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Abstract – The exponential of a matrix is a fundamental mathematical operation with numerous applications 

in various fields, including numerical linear algebra. The computation of e^Av for large symmetric negative 

semidefinite matrices presents significant challenges due to computational complexity and memory 

requirements. This research paper introduces an innovative iterative approach that combines Krylov 

subspace methods with projection techniques to compute e^Av efficiently. The Krylov subspace iteration 

constructs an orthogonal basis capturing essential information for the matrix exponential. Through 

projection techniques, the problem's dimensionality is reduced, enabling efficient computations. A 

comprehensive step-by-step description of the approach is provided, highlighting its benefits, such as 

reduced computational complexity, improved memory efficiency, scalability to large matrices, and high 

accuracy. The proposed approach introduces new possibilities for efficient approximation of e^Av in 

diverse scientific and engineering applications involving large symmetric negative semidefinite matrices. 

Experimental results validate the approach's effectiveness and accuracy, illustrating its potential to 

revolutionize computations involving exponential matrices in high-dimensional systems. 
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I. INTRODUCTION 

The computation of the matrix exponential, 

𝑒𝐴 operating on a vector, 𝑣, is a fundamental task in 

various scientific and engineering applications [1]. 

It arises in diverse fields such as quantum physics, 

scientific computing, and machine learning [2], [3], 

[4]. However, when confronted with large 

symmetric negative semidefinite matrices, 

accurately approximating the vector 𝑒𝐴𝑣 becomes a 

challenging problem due to the size and specific 

properties of the matrix. 

Large symmetric negative semidefinite matrices 

possess unique characteristics that make their 

numerical treatment demanding. These matrices 

arise in a multitude of applications, including 

optimization, control systems, graph analysis, and 

physics simulations [5], [6], [7], [8]. They play a 

crucial role in modeling systems with constraints, as 

well as capturing relationships where the variables 

are negatively related. 

There exist various approximation methods for 

computing the matrix exponential, 𝑒𝐴, that balance 

accuracy and computational efficiency. These 

methods are particularly valuable when dealing with 

large matrices or matrices with specific structures, 

such as symmetric negative semidefinite matrices.  

Pade approximations are rational function 

approximations that represent the matrix 

exponential as a ratio of polynomials [9]. They 

provide accurate approximations for a wide range of 

matrices and can be efficiently computed using 

techniques such as LDU decomposition. Pade 

approximations are particularly effective when the 

matrix 𝐴 has a spectrum concentrated around zero. 

The scaling and squaring method is a popular 
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technique to approximate the matrix exponential 

[10]. It leverages the fact that for any square matrix 

𝐴, 𝑒𝐴 = 𝑒𝑠𝐵, where 𝐵 is a scaled version of 𝐴 and 𝑠 

is a scaling factor. The matrix exponential of the 

scaled matrix can then be computed using Taylor or 

Pade approximations. This method reduces the 

complexity of the computation by allowing the use 

of simpler approximations. Krylov subspace 

methods, such as Arnoldi iteration [11] or Lanczos 

iteration [12], approximate the exponential matrix 

by projecting the matrix onto a low-dimensional 

subspace spanned by Krylov vectors. These 

methods are particularly effective when 𝐴 can be 

efficiently applied to a vector. By truncating the 

Krylov subspace, accurate approximations of 𝑒𝐴 

can be obtained with reduced computational costs 

[13]. Rational approximations represent the matrix 

exponential as a ratio of two polynomials. These 

approximations can be tailored to specific properties 

of the matrix, such as its spectrum or sparsity 

pattern. Rational approximation techniques, such as 

the continued fraction expansion or the matrix sign 

function, can provide accurate approximations for 

matrices with complex spectral properties [14]. 

Lanczos-based methods compute a tridiagonal 

approximation of the matrix and then perform an 

explicit exponentiation of the tridiagonal matrix 

[15]. These methods are efficient for large sparse 

matrices and can be combined with other 

techniques, such as Pade approximations or rational 

approximations, to improve accuracy. Tensor-based 

approximation methods, such as the tensor 

exponential, leverage the multi-linear structure of 

the matrix exponential [16]. They represent the 

matrix exponential as a low-rank tensor and exploit 

tensor decomposition algorithms to compute an 

approximation. Tensor-based techniques can be 

particularly efficient when 𝐴 has a low-rank 

structure or when efficient tensor operations are 

available. However, applying these methods 

directly to large symmetric negative semidefinite 

matrices can be computationally prohibitive or lead 

to inaccuracies. To address this challenge, a novel 

iterative approach has emerged that combines the 

benefits of Krylov subspace methods and projection 

technique (KP method). This article explores how 

this approach provides an efficient and accurate 

approximation of 𝑒𝐴𝑣 for large symmetric negative 

semidefinite matrices. 

II. BACKGROUND 

This section provides background information on 

symmetric negative semidefinite matrices and 

exponential matrix functions. 

A. Level-2 Heading Symmetric Negative 

Semidefinite Matrices 

Symmetric negative semidefinite matrices are a 

specific class of matrices that possess important 

mathematical and computational properties. A 

matrix 𝐴 is said to be symmetric if it is equal to its 

own transpose, denoted as 𝐴 =  𝐴ᵀ. Additionally, it 

is negative semidefinite if all its eigenvalues are 

non-positive, which is represented as λ ≤ 0 for all 

eigenvalues λ of 𝐴 [17]. 

The negative semidefinite property of a matrix 

implies that 𝑣ᵀ𝐴𝑣 ≤ 0 for all nonzero vectors 𝑣. This 

property arises in situations where variables are 

negatively related or constrained by energy 

considerations. It is commonly encountered in 

optimization problems with inequality constraints, 

such as quadratic programming, where the objective 

is to minimize a quadratic function subject to certain 

constraints. 

B. Matrix Exponential 

The matrix exponential, 𝑒𝐴, is a fundamental 

mathematical operation that extends the concept of 

exponentiation from scalars to matrices. The matrix 

exponential of a square matrix 𝐴 is defined using the 

power series expansion, 

 𝑒𝐴 = 𝐼 + 𝐴 + 𝐴2/2! + 𝐴3/3! + ⋯ , (1) 

where 𝐼 represents the identity matrix and the terms 

involving the matrix powers are divided by the 

corresponding factorials [18]. The series converges 

for all square matrices, although it may converge 

faster or slower depending on the properties of 𝐴. 

III. COMBINING KRYLOV SUBSPACE AND 

PROJECTION TECHNIQUES FOR COMPUTATION OF 

𝑒𝐴𝑣 

In this research, an iterative approach is proposed 

for efficiently computing 𝑒𝐴𝑣 when 𝐴 is a large 

symmetric negative semidefinite matrix using 
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projection. This approach is based on the Krylov 

subspace and projection techniques. The Krylov 

subspace is a subspace spanned by powers of the 

matrix 𝐴 applied to a vector 𝑣. By constructing this 

subspace iteratively, we can obtain an orthogonal 

basis that captures the essential information of 𝑒𝐴𝑣. 

Projection techniques are then employed to reduce 

the dimensionality of the problem, allowing for 

efficient computation. 

The Krylov subspace iteration process begins by 

initializing a random vector 𝑣 and normalizing it to 

have a unit norm. We denote the orthogonal basis 

obtained from the Krylov subspace iteration as 𝑄. 
The Krylov subspace is generated iteratively by 

applying powers of 𝐴 to 𝑣. Let's denote the Krylov 

subspace at iteration 𝑘 as 𝐾𝑘. 

Let the initial vector 𝑣 𝑎𝑠, 𝑣0, 

𝑣0 = 𝑣/||𝑣||. 

The iteration step, 

𝑤𝑘 = 𝐴 ∗ 𝑞𝑘−1 − ∑(𝑞𝑖
𝑇 ∗ 𝐴 ∗ 𝑞𝑘−1) ∗ 𝑞𝑖 , 

for 𝑖 =  1 to 𝑘 − 1,  

𝛽𝑘 = ||𝑤𝑘||𝑞𝑘 = 𝑤𝑘/𝛽𝑘. 

Then the Orthogonal basis is updated, 

𝑄𝑘 = [𝑞1, 𝑞2, … , 𝑞𝑘]. 

This process continues until convergence or a 

predetermined number of iterations of 2000 is 

reached. After obtaining the set of orthogonal 

vectors from the Krylov subspace iteration, matrix 

𝐴 is projected onto the subspace spanned by these 

vectors. To project matrix 𝐴 onto the subspace 

spanned by 𝑄𝑘, we compute the projected matrix 𝑃 

as 

𝑃 = 𝑄𝑘
𝑇 ∗ 𝐴 ∗ 𝑄𝑘. 

Finally, using the computed projected matrix 𝑃, we 

can compute 𝑒𝐴𝑣  by multiplying the result with the 

initial vector 𝑣 transformed by the orthogonal basis 

𝑄𝑘, 

𝑒𝐴𝑣 = 𝑄𝑘 ∗ 𝑒𝑃  ∗ 𝑄𝑘
𝑇 ∗ 𝑣, 

where 𝑒𝑃 is the matrix exponential of 𝑃. By 

following these steps, the proposed iterative 

approach combines the Krylov subspace method 

with projection techniques to efficiently compute 

𝑒𝐴𝑣 for large symmetric negative semidefinite 

matrices. The construction of the Krylov subspace 

captures the necessary information, while the 

projection reduces the problem's dimensionality, 

leading to more efficient computations 

Algorithm 1 

Input: Matrix 𝐴, vector 𝑣, the maximum number 

of iterations: 𝑚, tol: 10−12 

Output: 𝑒𝐴𝑣  

1: set 𝑣 =  𝑣 / ||𝑣|, 𝑥0  =  𝑣 

2: for 𝑘 =  1 to 𝑚 

3:       𝑤 = 𝐴𝑥𝑘−1 

4:       𝑤 = 𝑤 − ∑(𝑞𝑖
𝑇𝑤)𝑞𝑖, where 𝑞𝑖 are the 

vectors obtained in previous iterations 

5:       𝛽𝑘 = ||𝑤|| 

6:       if 𝛽𝑘 < 𝑡𝑜𝑙, quit 

7:       𝑞𝑘 = 𝑤/𝛽𝑘 

8:       𝑥𝑘 = 𝑥𝑘−1 + 𝑞𝑘 

9:  end for  

10: 𝑃 = 𝑄𝑘
𝑇𝐴𝑄𝑘 

11: Use an appropriate method to compute the 

matrix exponential of 𝑃 (e.g., truncated Taylor 

series, Padé approximation, diagonalization-

based methods). 

12: 𝑒𝐴𝑣 = 𝑄𝑘𝑒𝑃𝑄𝑘
𝑇𝑣 

IV. RESULTS 

In this section, the results obtained from applying 

the proposed iterative approach for computing 𝑒𝐴𝑣  
on large symmetric negative semidefinite matrices 

are presented. The effectiveness, accuracy, 

computational complexity, memory efficiency, 

scalability, and potential applications of the method 

are evaluated and discussed. To evaluate the 

performance of the proposed approach, a series of 

experiments were conducted on a diverse set of 

matrices with varying sizes and properties. The 

experiments were carried 
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(a) Example 1          (b) Example 2 

 

(c) Example 3         (d) Example  4 

 

Fig 1.  Convergence behavior of KP and Lanczos methods for computation of exponential matrices for large symmetric 

negative semidefinite matrices

out on MATLAB. A comparison was made between 

the results obtained using the proposed approach 

and Lanczos iteration for computing the exponential 

matrix. 

First, the computational complexity of the 

proposed method was assessed by measuring the 

execution time required to compute 𝑒𝐴𝑣 for 

matrices of different dimensions. The experiments 

revealed a significant reduction in computational 

complexity compared to the traditional method. The 

iterative nature of the algorithm, combined with the 

Krylov subspace construction and projection 

techniques, enabled efficient computations even for 

large matrices. The execution time exhibited a 

favorable linear or sublinear growth as the matrix 

size increased, demonstrating the scalability of the 

approach. 

Furthermore, the memory efficiency of the 

method was evaluated. Memory requirements can 

be a limiting factor when dealing with large 

matrices. By utilizing projection techniques, the 

approach effectively reduced the dimensionality of 

the problem, resulting in reduced memory 

requirements. This reduction in memory 

consumption allowed the handling of matrices that 
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were previously infeasible to compute using 

existing methods. 

To assess the accuracy of the proposed approach, 

the computed matrix exponential values were 

compared with known analytical solutions for 

smaller matrices. The experiments demonstrated 

that the iterative approach achieved high accuracy 

in approximating 𝑒𝐴𝑣, yielding results that closely 

matched the analytical solutions. This accuracy was 

maintained even for matrices with high condition 

numbers or extreme eigenvalue distributions. 

Finally, the potential applications of the method 

in scientific and engineering domains involving 

large symmetric negative semidefinite matrices 

were discussed. The efficient computation of 𝑒𝐴𝑣 

opens up new possibilities in various fields, such as 

control systems, quantum mechanics, and 

optimization. The scalability, reduced 

computational complexity, and improved memory 

efficiency of the approach make it particularly well-

suited for handling high-dimensional systems. 

As seen from our four examples in Figure 1, the 

KP method converges with fewer iterations, while 

the Lanczos method requires more iterations for the 

relative residual to reach the tolerance value of 10^-

18. In fact, in Examples 2 and 4, it is evident that the 

maximum number of iterations with the Lanczos 

method is insufficient for the relative residual to 

converge. In contrast, the KP method effectively 

achieves the desired result in these examples. The 

experimental results validate the effectiveness, 

accuracy, and efficiency of the proposed iterative 

approach for computing 𝑒𝐴𝑣. The combination of 

Krylov subspace methods and projection techniques 

provides a powerful tool for approximating the 

exponential of large symmetric negative 

semidefinite matrices. The method's ability to 

handle high-dimensional systems with reduced 

computational and memory requirements 

establishes it as a valuable tool in diverse scientific 

and engineering applications. The proposed 

approach has the potential to revolutionize 

computations involving exponential matrices and 

pave the way for new advancements in high-

dimensional systems. 

V. CONCLUSION 

In conclusion, this research introduces an 

innovative approach for efficiently computing the 

exponential of large symmetric negative 

semidefinite matrices, 𝑒𝐴𝑣. By combining Krylov 

subspace methods with projection techniques, 

significant improvements in efficiency and accuracy 

are achieved. The approach constructs an 

orthogonal basis capturing essential matrix 

exponential information and reducing 

dimensionality for efficient computations. 

Experimental results validate its effectiveness and 

high accuracy. This approach revolutionizes 

exponential matrix computations, enabling efficient 

approximation of 𝑒𝐴𝑣 in diverse scientific and 

engineering applications. It demonstrates scalability 

to large matrices and has the potential to transform 

computations in numerical linear algebra and 

related fields. 

REFERENCES 

 
[1] N. J. Higham, Functions of matrices: theory and 

computation. Society for Industrial and Applied 

Mathematics, 2008. 

[2] R. M. Wilcox, Exponential operators and parameter 

differentiation in quantum physics, Journal of 

Mathematical Physics 8.4, 962-982, 1967. 

[3] A. H. Al-Mohyand N. J. Higham, Computing the action 

of the matrix exponential, with an application to 

exponential integrators, SIAM journal on scientific 

computing 33.2, 488-511, 2011. 

[4] F. Dornaika and Y. E. Traboulsi, Matrix exponential 

based semi-supervised discriminant embedding for 

image classification, Pattern Recognition 61, 92-103, 

2017. 

[5] M. Panayotis, et al., Distributed stochastic optimization 

via matrix exponential learning, IEEE Transactions on 

Signal Processing 65.9, 2277-2290, 2017. 

[6] D. S. Bernstein and W. So. "Some explicit formulas for 

the matrix exponential." IEEE Transactions on 

Automatic Control 38.8, 1228-1232, 1993. 

[7] D. C. C. Omar, M. Matar, and L. Reichel, Analysis of 

directed networks via the matrix exponential, Journal of 

Computational and Applied Mathematics 355, 182-192, 

2019. 

[8] S. Kumashiro, et al., An accurate metric to control time 

step of transient device simulation by matrix exponential 

method, 2017 International Conference on Simulation of 

Semiconductor Processes and Devices (SISPAD). IEEE, 

2017. 

[9] C. Brezinski, and J. V. Iseghem, Padé approximations, 

Handbook of Numerical Analysis 3,  47-222, 1994. 



 

509 
 

[10] N. J. Higham, The scaling and squaring method for the 

matrix exponential revisited, SIAM Journal on Matrix 

Analysis and Applications 26.4, 1179-1193, 2005. 

[11] R. B. Lehoucq and C. S. Danny, Deflation techniques for 

an implicitly restarted Arnoldi iteration, SIAM Journal 

on Matrix Analysis and Applications 17.4, 789-821, 

1996. 

[12] Y. Saad, On the rates of convergence of the Lanczos and 

the block-Lanczos methods, SIAM Journal on Numerical 

Analysis 17.5, 687-706, 1980. 

[13] G. H. Golub and C. F. Van Loan. Matrix computations. 

JHU press, 2013. 

[14] I. Moret and P. Novati, RD-rational approximations of 

the matrix exponential." BIT Numerical Mathematics 44, 

595-615, 2004. 

[15] K. Gallivan, E. Grimme, P. V. Dooren, Asymptotic 

waveform evaluation via a Lanczos method, Applied 

Mathematics Letters 7.5, 75-80, 1994. 

[16] R. Boyer, L. D. Lathauwer, K. Abed-Meraim, Higher 

order tensor-based method for delayed exponential 

fitting, IEEE Transactions on Signal Processing 55.6, 

2795-2809, 2007. 

[17] E. Eisenberg, A note on Semidefinite Matrices. 

Operations Research Center, Institute of Engineering 

Research, University of California, Berkeley, 1961. 

[18] I. E. Leonard, The matrix exponential." SIAM review 

38.3, 507-512, 1996. 

 

 


