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Abstract – The free vibration of stepped nanobeams embedded in the elastic foundation was investigated 

using Eringen's nonlocal elasticity theory. It is fixed at the system ends with a simple-simple support. The 

stepped nanbeam’s equations of motion are obtained by using Hamilton's principle. Multi-time scale, which 

is the perturbation methods, was used for the analytical solution of the equations. To observe the effects of 

nano size effect, elastic basis coefficient and step location, natural frequencies of the first three modes of 

the system were obtained for different non-local parameter values, elastic foundation coefficients, step rates 

and step positions. In the results, it was seen that the non-local parameter had a negative effect on the natural 

frequency. The elastic foundation coefficient has been shown to reduce vibration amplitudes. 
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I. INTRODUCTION 

 Nanotechnology, which we have started to feel its 

presence in all areas of the scientific world, has 

become one of the most important subjects of 

today's studies and many studies have been carried 

out [1]–[10]. When nano-structures are observed, 

some linear and superficial faults such as lattice 

gaps, steps or cracks in the material structure disrupt 

the continuity of the system. It is known that at the 

nanoscale, the properties of the material differ 

depending on its size. For this reason, not neglecting 

the physical properties in examining the mechanical 

behavior of nanomaterials such as mechanical 

vibrations will allow more accurate results in real 

engineering applications. In this context, there are 

many studies on beams with stepped and cracked 

surfaces [11]–[19]. There are very few studies on 

stepped nanobeams [18], [20]–[23]. 

In the literature, vibration behavior on stepped 

nanobeams under different conditions has been 

investigated using different theories and presented 

as summarized above. The vibrational behavior of 

the stepped nanobeam supported by an elastic 

foundation has not been studied so far. In this study, 

the vibration behavior of stepped nanobeam 

embedded in an elastic foundation is modeled using 

Eringen's nonlocal elasticity theory. The elastic 

foundation in which the stepped nanobeam is 

embedded is modeled based on linear spring 

foundations. 

II. NONLOCAL ELASTICITY THEORY 

Nanobeam’s material is defaulted to be a non-

linear elastic material that conforms to a nonlocal 

elasticity theory. According to [24] Concepts, the 

constitutive equations for materials conforming to 

nonlocal elasticity be expressed as: 

* * * *

( )

( ) ( , ) ( )n c

ij ij

V

x a x x x dV   = −             (1) 
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Eq. (1), 
n

ij denotes the tension tensor at non-

local elasticity, 
c

ij  the classical (hooke) tension 

tensor, and V the volume. Here, a  is the kernel 

function, which is assumed to express the effect of 

the stress state in *x V  and the stress-strain state 

in *x V , and   is the physical constant [24]. 

Different forms of kernel function *( )a x  in eq. (1) 

describe different approximate models of nonlocal 

elasticity. Suppose *( )a x  is a linear differential 

operator L function. In this case, 

 

( ) ( )* * * *La x x x x    − = −
   

          (2) 

 

Here  is Dirac's  - function, have shown that 

the function can be obtained by taking a simple two-

dimensional kernel function [24]. 

 

( )
2 2 *

0( ) (1 ) ( )L a e a a x= −              (3) 

 

Here   is laplace operator. Eq. (3), 0e  is a 

physical constant. a  is the repetitive interatomic 

distance parameter (lattice size) in the lattice 

structure of nanomaterials. Eringen named the 0e a  

expression as a small-scale parameter and suggested 

that its value should be taken in 0 2e a   nanometer 

scales [24]. According to Eqs. (1) - (3) the 

constitutive equation of nonlocal elasticity can be 

determined as follows, 

 

( )2

01 n c

ij ije a  −  =              (4) 

 

For homogeneous isotropic Euler Bernoulli beam 
2 *

* 2 *

0 2

( )
( ) ( ) ( )

x
x e a E x

x


 


− =


             (5) 

 

III. MATERIAL AND METHODS 

Hamilton's principle was used to derive the 

equations of motion of the stepped nanobeam 

embedded in the elastic foundation. First, the 

Lagrangian of the system £ T V= −  was found. 

According to Hamilton's principle, the difference 

between the kinetic T and potential V energies of 

a system within the time integral variation must be 

zero. Here, the difference of kinetic and potential 

energies is defined as “Lagrangian (£)”. 
2 2

* *
* *1 2

1 2* *

0

1 1
ρA dx ρA dx

2 2

s

s

x L

x

w w
T

t t

    
= +   

    
   (6a) 
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w
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 (6b) 

Here,   represents the density of the stepped 

nanobeam, 1A  and 2A  represent the cross-sectional 

areas of the stepped nanobeam. E  is the modulus of 

elasticity of the nanobeam embedded in the stepped 

elastic foundation., 1I  and 2I  are the moment of 

inertias. L  is defined as the length scale parameter 

of the stepped nanobeam, sx  is step place, k is 

elastic foundation stiffness, and N  is the axial 

force. *( )  represents dimensional parameters. The 

equations of motion and boundary conditions before 

and after the step of the stepped nano beam were 

found as follows, using Hamilton's: 

( )

( )

( )

( )

4 2 * 4
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
   

+ − 
    


+ −



=
  

+ −  
   

     
+    

      

  
− 

  

 

        (7) 
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      (8) 

 

For Simple-Simple Support, 
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Dimensionless parameters are associated with 

dimensional values marked with an asterisk and 

equations are nondimensionalized 

 
**

1,2 * 0
1,2

1,2

4

2 1

2

1 1 1

, , , ,

1
, , ,s

w e ax
x w t t

L R L

xr EI kL

r L L A EI

 

  


= = = =

= = =  =

      (10) 

 

 is a dimensionless parameter that indicates the 

ratio of the radio of the steps at eq. (10).   is a 

dimensionless non-local parameter.   is a 

dimensionless parameter expressing the step 

location. R is the parameter expressing the radius of 

inertia of the circular cross section stepped beam. 

IV. PERTURBATION ANALYSIS 

In this section, the approximate solution is 

obtained by the perturbation method. The multi-

scale method, which is the perturbation methods, is 

applied for the solution [25]. The following 

expansion can be suggested for the displacement 

functions. 

 
0

1 10 0 1 11 0 1( , : ) ( , , ) ( , , )y x t y x T T y x T T  = +         (11) 

 
0

2 20 0 1 21 0 1( , : ) ( , , ) ( , , )y x t y x T T y x T T  = +         (12) 

 

  is a small parameter used in calculations. 
0

0T t=  is a fast time scale, 1T t=  is slow time 

scale. According to the time derivative expressions 

are written in terms of new time variables, 

 

0 1

2 2 2

0 0 1

/

/ 2

t D D

t D D D





  = +

  = +
Where, /nD T=          (13) 

 

After expansion, the first and second terms of the 

expansion are separated as follows: 

 

Order ( 0 ) 

 
2 2 2 2

10 0 10 0 10 10 10( ) 0ivy D y D y y y  + − − − =
      (14) 

 
2

2 2 2

20 0 20 0 20 20 202 2

1
( ) 0ivy D y D y y y




 
 + − − − = (15) 

 

 

Order ( ) 
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1

2 2 2 2
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1
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(y ) (y ) y

F cos Ωt 2 y

D D D D D D

y y y dx dx
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D









 

 

 



 + + − −

 
   − − =  + 

  

 
 − + 

  

+ −

 

 

  (16) 
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Where,   

1

2

1

(1 )
2






 =
− 

+ 
 

, and   
2

4

2

1

(1 )
2


 



 =
− 

+ 
 

        

 

The equations in the 0 Order give the linear 

equation of motion and the linear frequency 

equation of the system. The equations in  order 

show the effects coming from the nonlinear part. 

The boundary conditions can be represented as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10 20

11 21 11 21

11 21

5 5

11 21 11 21

(0) 0, (1) 0

,

(0) 0, (1) 0

,

y y

y y y y

y y

y y y y

     
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= =

 = =

 = =

   = =

  (18) 

 

V. LINEER PROBLEM 

The first perturbation order 0  is given in Eqs. 

(14) and (15); The solution can be represented as 

 
0 0

10 0 1 1 1 1 1 1 1( , , ) ( ) ( ) ( ) ( )
i T i T

y x T T A T e Y x A T e Y x
 −

= + (19) 

 
0 0

20 0 1 2 1 2 2 1 2( , , ) ( ) ( ) ( ) ( )
i T i T

y x T T A T e Y x A T e Y x
 −

= +  (20) 

 

If eqs. (19) and (20) are applied to eqs. (14) and 

(15), 

 
2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) 0ivY x Y x Y x  + − +  − =     (21) 

 

2
2 2

2 2 22 2

2
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1
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1
( ) ( ) 0

ivY x Y x Y x

Y x


 

 




− + −

+  − =

          (22) 

 

Eqs. (23) and (24) can be used to solve Eqs. (21) and 

(22) 

 
1311 12 14

1311 12 14

1 11 12 13 14

1312 14
11

11 11 11

( )
ir xir x ir x ir x

ir xir x ir x ir x

Y x c e c e c e c e

cc c
c e e e e

c c c

= + + +

 
= + + + 

 

          (23) 

 
2321 22 24

2321 22 24

2 21 22 23 24

2322 24
21

21 21 21

( )
ikr xikr x ikr x ikr x

ikr xikr x ikr x ikr x

Y x c e c e c e c e

cc c
c e e e e

c c c

= + + +

 
= + + + 

 

(24) 

 

Where, 
1

k


=  

 

the scattering equations are obtained. 

 
4 2 2 2 2 2

1 1( ) ( ) 0n nr r   − −  +  − =    

1,2,3,4n =                 (25) 

 
2

4 4 2 2 2

2 22

2 2

2

( )

1
( ) 0

n nr k k r

k









− −

+  − =

         (26) 

 

nr  roots can be obtained numerically after all the 

constant data are entered numerically. At this step, 

to see the boundary conditions effects in the linear 

problem, a coefficient matrix is created by 

substituting the boundary conditions in equations 

(25) and (26). The values that make the determinant 

calculation of the matrix given above zero give the 

natural frequencies of the system. 

 

VI. RESULTS AND DISCUSSIONS 

In the results section of the study, first of all, the 

nanoscale effect of the system was investigated by 

using different non-local parameters values 

0.1 0.2 0.3 0.4 0.5 = − − − − in the first column of 

Table 1. 
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Table 1 The first three mode natural frequency values of the stepped nanobeam for different non-local parameter values and 

elastic foundation coefficients 

0.5 0.5 = =  1.5 0.5 = =  

 10 =  100 =  250 =  500 =   10 =  100 =  250 =  500 =  

0.1 =  0.1 =  

1  5,07959 10,76110 16,30340 22,71130 1  11,47520 14,88890 19,27900 24,93350 

2  20,69500 22,76580 25,85120 30,30320 2  45,46080 46,44010 48,02790 50,56360 

3  40,50870 41,60480 43,37000 46,16230 3  80,04560 80,60590 81,53100 83,05000 

0.2 =  0.2 =  

1  4,89488 10,67520 16,24680 22,67070 1  10,25300 13,96860 18,57750 24,39510 

2  16,27690 18,83980 22,47080 27,47610 2  32,29630 33,66080 35,81970 39,15420 

3  27,94410 29,51050 31,95110 35,64930 3  50,35890 51,24470 52,68790 55,00930 

0.3 =  0.3 =  

1  4,65789 10,56860 16,17700 22,62070 1  8,93411 13,03140 17,88350 23,87090 

2  12,81140 15,94150 20,10300 25,57600 2  23,91290 25,72600 28,49250 32,58570 

3  20,37850 22,47850 25,59850 30,08790 3  35,52560 36,77050 38,75660 41,85780 

0.4 =  0.4 =  

1  4,42019 10,46600 16,11020 22,57300 1  7,80426 12,28440 17,34670 23,47140 

2  10,44200 14,10800 18,68250 24,47520 2  18,75600 21,01880 24,32670 29,01360 

3  15,85080 18,47290 22,16410 27,22590 3  27,24420 28,84870 31,34080 35,10340 

0.5 =  0.5 =  

1  4,20874 10,37850 16,05350 22,53250 1  6,91165 11,73760 16,96380 23,18990 

2  8,81829 12,95230 17,82590 23,82780 2  15,39350 18,08200 21,83940 26,96220 

3  12,94940 16,05260 20,19120 25,64540 3  22,06670 24,01960 26,96180 31,25600 

 

Table 1 values in first column were created 

under the conditions of step ratio 0.5 =  and step 

location 0.5 = . In the second column the 

nanoscale effect was examined under the 

conditions of step ratio 1.5 =  and step location 

0.5 = .  

The nanoscale effect is considered separately 

for different elasticity coefficients

10, 100, 250, 500 =  =  =  = . 
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Figure 1. First three dimensionless frequencies of stepped nanobeam with various step ratios for versus nonlocal parameter 

 

When Table 1 is examined, the elasticity 

values of the foundation increase, the natural 

frequency values also increase. This result shows 

parallelism with this study[10]. This parallelism 

strengthens the accuracy of the results of the 

study. 

In Figure 1, the first three mode natural 

frequency values of the stepped nanobeam 

embedded in the elastic foundation are given for 

different non-local parameter values. Values are 

given in the graph for both 0.5 = and 1.5 = . In 

addition, the step location has been determined as 
0.5 = . In the results, it was seen that the non-

local parameter had a negative effect on the 

natural frequency. So nonlocal parameter values 

increase, the natural frequency values decrease as 

seen in Table 1. 

 

 
Figure 2. First dimensionless frequencies of stepped nanobeam with various the nonlocal parameter for versus step locations 

 

 

In Figure 2, the variation of the fundamental 

frequencies of the stepped beam embedded in the 

elastic foundation with respect to the step position 

for different non-local parameter values 

0.1 0.3 0.5 = − −  are plotted. The following 

conclusions can be drawn from the plotted graph. 

• It is seen that the natural frequency values 

increase as the step of the nanobeam 
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movesfrom the starting point to the other 

end. It is understood that this situation is 

related to the increase of the thinner part of 

the stepped nanobeam (The step ratio 1  ). 

This gives the same result for all non-local 

parameter values. 

 

The present study investigates the free 

vibrations of stepped nanobeam embedded in 

elastic foundation. The results are presented in 

graphs and tables. It is seen that the natural 

frequencies of the first three modes decrease with 

the increase of the non-local parameter 

representing the effect of the nanoscale. The 

importance of the steps, which are thought to exist 

in the nature of the nano beam and indicate the 

originality of the study, was sought with its 

location and the ratio of the step. The results 

showed that the presence of the cascade 

contributes significantly to the natural frequency. 

In addition, the effects of the elastic foundation on 

the natural frequency were also observed. It is 

seen the natural frequency increase as the elastic 

foundation coefficient value is increased. There is 

no study of stepped nanobeam embedded in 

elastic foundation in the literature. Since this 

study is the first, it is expected that it will shed 

light on its field. 
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