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Abstract – The four-bar linkage mechanism is a fundamental and widely recognized mechanism with 

diverse applications, including various vehicle components, rehabilitation robotics, and rotary and 

reciprocating engines. Traditional textbooks introduce graphical and analytical solutions for the kinematic 

synthesis problem of the four-bar mechanism in different positions, while research articles explore its 

applications in various fields. Recently, artificial neural network (ANN) methods have gained popularity 

across different research domains. Researchers have proposed different solution approaches using ANN 

algorithms for the inverse and forward kinematic analysis problems of these mechanisms. However, the 

specific use of ANN algorithms for solving the two-position kinematic synthesis problem of the four-bar 

planar linkage mechanism has not been explored yet. This study aims to address this gap by introducing a 

solution for the two-position kinematic synthesis problem of the four-bar planar linkage mechanism using 

an artificial neural network algorithm. The Levenberg-Marquardt backpropagation neural network 

algorithm is chosen due to its speed, combination of Gauss-Newton training algorithm and steepest 

descend method, and ability to provide stable convergence of the training error. The neural network 

algorithm is trained, validated, and tested using a total of 50 randomly split data sets. Additionally, an 

additional test is conducted using all 50 data sets to evaluate the performance of the trained neural 

network algorithm. The study presents and discusses the results of the artificial neural network algorithm 

solution.  

 
Keywords – Artificial Neural Networks, Two-position synthesis, Four-bar mechanisms, Levenberg-Marquardt, 

Backpropagation 

 

I. INTRODUCTION 

The four-bar linkage mechanism is one of the 

fundamental and well-known mechanisms and has 

different applications such as in various part of the 

vehicles, rehabilitation robotics or the packaging 

industry. Consequently, the kinematic synthesis 

and analysis problem of the four-bar planar linkage 

mechanism has been extensively studied, and 

researchers have developed various methods to 

solve it. With the advent of artificial neural 

network methods in different research fields, 

researchers have explored different applications of 

neural network algorithms for the kinematic 

analysis and synthesis problems of these 

mechanisms.  

Numerous textbooks and research articles have 

addressed the various-position kinematic synthesis 

of four-bar linkage mechanism, highlighting their 

fundamental nature. Below are a few examples of 

these scholarly works. In such standard textbooks, 

the traditional graphical and analytical solutions of 

the two-position kinematic synthesis are introduced 

[1-3]. In these textbooks, solution steps of the 

synthesis problem are explained in detail with the 

different examples. As an example of four-bar 

linkage mechanism different applications, the two-

position synthesis of the four-bar mechanism is 

presented by Denizhan and Chew in a few studies 
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[4-5]. In these studies, the four-bar mechanism is 

designed and optimized for the automotive engine 

hood specifically and two-position synthesis of the 

mechanism is presented in detail. However, the 

artificial neural networks have not been utilized in 

these studies. The following articles serve as a few 

examples of the application of artificial neural 

networks for the inverse and forward kinematic 

analysis of these mechanisms: A feedforward nets 

is used for a four-bar mechanism inverse kinematic 

problem by Jack et. al [6]. The inverse kinematics 

problem for a three-degree-of-freedom four-bar 

mechanism in three-dimensional space is solved by 

using multi-layer neural networks in this study. 

Another inverse kinematics solution for a robotic 

arm based on neural networks is introduced by 

Duka [7]. In this study, a planar three-link 

manipulator inverse kinematic solution is 

introduced by using feed-forward neural network. 

An artificial neural network solution approach for 

the kinematics of a parallel manipulator is 

presented by Khattab et. al [8]. In this study, 

forward and inverse kinematics solutions of the 3 

limbs of prismatic-universal structure is introduced 

by using two artificial neural network algorithms. 

Kinematic synthesis of a parallel manipulator via 

neural network is introduced by Ghasemi et. al [9]. 

In this study, the inverse kinematic equation of the 

parallel manipulator is solved by using multi-layer 

perception neural network algorithm with redial 

basis function.  

As mentioned earlier, the artificial neural 

network algorithms are commonly used for solving 

the inverse and forward kinematic analysis 

problems of various mechanisms. However, there 

is a lack of research on the specific application of 

artificial neural network algorithms for the two-

position linkage synthesis of four-bar planar 

mechanism. This study aims to fill this gap by 

solving the two-position linkage synthesis problem 

of the four-bar planar mechanism using an artificial 

neural network algorithm. The chosen algorithm 

for the solution is the Levenberg-Marquardt 

backpropagation algorithm. The training, 

validation, and test results of the algorithm are 

presented, and an additional test conducted using 

all available data sets. The results are then 

compared and discussed.  

 

II. TWO-POSITION SYNTHESIS OF THE FOUR-BAR 

PLANAR LINKAGE MECHANISM 

The four-bar planar linkage mechanism with 

right- and left-side dyads in two-position is 

illustrated in Fig. 1. Detailed design parameters 

and drawings of the four-bar planar linkage 

mechanism in the two positions are depicted in Fig. 

1.  

 

 

Fig. 1. The four-bar planar linkage mechanism right- and left-

side dyads in two-position 

 

According to the Fig. 1, the following two-

position kinematic synthesis equations can be 

written: 

Left-side dyad: 

 

𝑤𝑒𝑖𝜃 =
𝑧𝑒𝑖(𝜓+𝛼) − 𝑝21𝑒

𝑖𝛿 − 𝑧𝑒𝑖𝜓

1 − 𝑒𝑖𝜃2
 (1) 

 

Right-side dyad: 

  

𝑢𝑒𝑖𝜙 =
𝑠𝑒𝑖(𝜎+𝛼) − 𝑝21𝑒

𝑖𝛿 − 𝑠𝑒𝑖𝜎

1 − 𝑒𝑖𝜙2
 (2) 

 

where 𝑤 is the length of the �⃗⃗⃗� 
1 and �⃗⃗⃗� 

2 (|�⃗⃗⃗� 
1| =

|�⃗⃗⃗� 
2|, rigid link [AB]), 𝑧 is the length of the 𝑍 1 and 

𝑍 2 (|𝑍 1| = |𝑍 2|), 𝑢 is the length of the �⃗⃗� 1 and �⃗⃗� 2 

(|�⃗⃗� 1| = |�⃗⃗� 2|, rigid link [DC]), 𝑠 is the length of the 

𝑆 1 and 𝑆 2 (|𝑆 1| = |𝑆 2|), angle 𝜃 is the angle of �⃗⃗⃗� 
1 

(link [AB] at the first position), angle 𝜃2 is the 

angle between �⃗⃗⃗� 
1 and  �⃗⃗⃗� 

2 (link [AB] at the first 

and last positions respectively), angle 𝜙 is the 

angle of �⃗⃗� 1 (link [DC] at the first position), angle 

𝜙2 is the angle between �⃗⃗� 1 and �⃗⃗� 2 (link [DC] at 

the first and last positions respectively), angle 𝜓 is 

the angle of 𝑍 1 (link [BP] at the first position), 
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angle 𝛼 is the angle between 𝑍 1 and  𝑍 2 (link [BP] 

at the first and last positions respectively), angle 𝛿 

is the angle of pivot point P, angle 𝜎 is the angle of 

𝑆 1 (link [CP] at the first position) and 𝑝21 is the 

length between the first and last positions of the 

pivot point P.  

As seen in Eqns. (1) and (2), there are four 

unknown parameters in the two-position synthesis 

of the four-bar planar linkage mechanism. 

According to the solution procedure outlined in 

textbooks, three parameters should be initially 

specified: 𝑝21 = 2.416 m., 𝛼 = 43.3 rad. and 𝛿 =
165.2 rad. The remaining six parameters are 

considered free choices, and their respective values 

are 𝑠 = 1.035 m., 𝑧 = 1.298 m., 𝜎 = 104.1 rad., 

𝜓 = 26.5 rad., 𝜃2 = 38.4 rad. and 𝜙2 = 85.6 rad. 

[1]. By utilizing the provided parameters in 

conjunction with Eqns. (1) and (2), the problem of 

two-position synthesis for the four-bar planar 

linkage mechanism can be solved. 

III. TWO-POSITION SYNTHESIS WITH ARTIFICIAL 

NEURAL NETWORKS 

In this study, a two-layer feedforward network 

(with hidden and output layers) is investigated for 

the two-position kinematic synthesis problem of 

the four-bar planar mechanism. The network 

consists of with sigmoid hidden neurons and linear 

output neurons. The artificial neural network 

algorithm utilized in this study has two input 

parameters and three output parameters. The input 

parameters chosen are position of the Joint C, 

represented by the (𝑥𝑐, 𝑦𝑐) coordinates. The output 

parameters selected for the supervised leaning 

algorithm are the angles (𝜃, 𝜙 and 𝜓) of the four-

bar mechanism. The Levenberg-Marquardt 

backpropagation neural network algorithm is 

employed for training. This algorithm is selected 

due to its speed and ability to combine the Gauss-

Newton training algorithm and steepest descent 

method, and ensuring stable convergence of the 

training error. [10-12]. 

In this study, the neural network algorithm 

employs a total of 50 data sets for training, 

validation, and testing purposes. These data sets 

are randomly divided into three independent sets. 

Specifically, 80% of the data set is allocated for 

training, 10% for validation, and the remaining 

10% for testing. Additionally, an extra test is 

conducted using all 50 data tests to evaluate the 

performance of the trained neural network 

algorithm. The hidden layer of the neural network 

consists of 100 neurons with a sigmoid activation 

function, while the output layer comprises 3 

neurons with a linear activation function.  

Figure 2 shows structure of the feedforward 

neural network. As seen in Fig. 2, artificial neural 

network has 2 input parameters (𝑥𝑐, 𝑦𝑐), 100 

neurons in hidden layer, 3 neurons in output layer 

and 3 output parameters (𝜃, 𝜙 and 𝜓). In Fig. 2, 𝑤 

and 𝑏 refer to the neural network weights and bias 

respectively. As previously mentioned, the hidden 

layer activation function is sigmoid function and 

output layer activation function is the linear 

function.  

 

 

Fig. 2 Structure of the artificial feedforward neural network 

 

By following the traditional analytical solution 

procedure of the two-position linkage synthesis 

problem, the values of the four unknown 

parameters (𝑤, 𝑢, 𝜃 and 𝜙) are determined. 

According to this traditional solution, the values of 
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these unknown parameters are found to be 𝑤 =
2.4669 m., 𝑢 = 1.4856 m., 𝜃 = 1.2492 rad. and 

𝜙 = 0.2691 rad. Once these unknown parameters 

are found, a data set is created between these two 

positions of the four-bar planar linkage 

mechanism. In this study, 50 different positions of 

the four-bar planar mechanism are determined 

between these two positions. For each of these 50 

positions, all the parameters of the four-bar 

mechanism are calculated. As mentioned before, 

the coordinates of Joint C (𝑥𝑐 , 𝑦𝑐) are chosen input 

parameters, and the angles of the four-bar planar 

mechanism (𝜃, 𝜙 and 𝜓) are chosen as the output 

parameters for the Levenberg-Marquardt neural 

network algorithm in this study.  

IV. RESULTS 

In this study, MATLAB Neural Net Fitting App 

is utilized for training, validation, testing and 

conducting additional test of the neural network 

algorithm. 

 

Table 1. Levenberg-Marquardt algorithm training progress 

Unit Initial 

Value 

Stopped 

value 

Target 

value 

Epoch 0 13 1000 

Elapsed Time --- 00:00:01 --- 

Performance 5.84 1.43e-07 0 

Gradient 8.59 5.79e-05 1e-07 

Mu 0.001 1e-06 1e+10 

Validation Checks 0 6 6 

 

Table 1 shows a summary of the neural network 

training process. Training is finished when it met 

with the validation criterion. As seen in Table 1, 

Levenberg-Marquardt neural network algorithm 

reached validation criteria after 13 epochs in 1 

second. Mu is the adaptive value in Levenberg-

Marquardt backpropagation algorithm. According 

to the Table 1, stopped values are close to the 

target values when the training is finished.   

 

Table 2. Levenberg-Marquardt algorithm training results 

 Observations MSE R 

Training 40 0.0000 1.0000 

Validation 5 0.0181 0.9696 

Test 5 0.0118 0.9627 

Additional Test 50 0.0030 0.9927 

 

Table 2 shows the number of observations (data 

sets), mean squared error (MSE), and regression 

(R) results for training, validation, testing and 

additional test. As previously mentioned, 40 data 

sets of the total of 50 data sets are split for training. 

For the training phase, the mean squared error is 0, 

and regression value is 1. A total of 10 data sets of 

the total of 50 data sets are split for validation and 

test. According to the Table 2, the mean squared 

error (MSE) for test data sets is slightly lower and 

indicating better performance, while the regression 

value is better for the validation sets. The same 50 

data sets are utilized for the additional test, 

resulting in an almost zero mean squared error.  

 

Fig. 3 Regression plots of feedforward neural network 

 

Figure 3 displays regression plots of the neural 

network algorithm. In Fig. 3, network predictions 

(output) with respect the response (target) for 

training, validation and test sets can be seen 

clearly. According to the Fig. 3, the regression 

value is 1 and data sets are perfectly fit in the 

training plot. On the other hand, the regression 

value is 0.96956 in the validation plot and the 

validation data set does not fit perfectly. According 

to the test plot in Fig 3, the regression value is 

0.96273 and test data is not perfectly fit. Plot for all 

in Fig. 3 shows that the regression value is 0.99272 

and data is almost fit. Based on Fig. 3, it can be 

concluded that the fit is good overall for all the 

data sets.   
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Fig. 4 Error histogram graph of feedforward neural network 

 

Figure 4 shows error histogram graph of the 

Levenberg-Marquardt neural network algorithm. 

According to the Fig. 4, the error value is 0.003237 

and all of the training data sets have almost zero 

error. Figure 4 shows some of the test and 

validation data sets have different error values but 

overall, the data set is good.  

 

Fig. 5 Validation performance graph of the feedforward 

neural network  

 

Figure 5 shows training, validation and testing 

errors for the Levenberg-Marquardt neural network 

algorithm in this study. As seen in Fig. 5, the mean 

squared error is small for training, validation and 

testing data sets. According to the Fig. 5, the best 

validation performance occurs at epoch 7 and the 

validation and train data set has similar 

characteristics.  

 

 

Fig. 6 Feedforward neural network training state plots 

 

Figure 6 displays training state plots for the 

gradient, Levenberg-Marquardt algorithm adaptive 

value (Mu) and validation checks. According to the 

Fig. 6, the Mu value remains constant after epoch 

3, while the gradient value decreases over time. 

Neural network training stop criteria is when the 

validation check is 6 and Fig. 6 shows that the 

validation check is 6 at epoch 13.  

In addition, an additional test is conducted using 

the same 50 data sets. It is important to note that 5 

data sets are reversed specifically for testing the 

trained neural network. The main goal of the 

additional test is to assess the performance of the 

trained neural network. Figure 7 shows additional 

test regression plot of the trained neural network 

algorithm. As observed in Fig. 7, the regression 

value is 0.99272, indicating that the data set does 

not fit perfectly but the overall fit is reasonably 

good for all data sets.  
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Fig. 7 Regression graph of feedforward neural network for 

the additional test 

 

Figure 8 displays additional test error histogram 

graph for the trained neural network algorithm. As 

depicted in Fig. 8, there are no training and 

validation data sets in the additional test since all 

50 data sets are used for this test. According to the 

Fig. 8, the additional test error value is the same 

with the network training error value but certain 

data sets exhibit different error values.  

 

 

Fig. 8 Error histogram graph of neural network after 

additional test with 50 data set 

 

V. DISCUSSION 

In artificial neural networks, having more data 

sets significantly contributes to better algorithm 

training. In other words, a larger number of data 

sets is desirable for improved results in neural 

network algorithms. as a potential future research 

direction, it would be beneficial to incorporate a 

larger number of data sets for training and analyze 

the impact of the data set quantity on the results.  

As mentioned previously, the two-position 

synthesis problem involves six “free choices” 

parameters for the solution, which are selected 

based on the dimensions of the designed 

mechanisms. A future research direction could 

focus on utilizing neural network algorithms to 

determine these six free choices automatically.  

This article presents a solution to the two-

position synthesis problem using the Levenberg-

Marquardt backpropagation artificial neural 

network algorithm. However, there are other 

algorithms available, such as Bayesian 

Regularization algorithm or Scaled Conjugate 

Gradient algorithm. Another potential future 

research direction could involve exploring the 

application and comparison of these different 

algorithms to the same four-bar planar linkage 

mechanism. 

VI. CONCLUSION 

In this study, a solution to the two-position 

linkage synthesis problem of the four-bar planar 

mechanism is presented using artificial neural 

network algorithm. The training of the neural 

network is performed using the Levenberg-

Marquardt backpropagation algorithm. The input 

parameters chosen for the neural network are the 

coordinates of Joint C, which consists of 2 inputs. 

The output parameters of interest are the angles of 

the four-bar mechanism, resulting in 3 outputs. The 

training procedure of the neural network is 

described, and the results demonstrate a perfect fit 

between the data set and the trained model. 
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