

𝔤𝑖𝑗 = 〈𝔯𝑖, 𝔯𝑗〉,   𝔥𝑖𝑗 = 〈𝔯𝑖𝑗 , 𝔾〉,   𝑖, 𝑗 = 1,2, 

 

𝔯𝑢 =
𝜕𝔯

𝜕𝑢
 when 𝑖 = 1, 𝔯𝑢𝑣 =

𝜕2𝔯

𝜕𝑢𝜕𝑣
 when 𝑖 = 1 and 𝑗 =

2, etc., 𝑒𝑘 denotes the base elements of 𝔼3, and 

 

𝔾 =
𝔯𝑢 × 𝔯𝑣
‖𝔯𝑢 × 𝔯𝑣‖

                         (2.2) 

 

indicates the 𝒢m of the surface 𝔯. 
 

III. CURVATURES IN THREE-SPACE 

 

In this section, we give the curvature formulas of 

any surface 𝔯 = 𝔯(𝑢, 𝑣) in 𝔼3. 

 

Theorem 1. A surface 𝔯 in 𝔼3 holds the following 

formulas, 

 

𝒦0 = 1,   2𝒦1 = −
𝜂1
𝜂2
,   𝒦2 =

𝜂0
𝜂2
        (3.1) 

  
where 

 

𝜂2𝜏
2 + 𝜂1𝜏 + 𝜂0 = 0 

 

determines the characteristic polynomial Eq. of the 

𝔰𝔬 matrix, 

 

𝜂2 = det(𝔤𝑖𝑗), 𝜂0 = det(𝔥𝑖𝑗), 

 

(𝔤𝑖𝑗)2×2 indicates the first fundamental form matrix  

and (𝔥𝑖𝑗)2×2 denotes the second fundamental form 

matrix. 

 

Proof. The matrix 

 

(𝔤𝑖𝑗)
−1
  (𝔥𝑖𝑗) 

 

determines the 𝔰𝔬 matrix of surface 𝔯 in Euclidean 

3-space 𝔼3. We obtain the characteristic polynomial 

Eq. 

 

det(𝑆 − 𝜒ℐ2) = 0. 
 

Then, we have the curvatures 

 

                    (
2
0
)𝒦0 = 1, 

 

                    (
2
1
)𝒦1 = −

𝜂1
𝜂2
, 
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                    (
2
2
)𝒦2 =

𝜂0
𝜂2
. 

 

Definition 4. A surface 𝔯 is named 𝑗-minimal if 𝒦j =

0, where 𝑗 = 1,2. 

 

Theorem 2. A surface 𝔯 = 𝔯(𝑢, 𝑣) in 𝔼3 has the 

relation 

 

𝒦0(𝔱𝑖𝑗) − 2𝒦1(𝔥𝑖𝑗) + 𝒦2(𝔤𝑖𝑗) = 𝒪2, 

 

where (𝔤𝑖𝑗), (𝔥𝑖𝑗), (𝔱𝑖𝑗) determine the fundamental 

form matrices, 𝒪2 represents the zero matrix. 

 

Proof. Taking 𝑛 = 2 in (2.1), it works. 

 

IV. TWISTED SURFACES FAMILY IN 𝔼3 

 

In this section, we define the twisted surfaces 

family (𝒯𝒮ℱ), then find its differential geometric 

properties in Euclidean 3-space 𝔼3. 

 

A ruled surface, denoted by  

 

  𝔯(𝑢, 𝑣) = 𝑝(𝑣) + 𝑢 𝑞(𝑣) 
 

= 𝑎(0,0, 𝑣) 
 

+𝑢(cos𝑣, sin𝑣, 0) 
 

where 𝑎 ≠ 0, can be classified as a right twisted (or 

helicoid) in 𝔼3 if it can be generated by translating 

a straight line that intersects a fixed straight line, 

while maintaining a perpendicular relationship 

between the lines throughout the generation process. 

By considering the 𝑥𝑦-plane as the perpendicular 

plane and selecting the 𝑧-axis as the reference line, 

the parametric equation for the right twisted surface 

is given as: 

 

𝔯(𝑢, 𝑣) = (
𝑥
𝑦
𝑧
) = (

𝑢 cos𝑣
𝑢 sin𝑣
𝑝𝑣

), 

 

where 𝑢 ∈ ℝ, 0 ≤ 𝑣 < 2𝜋, and 𝑝 ≠ 0 represents the 

pitch. Further details can be found in the works of 

Berger and Gostiaux [3], Do Carmo [12], Gray [17], 

and Kreyszig [18]. 

 

Definition 5. A 𝒯𝒮ℱ is an immersion 𝕥 from 

𝑀2 ⊂ 𝔼2 to 𝔼3 with rotating axis 𝑧, defined by 

 

𝕥(𝑢, 𝑣) = (
𝑥
𝑦
𝑧
) = (

𝒻(𝑢) cosℊ(𝑣)

𝒻(𝑢) sinℊ(𝑣)

𝒽(𝑢) + 𝔭𝓀(𝑣)

)     (4.1) 

 

where pitch 𝔭 ≠ 0, and 

𝒻 = 𝒻(𝑢),   ℊ = ℊ(𝑣),   𝒽 = 𝒽(𝑢),   𝓀 = 𝓀(𝑣)  
 

denote the differentiable functions. 

 

Taking the first derivatives of 𝒯𝒮ℱ determined 

by Eq. (4.1) w.r.t. 𝑢, 𝑣, respectively, we obtain the 

first fundamental form matrix  

 

  (𝔤𝑖𝑗) = (
𝒻𝑢
2 + 𝒽𝑢

2 𝔭𝒽𝑢𝓀𝑣
𝔭𝒽𝑢𝓀𝑣 𝒻2ℊ𝑣

2 + 𝔭2𝓀𝑣
2)        (4.2) 

 

where 

 

𝒻𝑢
2 = (

𝜕𝒻

𝜕𝑢
)
2

,   ℊ𝑣
2 = (

𝜕ℊ

𝜕𝑣
)
2

,   

 

𝒽𝑢
2 = (

𝜕𝒽

𝜕𝑢
)
2

,   𝓀𝑣
2 = (

𝜕𝓀

𝜕𝑣
)
2

. 

 

Hence, 

 

𝔇 = det(𝔤𝑖𝑗) = 𝒻
2(𝒻𝑢

2 +𝒽𝑢
2 )ℊ𝑣

2 + 𝔭2𝒻𝑢
2𝓀𝑣

2. 

 

Using (2.2) we obtain the following Gm of the 𝒯𝒮ℱ 

determined by Eq. (4.1): 
 

𝔾 =
1

𝔇1/2
(

 𝔭𝒻𝑢𝓀𝑣sinℊ − 𝒻𝒽𝑢ℊ𝑣cosℊ
−𝔭𝒻𝑢𝓀𝑣cosℊ − 𝒻𝒽𝑢ℊ𝑣sinℊ

𝒻𝒻𝑢ℊ𝑣

).  (4.3) 

 

By taking the second derivatives w.r.t. 𝑢, 𝑣, of 𝒯𝒮ℱ 

described by Eq. (4.1), and by using the 𝒢m given 

by Eq. (4.3), we find the components of the second 

fundamental form matrix 

 

    𝔥11 =
1

𝔇1/2
𝒻ℊ

𝑣
(𝒻𝑢𝒽𝑢𝑢 −𝒽𝑢𝒻𝑢𝑢), 

 

    𝔥12 = −
1

𝔇1/2
𝔭𝒻𝑢

2
ℊ
𝑣
𝓀𝑣 = 𝔥21,                              (4.4) 
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    𝔥22 = −
1

𝔇1/2
𝒻 (𝒻ℊ

𝑣
3𝒽𝑢 + 𝔭𝒻𝑢(ℊ𝑣𝓀𝑣𝑣 − 𝑘𝑣𝑔𝑣𝑣)), 

 

and 

 

  𝒻𝑢𝑢 =
𝜕2𝒻

𝜕𝑢2
,   ℊ𝑣𝑣 =

𝜕2ℊ

𝜕𝑣2
,    

 

𝒽𝑢𝑢 =
𝜕2𝒽

𝜕𝑢2
,    𝓀𝑣𝑣 =

𝜕2𝓀

𝜕𝑣2
, 

ect. . By using (4.2) and (4.4), we compute the 

following 𝔰𝔬 matrix 

 

𝑆 = (𝔰𝑖𝑗)2×2 

 

of (4.1) with components 

 

 

𝔰11 =
ℊ𝑣[𝒻

3ℊ𝑣
2(𝒻𝑢𝒽𝑢𝑢 −𝒽𝑢𝒻𝑢𝑢) + 𝔭

2𝓀𝑣
2(𝒻(𝒻𝑢𝒽𝑢𝑢 − 𝒽𝑢𝒻𝑢𝑢) + 𝒻𝑢

2𝒽𝑢)],

𝔇3/2
 

 

𝔰12 = −
𝔭𝓀𝑣[𝒻𝑢

2ℊ𝑣
3(𝒻2 + 𝒽𝑢

2) + 𝔭2𝒻𝑢
2ℊ𝑣𝓀𝑣

2 + 𝔭𝒻𝒻𝑢(ℊ𝑣𝒽𝑢𝓀𝑣𝑣 − 𝒽𝑢𝓀𝑣ℊ𝑣𝑣)]

𝔇3/2
, 

 

𝔰21 =
𝔭ℊ𝑣𝓀𝑣[𝒻𝒽𝑢(𝒽𝑢𝒻𝑢𝑢 − 𝒻𝑢𝒽𝑢𝑢) − 𝒻𝑢

2(𝒻𝑢
2 + 𝒽𝑢

2 )],

𝔇3/2
 

 

𝔰22 = −
𝔭𝒻𝒻𝑢𝓀𝑣 [(𝒻𝑢

2 + 𝒽𝑢
2 )ℊ𝑣𝑣 + ℊ𝑣 (𝔭𝒻𝒻𝑢𝒻𝑢

2 + 𝒽𝑢
2𝓀𝑣𝑣 + 𝒽𝑢 ((𝒻

2ℊ𝑣
2 + 𝔭2𝓀𝑣

2)𝒻𝑢
2 + 𝒻2ℊ𝑣

2𝒽𝑢
2))]

𝔇3/2
, 

 

 

 

Finally, using (3.1), with (4.2), (4.4), respectively, 

we find the curvatures of the 𝒯𝒮ℱ defined by Eq. 

(4.1) as follows. 

 

 

Theorem 3. Let 𝕥 be a 𝒯𝒮ℱ determined by Eq. (4.1)  
in 𝔼3. 𝕥 contains the following curvatures 

 

 

 

                𝒦0 = 1, 
 

 

              2𝒦1 =
1

𝔇3/2
(𝔭2𝒻𝒻𝑢ℊ𝑣𝓀𝑣

2𝒽𝑢𝑢 + 𝒻
3𝒻𝑢ℊ𝑣

3𝒽𝑢𝑢 + 2𝔭
2𝒻𝑢

2ℊ𝑣𝒽𝑢𝓀𝑣
2 + 𝒻2ℊ𝑣

3𝒻𝑢
2𝒽𝑢 

 

                 −𝔭2𝒻ℊ𝑣𝒽𝑢𝓀𝑣
2𝒻𝑢𝑢 − 𝒻

3ℊ𝑣
3𝒽𝑢𝒻𝑢𝑢 + 𝒻

2ℊ𝑣
3𝒽𝑢

3 − 𝔭𝒻𝒻𝑢
3𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢

3ℊ𝑣𝓀𝑣𝑣 

 

                                      −𝔭𝒻𝒻𝑢𝒽𝑢
2𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢ℊ𝑣𝒽𝑢

2𝓀𝑣𝑣), 
 

 

                𝒦2 =
1

𝔇2
ℊ𝑣(𝒻

2𝒽𝑢(−𝒻ℊ𝑣
3𝒽𝑢 + 𝔭𝒻𝑢𝓀𝑣ℊ𝑣𝑣 − 𝔭𝒻𝑢ℊ𝑣𝓀𝑣𝑣)𝒻𝑢𝑢 − (𝒻

2(−𝒻ℊ𝑣
3𝒽𝑢 + 𝔭𝒻𝑢ℊ𝑣𝑣𝓀𝑣 

 

                                      −𝔭ℊ𝑣𝒻𝑢𝓀𝑣𝑣)𝒽𝑢𝑢 + 𝔭
2𝒻𝑢

3ℊ𝑣𝓀𝑣
2)𝒻𝑢). 

 

 

Here, 𝒦1 represents the ℳ𝒞, 𝒦2 denotes the 

Gaussian curvature. 

 

Proof. By using the Cayley−Hamilton theorem, we 
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reveal the following characteristic polynomial Eq. 

of the 𝔰𝔬 matrix of 𝒯𝒮ℱ defined by Eq. (4.1): 
 

𝒦0𝜒
2 − 2𝒦1𝜒 +𝒦2 = 0 

 

where 

 

                             𝒦0 = 1, 
 

                           2𝒦1 = 𝔰11 + 𝔰22, 
 

                             𝒦2 = 𝔰11𝔰22 − 𝔰12𝔰21. 
 

 

The curvatures 𝒦𝑖 of 𝕥 are obtained by the above 

Eqs. 

 

Corollary 1. Let 𝕥 be a 𝒯𝒮ℱ defined by Eq. (4.1) in 

𝔼3. 𝕥 is 1-minimal iff the following partial 

differential Eq. holds 

 

𝔭2𝒻𝒻𝑢ℊ𝑣𝓀𝑣
2𝒽𝑢𝑢 + 𝒻

3𝒻𝑢ℊ𝑣
3𝒽𝑢𝑢 

 

+2𝔭2𝒻𝑢
2ℊ𝑣𝒽𝑢𝓀𝑣

2 + 𝒻2ℊ𝑣
3𝒻𝑢

2𝒽𝑢 

 

   −𝔭2𝒻ℊ𝑣𝒽𝑢𝓀𝑣
2𝒻𝑢𝑢 − 𝒻

3ℊ𝑣
3𝒽𝑢𝒻𝑢𝑢 

 

                  +𝒻2ℊ𝑣
3𝒽𝑢

3 − 𝔭𝒻𝒻𝑢
3𝓀𝑣ℊ𝑣𝑣 

 

+𝔭𝒻𝒻𝑢
3ℊ𝑣𝓀𝑣𝑣 − 𝔭𝒻𝒻𝑢𝒽𝑢

2𝓀𝑣ℊ𝑣𝑣 

 

                  +𝔭𝒻𝒻𝑢ℊ𝑣𝒽𝑢
2𝓀𝑣𝑣 = 0, 

 

where 𝔇 ≠ 0. 
 

Corollary 2. Let 𝕥 be a 𝒯𝒮ℱ determined by Eq. 

(4.1) in 𝔼3. 𝕥 is 2-minimal iff the following partial 

differential Eq. reveals 

 

𝒻2ℊ
𝑣
𝒽𝑢 (−𝒻ℊ𝑣

3𝒽𝑢 + 𝔭𝒻𝑢𝓀𝑣ℊ𝑣𝑣 − 𝔭𝒻𝑢ℊ𝑣𝓀𝑣𝑣) 𝒻𝑢𝑢 

 

−(𝒻2ℊ𝑣(−𝒻ℊ𝑣
3𝒽𝑢 + 𝔭𝒻𝑢ℊ𝑣𝑣𝓀𝑣 − 𝔭ℊ𝑣𝒻𝑢𝓀𝑣𝑣)𝒽𝑢𝑢 

 

+𝔭2𝒻𝑢
3ℊ𝑣𝓀𝑣

2)𝒻𝑢 = 0. 
 

 

where 𝔇 ≠ 0. 
 

V. LAPLACE−BELTRAMI OPERATOR OF THE 

TWISTED SURFACES FAMILY IN 𝔼3 

 

In this section, our focus is on the Laplace− 

Beltrami operator (ℒℬℴ) of a smooth function in 𝔼3. 

We will proceed to compute it utilizing the 𝒯𝒮ℱ, 

which is defined by Eq. (4.1). 
 

Definition 6. The ℒℬℴ of a smooth function 𝜑 =
𝜑(𝑥1, 𝑥2) in 𝒟 ⊂ ℝ2 of class 𝐶2 is the operator 

defined by 

 

∆𝜑 =
1

𝔇1/2
∑

𝜕

𝜕𝑥𝑖

2

𝑖,𝑗=1

(𝔇1/2𝔤𝑖𝑗
𝜕𝜑

𝜕𝑥𝑗
),       (5.1) 

 

where 

 

(𝔤𝑖𝑗) = (𝔤𝑘𝑙)
−1 

 

and 

 

𝔇 = det(𝔤𝑖𝑗). 

 

Therefore, the ℒℬℴof the 𝒯𝒮ℱ given by Eq. (4.1) 
is determined by 

 

∆𝕥 =
1

𝔇1/2
[
𝜕

𝜕𝑢
(𝔇1/2𝔤11

𝜕𝕥

𝜕𝑢
) +

𝜕

𝜕𝑢
(𝔇1/2𝔤12

𝜕𝕥

𝜕𝑣
) 

 

+
𝜕

𝜕𝑣
(𝔇1/2𝔤21

𝜕𝕥

𝜕𝑢
) +

𝜕

𝜕𝑣
(𝔇1/2𝔤22

𝜕𝕥

𝜕𝑣
)] , (5.2) 

 

where 

 

𝔤11 =
𝒻2ℊ𝑣

2 + 𝔭2𝓀𝑣
2

𝔇
, 

 

                            𝔤12 = −
𝔭𝒽𝑢𝓀𝑣
𝔇

= 𝔤21,             (5.3) 

 

                             𝔤22 =
𝒻
𝑢
2 + 𝒽𝑢

2

𝔇
. 

 

Taking the derivatives of the functions determined 

by Eqs. (5.3) in (5.2), w.r.t. 𝑢 and 𝑣, resp., we find 

the following. 

 

Theorem 4. The ℒℬℴof the 𝒯𝒮ℱ 𝕥 denoted by Eq. 

(4.1) is determined by  
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∆𝕥 = 2𝒦1𝔾, 

 

where 𝒦1 describes the ℳ𝒞, 𝔾 represents the 𝒢m 

of 𝕥. 
 

Proof. With direct calculating by (5.2), we obtain 

 

∆𝕥 = (∆𝕥1, ∆𝕥2, ∆𝕥3), 
 

with components 

 

 

∆𝕥1 =
1

𝔇2
, (𝔭2𝒻𝒻𝑢ℊ𝑣𝓀𝑣

2𝒽𝑢𝑢 + 𝒻
3𝒻𝑢ℊ𝑣

3𝒽𝑢𝑢 + 2𝔭
2𝒻𝑢

2ℊ𝑣𝒽𝑢𝓀𝑣
2 + 𝒻2ℊ𝑣

3𝒻𝑢
2𝒽𝑢 

 

                 −𝔭2𝒻ℊ𝑣𝒽𝑢𝓀𝑣
2𝒻𝑢𝑢 − 𝒻

3ℊ𝑣
3𝒽𝑢𝒻𝑢𝑢 + 𝒻

2ℊ𝑣
3𝒽𝑢

3 − 𝔭𝒻𝒻𝑢
3𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢

3ℊ𝑣𝓀𝑣𝑣 

 

                                      −𝔭𝒻𝒻𝑢𝒽𝑢
2𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢ℊ𝑣𝒽𝑢

2𝓀𝑣𝑣)(𝔭𝒻𝑢𝓀𝑣sinℊ − 𝒻𝒽𝑢ℊ𝑣cosℊ), 
 

 

∆𝕥2 =
1

𝔇2
(𝔭2𝒻𝒻𝑢ℊ𝑣𝓀𝑣

2𝒽𝑢𝑢 + 𝒻
3𝒻𝑢ℊ𝑣

3𝒽𝑢𝑢 + 2𝔭
2𝒻𝑢

2ℊ𝑣𝒽𝑢𝓀𝑣
2 + 𝒻2ℊ𝑣

3𝒻𝑢
2𝒽𝑢 

 

                 −𝔭2𝒻ℊ𝑣𝒽𝑢𝓀𝑣
2𝒻𝑢𝑢 − 𝒻

3ℊ𝑣
3𝒽𝑢𝒻𝑢𝑢 + 𝒻

2ℊ𝑣
3𝒽𝑢

3 − 𝔭𝒻𝒻𝑢
3𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢

3ℊ𝑣𝓀𝑣𝑣 

 

                                      −𝔭𝒻𝒻𝑢𝒽𝑢
2𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢ℊ𝑣𝒽𝑢

2𝓀𝑣𝑣)(−𝔭𝒻𝑢𝓀𝑣cosℊ − 𝒻𝒽𝑢ℊ𝑣sinℊ), 
 

 

∆𝕥3 =
1

𝔇2
(𝔭2𝒻𝒻𝑢ℊ𝑣𝓀𝑣

2𝒽𝑢𝑢 + 𝒻
3𝒻𝑢ℊ𝑣

3𝒽𝑢𝑢 + 2𝔭
2𝒻𝑢

2ℊ𝑣𝒽𝑢𝓀𝑣
2 + 𝒻2ℊ𝑣

3𝒻𝑢
2𝒽𝑢 

 

                 −𝔭2𝒻ℊ𝑣𝒽𝑢𝓀𝑣
2𝒻𝑢𝑢 − 𝒻

3ℊ𝑣
3𝒽𝑢𝒻𝑢𝑢 + 𝒻

2ℊ𝑣
3𝒽𝑢

3 − 𝔭𝒻𝒻𝑢
3𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢

3ℊ𝑣𝓀𝑣𝑣 

 

                                      −𝔭𝒻𝒻𝑢𝒽𝑢
2𝓀𝑣ℊ𝑣𝑣 + 𝔭𝒻𝒻𝑢ℊ𝑣𝒽𝑢

2𝓀𝑣𝑣)𝒻𝒻𝑢ℊ𝑣 , 
 

 

Definition 7. The surface 𝕥 is called harmonic if 

each componets of ∆𝕥 is zero. 

 

Example 1. Substituting 𝔭 = 1, 

 

𝒻(𝑢) = 𝑢,   ℊ(𝑣) = 𝑣,   𝒽(𝑢) = 𝑢,   𝓀(𝑣) = 𝑣 

 

into a 𝒯𝒮ℱ defined by Eq. (4.1) in 𝔼3, we have the 

𝒢m and the 𝔰𝔬 matrix, respectively, 

 

𝔾 =
1

(2𝑢2 + 1)1/2
(
sin 𝑣 − 𝑢cos 𝑣
−𝑢sin 𝑣 − cos𝑣

𝑢
), 

 

𝕊 =

(

 
 

0 −
1

(2𝑢2 + 1)1/2

−
1

(2𝑢2 + 1)1/2
𝑢2

(2𝑢2 + 1)1/2 )

 
 
. 

 

The curvatures are determined by 

 

𝒦0 = 1,𝒦1 =
𝑢2 + 1

(2𝑢2 + 1)3/2
,𝒦2 = −

1

(2𝑢2 + 1)2
. 

 

Then, we obtain 

 

 

∆𝕥 =
𝑢2 + 1

(2𝑢2 + 1)2
(
sin 𝑣 − 𝑢cos 𝑣
−𝑢sin 𝑣 − cos𝑣

𝑢
) ≠ (

0
0
0
). 

 

Finally, the surface is not minimal and non-

harmonic. 

 

Example 2. Substituting 𝔭 = 1, 
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𝒻(𝑢) = 𝑢,   ℊ(𝑣) = 𝑣,   𝒽(𝑢) = 0,   𝓀(𝑣) = 𝑣 

 

into a 𝒯𝒮ℱ defined by Eq. (4.1) in 𝔼3, we obtain the 

𝒢𝑚 and the 𝔰𝔬 matrix, respectively, 

 

𝔾 =
1

(𝑢2 + 1)1/2
(
sin 𝑣
− cos𝑣
𝑢

), 

 

𝕊 =

(

 
0 −

1

(𝑢2 + 1)1/2

−
1

(𝑢2 + 1)3/2
0

)

 . 

 

The curvatures are defined by 

 

𝒦0 = 1,  𝒦1 = 0,  𝒦2 = −
1

(𝑢2 + 1)2
. 

 

Hence, we get 

 

∆𝕥 = (0,0,0). 
 

Therefore, the surface is 1-minimal and harmonic. 

 

VI. CONCLUSIONS 

 

This study is focused on the investigation of the 

geometric properties exhibited by the family of 

twisted surfaces within the three-dimensional 

Euclidean space. 

 

The main objective is to analyze and gain a 

comprehensive understanding of the unique 

characteristics of these surfaces. The field of 

differential geometry plays a crucial role in 

providing crucial insights into the local geometry, 

including properties such as curvatures and tangent 

spaces, of the twisted surfaces family. The 

application of the Cayley-−Hamilton theorem 

enables an effective determination of the curvatures 

of these specific surfaces by expressing the 

characteristic polynomial in terms of the 

corresponding matrices themselves. 

Furthermore, this research establishes the 

necessary conditions for minimality within the 

conoid surfaces family, serving as criteria to identify 

when a surface can be considered minimal within 

this specific family. Additionally, the exploration of 

the Laplace−Beltrami operator sheds light on its 

relationship with the twisted surfaces family. 

 

Through this investigation, this research 

contributes to an enhanced understanding of the 

geometric properties, curvatures, minimality 

conditions, and the interplay with the 

Laplace−Beltrami operator within the family of 

twisted surfaces in the three-dimensional Euclidean 

space. 
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