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Abstract – Using deep learning architectures, disease detection from medical images such as brain 

images, chest X-rays, and cytology images is used in many areas. With the use of deep learning 

architectures in the faster detection of diseases, the possibility of starting treatment early increases. 

Benign and malignant cell clusters are formed from body cavity effusions. Diagnosis is made by visual 

inspection of images of centrifuged body fluid effusions deposits. Bad cells are usually abundant in body 

cavity fluids. Here, separating malignant cells from the proliferation of mesothelial cells or inflammatory 

cells is the problematic part. In this case, a classifier can be used to distinguish benign mesothelial or 

inflammatory cells from malignant carcinoma cells. In this study, using Convolutional Neural Network 

(CNN) based models, the detection of benign and malignant cells from cytology images consisting of 

fluids in the body cavity will be an aid to pathologists by detecting early and accurately. The dataset 

contains 693 images with two classes of 256x192 benign and malignant cells. These images are trained 

using AlexNet, ResNet50, DarkNet53, GoogleNet, MobileNetv2, and EfficientNetb0 architectures. As a 

result of the test phase, the highest classification accuracy was obtained in the DarkNet53 architecture 

with 98.56%.   
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I. INTRODUCTION 

The pleural space is the space between the outer 

pleura attached to the chest wall and the inner 

pleura on the lung surface. Pleural effusion, on the 

other hand, is the excessive accumulation of fluid 

between the layers of the pleura covering the 

surface of the lungs. Pleural effusion may occur 

due to various reasons such as inflammation, 

infection or malignancy. Mesothelial cells, 

inflammatory cells, and malignant cells may be 

involved in these effusions between the pleural 

layers [1,2]. Fluid samples taken from the pleural 

space are centrifuged and the residue is spread on a 

glass slide and stained with various dyes. 

Microscopic images of pleural effusion cytology 

stained with Leishman stain in the study are given 

in Figure 1. 

Examination of body fluid cytology is a complete 

diagnostic method that is widely used in both the 

diagnosis and staging of malignant cells. The 

process of examining body fluid smears can be 

time-consuming and prone to error. Cytological 

examination is usually performed to diagnose the 

disease in pleural effusion. Carcinoma can be 

diagnosed with malignant epithelial cell clusters 

sought in body fluids that are microscopically 

examined by pathologists [3]. 

  Deep learning in cytological examinations will 

help to increase the overall survival rate of cancer 

patients by producing fast and highly accurate 

results in early and effective diagnosis. 

Aboobacker et al. [1] proposed an integrated 

approach based on deep learning that learns to 

detect malignant cells in effusion cytology images. 

In their architecture called U-Net, they obtained an 

accuracy of 96% and AUC of the ROC curve of 

97%, precision 96% Recall 96% and Specificity 
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97% from images containing malignant cell 

detection. 

 Uca et al. [4] trained and tested 21 patients using 

a dataset of 693 images using the ResNet50, 

GoogleNet and AlexNet classification 

architectures, as a result of the images they 

subjected to training and testing, AlexNet 

architecture was 97.26%, GoogleNet architecture 

was 98.12% and ResNet50 architecture was 99%, 

13 classification accuracies were obtained. They 

contrasted the classification outcomes they 

obtained with those from other studies that used the 

same dataset. 

The continuation of the article is organized as a 

Material and Methods section, Result section, and 

Conclusion section.  

II. MATERIALS AND METHOD 

The dataset and CNN architectures used in the 

study are discussed in this section. 

A. Dataset 

A publicly available dataset was used to classify 

Cytology images [5]. This two-class dataset 

consists of benign (mesothelial cell proliferation, 

inflammatory cell, etc.) cells with 160 images and 

malignant carcinoma (malignant epithelial) cells 

with 533 images. The images in the dataset were 

created by resizing the smears (smears) prepared 

from centrifuged deposits of body fluids to 

256x192 pixels at 40X magnification after staining 

with Leishman. Figure 1 shows examples of the 

cytology images used in the paper. 

 

Benign 

 

Malignant 

 
Fig. 1 Cytology image examples 

B. CNN Architectures 

Convolutional Neural Network architecture 

(CNN), which has been accepted as a basic 

architecture of deep learning neural networks, is 

the most common neural network architecture 

applied to image classification and signal 

processing problems. Unlike traditional machine 

learning architectures, deep learning models 

perform these operations independently, without 

the need for feature extraction and pre-processing. 

While expert knowledge is required for feature 

extraction with machine learning methods, the 

feature extraction process with CNN architectures 

is directly extracted by the model, not an expert, 

and the learning process is carried out on the 

model. In this way, the use of CNN architectures 

has increased in recent years, since it eliminates the 

problems in feature extraction [6]. Six different 

pre-trained models were used in the paper. These 

models are AlexNet [7], ResNet50 [8], GoogleNet 

[9], DarkNet53 [10], EfficientNetb0 [11], and 

MobileNetv2 [12]. 

III. RESULTS 

On a computer with an i7 CPU, 8 GB of RAM, 

and a video card, this investigation was conducted 

for the classification of cytological images made 

up of bodily cavity fluids. Six different CNN 

architectures were used in the study. In addition to 

the accuracy metric, sensitivity, specificity, and F1 

score metrics were also used to compare the 

performance of these architectures. Additionally, in 

this study, 30% of the dataset's data was utilized to 

test the models, while 70% of it was used to train 

the models. Accuracy, sensitivity, specificity and 

F1 score parameters were used to calculate the 

performance metrics of the pre-trained models used 

in the classification of Body Cavity Fluid Cytology 

images [13,14]. In Table 1, the confusion matrices 

from the AlexNet architecture are presented. 
 

Table 1. AlexNet's confusion matrix 
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Table 1 shows that, of the 208 images used for 

the test, 203 were accurately predicted by the 

AlexNet architecture, while 5 were wrongly 

predicted. The accuracy value of the AlexNet 

architecture is 97.60%. Table 2 presents the 

AlexNet's performance evaluation metrics. 
 

Table 2. Performance metrics of AlexNet 

Accuracy Sensitivity Specificity F1-Score 

97.60% 97.78% 97.55% 94.62% 

 

Table 3 shows the ResNet50 architecture's 

confusion matrix. 

 
Table 3. Resnet50's confusion matrix 
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Table 3 shows that, of the 208 images used for 

the test, 200 were accurately predicted by the 

ResNet50 architecture, while 8 were wrongly 

predicted. The accuracy value of the ResNet50 

architecture is 96.15%. Table 4 presents the 

ResNet50's performance evaluation metrics. 
 

Table 4. Performance metrics of ResNet50 

Accuracy Sensitivity Specificity F1-Score 

96.15% 97.62% 95.78% 91.11% 

 

Table 5 shows the GoogleNet architecture's 

confusion matrix. 

 

 

 

 

 

 

 

 

 

Table 5. GoogleNet's confusion matrix 
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Table 5 shows that, of the 208 images used for 

the test, 198 were accurately predicted by the 

GoogleNet architecture, while 10 were wrongly 

predicted. GoogleNet correctly predicted all of the 

Malignant Cytology test images. The accuracy 

value of the GoogleNet architecture is 95.19%. 

Table 6 presents the GoogleNet's performance 

evaluation metrics. 
 

Table 6. GoogleNet's confusion matrix 

Accuracy Sensitivity Specificity F1-Score 

95.19% 100% 94.12% 88.37% 

 

Table 7 shows the EfficientNetb0 architecture's 

confusion matrix. 
 

Table 7. EfficientNetb0's confusion matrix 
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Table 7 shows that, of the 208 images used for 

the test, 194 were accurately predicted by the 
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EfficientNetb0 architecture, while 14 were wrongly 

predicted. Efficientnetb0 predicted 38 of the 48 

benign Cytology test images correctly and 10 of 

them incorrectly. Similarly, out of 160 malignant 

Cytology test images, it predicted 156 correctly 

and 4 incorrectly. The accuracy value of the 

EfficientNetb0 architecture is 93.27%. Table 8 

presents the EfficientNetb0's performance 

evaluation metrics 
 

Table 8. Performance metrics of EfficientNetb0 

Accuracy Sensitivity Specificity F1-Score 

93.27% 90.48% 93.98% 84.44% 

 

Table 9 shows the MobileNetv2 architecture's 

confusion matrix. 
Table 9. MobileNetv2's confusion matrix 
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Table 9 shows that, of the 208 images used for 

the test, 197 were accurately predicted by the 

MobileNetv2 architecture, while 11 were wrongly 

predicted. The accuracy value of the MobileNetv2 

architecture is 94.71%. Table 10 presents the 

MobileNetv2's performance evaluation metrics. 

 
Table 10. Performance metrics of MobileNetv2 

Accuracy Sensitivity Specificity F1-Score 

94.71% 97.44% 94.08% 87.36% 

 

 Table 11 shows the DarkNet53 architecture's 

confusion matrix. 

 

 

 

 

Table 11. DarkNet53's confusion matrix 
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Table 11 shows that, of the 208 images used for 

the test, 205 were accurately predicted by the 

DarkNet53 architecture, while 3 were wrongly 

predicted. The accuracy value of the DarkNet53 

architecture is 98.56%. The performance 

evaluation metrics of the DarkNet53 architecture, 

where the highest accuracy value was obtained in 

the study, are presented in Table 12. 
 

Table 12. Performance metrics of DarkNet53 

Accuracy Sensitivity Specificity F1-Score 

98.56% 97.87% 98.76% 96.84% 

 

When the 6 different architectures used in the 

study were examined, the highest accuracy value 

was obtained in the DarkNet53 architecture with 

98.56%. DarkNet53 was followed by AlexNet with 

97.6%, ResNet50 with 96.15%, GoogleNet with 

95.19%, MobileNetv2 with 94.71% and 

EfficientNetb0 with 93.27%, respectively. The 

accuracy values of these architectures are given in 

Figure 2. 
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Fig. 2 Accuracy rates of pre-trained models 

 

IV. CONCLUSION 

Artificial intelligence methods have been used 

frequently in recent years, especially in the 

biomedical field. Thanks to artificial intelligence-

supported systems, the workload of experts will be 

lightened. At the same time, these systems can be 

used in non-expert centers. In this study, pre-

trained models were used for the Classification of 

Body Cavity Fluid Cytology Images. DarkNet53 

architecture has reached the highest accuracy value 

among the models used. 
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