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Abstract – This study focuses on the utilization of Large Language Models (LLMs) for the rapid 

development of applications, with a spotlight on LangChain, an open-source software library. LLMs have 

been rapidly adopted due to their capabilities in a range of tasks, including essay composition, code 

writing, explanation, and debugging, with OpenAI’s ChatGPT popularizing their usage among millions of 

users. The crux of the study centers around LangChain, designed to expedite the development of bespoke 

AI applications using LLMs. LangChain has been widely recognized in the AI community for its ability 

to seamlessly interact with various data sources and applications. The paper provides an examination of 

LangChain's core features, including its components and chains, acting as modular abstractions and 

customizable, use-case-specific pipelines, respectively. Through a series of practical examples, the study 

elucidates the potential of this framework in fostering the swift development of LLM-based applications.   
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I. INTRODUCTION 

The past decade has witnessed an unparalleled 

evolution in the realm of artificial intelligence (AI). 

This period, characterized by the ascendancy of 

deep learning through the utilization of neural 

networks, has resulted in significant enhancements 

in capabilities pertaining to image and speech 

recognition. One salient milestone highlighting this 

progress is the ImageNet Large Scale Visual 

Recognition Challenge, which effectively 

demonstrated the prowess of AI capabilities in 

image recognition. [1][2] 

Another major milestone in the AI landscape is 

the successful implementation of reinforcement 

learning, as exemplified by DeepMind's AlphaGo 

and AlphaZero. [3] These innovations have 

demonstrated extraordinary performance in 

complex games, such as Go and Chess, using self-

play algorithms, thereby signifying a leap forward 

in reinforcement learning techniques. In parallel, 

the evolution of generative models has facilitated 

the creation of convincingly realistic synthetic 

multimedia content. 

During the same period, the field of natural 

language processing (NLP) experienced 

remarkable transformations. The advent of 

advanced models, exemplified by the likes of 

BERT (Bidirectional Encoder Representations 

from Transformers) by Google [4] and GPT 

(Generative Pretrained Transformer) by OpenAI 

[5], and T5 (Text-to-Text Transfer Transformer) by 

Google [6] has fostered significant improvements 

in machine translation, sentiment analysis, and text 

generation, thus ushering in a new era for NLP. 

BERT, GPT, T5 and similar technologies all 

utilized transformers architecture and were trained 

on huge amount of data and hence named as Large 

Language Models (LLMs). [7] As LLMs were 

trained using more and more data, and 

encompassed more parameters, their capabilities 

increased. For example, GPT-1 (June 2018), GPT-

2 (February 2019), and GPT-3 (June 2020) had 117 
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million, 1.5 billion, and 175 billion parameters, 

respectively.  

A large language model (LLM) is a subtype of 

artificial intelligence model that generates text with 

human-like proficiency. [7] Characterized by a 

sizable number of parameters and trained on 

expansive text corpora, these models are equipped 

to produce contextually pertinent and 

grammatically coherent outputs. 

Utilizing machine learning techniques such as 

deep learning, these models are trained to predict 

subsequent words in a sentence based on prior 

context, thereby enabling the generation of 

comprehensive sentences and paragraphs that bear 

a resemblance to human-authored text. 

Even though the LLMs present limitations, such 

as occasionally producing erroneous or illogical 

outputs (also called hallucination), they achieved 

rapid success due to their performance in doing 

various tasks such as composing essays, writing, 

explaining, and debugging code. The recent 

OpenAI’s LLM, ChatGPT, made the technology 

known to most, acquiring millions of users in a 

short amount of time. The capabilities of GPTs 

have become even more impressive with the 

release of GPT4. [8]. 

Many started to think about how to leverage this 

technology to provide solutions for fields like 

education, research, customer service, content 

creation, healthcare, entertainment, etc. It became 

possible to develop AI applications much faster 

than ever before by interacting with an LLM. 

However, custom AI apps require more than just 

interacting via a web interface. A recent open-

source software library called LangChain, started 

providing solutions for the steps of developing a 

custom AI app utilizing LLMs and gained much 

attention from the AI community. [9][10] In this 

article, we describe the capabilities of LangChain 

and provide a primer on developing large language 

model applications rapidly utilizing LangChain. 

II. MATERIALS AND METHOD 

LangChain is a framework for developing 

applications utilizing large language models, and 

its goal is to enable developers to conveniently 

utilize other data sources and interact with other 

applications. To enable this, LangChain provides 

components (modular abstractions) and chains 

(customizable use case-specific pipelines). We first 

provide an overview of components and then 

describe several use cases.  

A. Components 

Next, the main components of LangChain, such 

as Prompts, Memory, Chains, and Agents are 

explained. 

A.A.1 Prompts  

A "prompt" is the input to a LLM. They are 

generally generated dynamically when used in an 

LLM application and includes user’s input 

(question), a set of few shot examples to help the 

language model generate a better response, and 

instructions for the LLM regarding how to process 

the input that comes from the user. LangChain 

provides several classes to construct prompts 

utilizing several specialized Prompt Templates. A 

prompt template refers to a reproducible way to 

generate a prompt. It contains a text string ("the 

template") that can take in a set of parameters from 

the end user and generates a prompt. 

Table 1. Examples of prompts. The examples are adapted 

from the DeepLearning.AI course on LangChain. 

Task Prompt 

Extracting 

information  

For the following text, extract the 

following information: 

gift: Was the item purchased as a gift for 

someone else? Answer True if yes, False 

if not or unknown. 

delivery_days: How many days did it 

take for the product to arrive? If this 

information is not found, output -1. 

price_value: Extract any sentences about 

the value or price. 

text: {text} 

Writing a 

response 

Write a follow-up response to the 

following summary in the specified 

language: 

Summary: {summary} 

Language: {language} 

 

A.A.2 Models 

Large Language Models (LLMs) are the main 

type of models utilized in LangChain. They accept 

a text string (prompt) and output a text string. 

There are other types of models that are used in 

LangChain, namely, Chat Models and Text 

Embedding Models. Chat Models have more 

structured API processing chat messages, and text 

embedding models take text and return its 

corresponding embedding as a list of floats. The 

embeddings are required when we want to work 
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with our own documents, as discussed in the 

following Question Answering from Documents 

section. 

A.A.3 Chains 

The most important key building block of 

LangChain is the chain. The chain usually 

combines an LLM together with a prompt, and 

with this building block, you can also put a bunch 

of these building blocks together to carry out a 

sequence of operations on your text or on your 

other data. 

A simple chain takes one input prompt and 

produces an output. Multiple chains can be run one 

after another, where the output of the first chain 

becomes the input of the next chain. Multiple 

chains can be concatenated using the Simple 

Sequential Chain class when there is one input and 

one output, as illustrated in Fig 1.  

 

 

Fig. 1 Example of a Simple Sequential Chain 

LangChain provides another class named 

SequentialChain, when there can be multiple inputs 

but one output, as illustrated in Fig 2. 

 

Fig. 2 Example of a Sequential Chain that gets two inputs and 

outputs one result. 

A pretty common scenario is to use several 

chains and to route an input to a chain depending 

on what the input is. For example, if you have 

multiple chains, each of which specialized for a 

particular type of input, you could have a router 

chain which first decides which subchain to pass it 

to and then passes it to that chain. An example of 

router chain is depicted in Fig 3. 
 

 

Fig. 3 Example of a Router Chain that routes the input to a 

chain that can answer the input the best. 

Each chain can utilize a different or the same 

LLM and would be differentiated mostly based on 

their prompt. The prompts that go into an LLM as 

input include a description of the role of the chain. 

The input coming from the user is combined with 

the description of the expected output to form the 

prompt so that the chain behaves as expected. 

Table 1 gives examples of these prompt 

descriptions that are used along with the user 

inputs to let LLM produce a result. 
Table 2. Examples of chain prompts. The examples are 

adapted from the DeepLearning.AI course on LangChain. 

Name Description 

Math  

You are a very good mathematician. You are 

great at answering math questions. You are 

so good because you can break down hard 

problems into their component parts, answer 

the component parts, and then put them 

together to answer the broader question. 

History 

You are a very good historian. You have an 

excellent knowledge of and understanding of 

people, events, and contexts from a range of 

historical periods. You can think, reflect, 

debate, discuss, and evaluate the past. You 

have respect for historical evidence and the 

ability to make use of it to support your 

explanations and judgments. 

 

A.A.4 Memory 

The language model itself is stateless and does 

not remember the conversation you've had so far. 

Each transaction (call) to the LLM’s API endpoint 

is independent. The illusion of memory in chatbot 

systems is facilitated by supplementary code, 

which incorporates the context of preceding 

dialogues when interacting with the LLM. A 

memory component is needed that can store the 

previous conversations and pass them to the LLM 

with the next prompt.  

In the LangChain framework, memory 

implementation can take multiple forms. The 
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'buffer' type delineates memory bounds based on a 

set quantity of conversational exchanges, whereas 

the 'token' type imposes limitations contingent on 

the number of tokens. The 'summary memory' type 

applies an abstracted summary of tokens when a 

certain threshold is exceeded. Beyond these 

memory types, developers have the discretion to 

archive the entire conversation within a 

conventional database or a key-value store. This 

can be beneficial for auditing purposes or to 

enhance system performance through reflective 

analysis of past interactions. 

A.A.5 Question Answering from Documents 

One of the most common and complex 

applications that are being built using an LLM is a 

system that can answer questions on top of or 

about a document. Given a piece of text, extracted 

from a PDF file, a webpage, a csv file or another 

type of document, apps can be developed to use an 

LLM to answer questions about the content of 

those documents to help users gain a deeper 

understanding and get access to the information 

that they need. Once LLMs can be utilized to 

process data that they were not originally trained 

for, there are many use cases that can be achieved. 

There are various steps involved in answering 

questions from own documents, as depicted in Fig 

4.  

 

 

Fig. 4 Steps to answer questions from own documents. 

 

LangChain provides functionality to easily achieve 

these steps to load, transform (split), store, and 

query your data. LangChain has the following 

classes that help to perform these functionalities.  

• Document Loaders:  Loads documents from 

many different sources, including CSV, PDF, 

HTML, JSON, Excel, GitHub, Google Drive, 

One Drive, XML, Wikipedia, and many more. 

• Document transformers: Splits documents into 

smaller chunks so that they can be processed by 

LLMs. 

• Text embedding models: Take unstructured text 

and turn it into a list of floating-point numbers 

that represent corresponding embeddings. 

• Vector stores: Helps to store and search over 

embedded data. 

• Retrievers: Helps to query your data based on 

embedding similarities. 

 

Embeddings generate quantitative representations 

for textual units, encapsulating their semantic 

essence in a numerical format. When applied to 

similar textual content, these embeddings yield 

closely aligned vectors. This enables an evaluation 

of textual similarity within the vector space, 

facilitating an intuitive understanding of textual 

coherence. This becomes particularly instrumental 

when selecting text pieces to feed into a language 

model for query resolution.  

These embeddings are stored in vector databases. 

When a user query comes in, it is converted into 

embeddings and then sent to the vector database to 

find the most semantically close text based on the 

similarity scores computed by getting a dot product 

of the query embedding and the embeddings stored 

in the vector database. The dot product can also be 

expressed as the product of the magnitudes of the 

vectors and the cosine of the angle between them, 

as shown in the following equation, where a and b 

are the vectors being compared [12]: 

a ⋅ b = ∣a∣ ∣b∣ cosα 

 

There are several methods to pass the content of 

the documents and process them via LLM. The 

most used method is the stuff method which is 

simple and works well if the text chunks that were 

returned from the vector store similarly function fit 

into the context size of the LLM. The Fig 5. depicts 

the stuff method where retrieved similar documents 

are passed to LLM in a single prompt. 

 

 

Fig. 5 Stuff method passes similar documents in a single 

prompt. 

The other methods that can be used in processing 

documents when the retrieved documents do not fit 

in a single prompt are “map reduce,” “refine,” and 

“map rerank.” 

Map reduce takes all the chunks, passes them 

along with the question to a language model, gets 

back a response, and then uses another language 

model call to summarize all of the individual 

responses into a final answer. Map reduce can 
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operate over any number of documents and can 

process individual questions in parallel. However, 

it requires more calls and does treat all the 

documents as independent, which may not always 

be the most desired thing. Map reduce process is 

depicted in Figure 6. 

 

 

Fig. 6 Map reduce passes similar documents to multiple 

LLMs and then uses another LLM to finalize the output. 

Refine is used to loop over many documents 

iteratively, building upon the answer from the 

previous document, which generally leads to 

longer answers. However, many calls are required, 

and the calls cannot be done in parallel, causing 

slower execution. The refine methods is depicted in 

Fig 7. 

 

 

Fig. 7 Refine method iteratively builds the answer. 

 

Map rerank does a single call to the language 

model for each document and asks for a score. 

Then it selects the document with the highest 

score. The map rerank method is shown in Fig. 8. 

 

 

Fig. 8 Map rerank method gets an output score and then 

selects the output with the highest score. 

A.A.6 Agents 

When an app needs a flexible chain of calls to 

LLMs and other tools based on user input, agents 

can be utilized. An agent determines which tool 

from a suite of tools needs to be used for the user 

input. An agent can be either an action agent that 

decides on the next action using the outputs of all 

previous actions or a plan-and-execute agent that 

decide on the full sequence of actions upfront, then 

execute them all without updating the plan. 

• Action Agent operates at a high level by 

receiving user input, determining the 

appropriate tool and its input, executing the 

tool and recording its output (termed as an 

'observation'), and making decisions on 

subsequent steps based on the history of tool 

usage, inputs, and observations. This cycle 

repeats until the agent can directly respond to 

the user. These agents are encapsulated in agent 

executors that manage the sequence of actions 

and interactions with the tools. 

• Plan and Execute Agent operates at a high level 

by receiving user input, devising a 

comprehensive sequence of steps, and 

implementing these steps in a sequential 

manner, where outputs from previous steps are 

utilized as inputs for subsequent ones. A 

common implementation involves using a 

language model as the planner and an action 

agent as the executor. 

 

Within the framework of agent-based systems, 

the concepts of tools and toolkits play a significant 

role. Tools, defined as interfaces that facilitate 

agent-world interactions, constitute specific actions 

that an agent can perform, purposefully selected 

based on the agent's functional objective. 

Conversely, toolkits represent aggregated 

collections of synergistic tools, assembled to cater 

to particular use cases. Toolkits are specifically 

designed to consolidate tools that function 

effectively in unison for distinct tasks, and they 

encompass convenience methods for easy loading. 

For instance, an agent interfacing with a SQL 

database would necessitate a tool for executing 

queries and another for inspecting tables. 

B. Use Cases 

LangChain framework provides walkthroughs of 

common end-to-end use cases on the topics such as 

autonomous agents, chatbots, code understanding 

agents, extraction, question answering over 

documents, summarization, and analyzing 

structured data. Each of these categories provides 

several examples of how to utilize LangChain to 

implement the LLM app using Langchain. For 

example, the AutoGPT sample given under the 

‘autonomous agents’ category provides a notebook 

implementing AutoGPT using LangChain that 
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aims to autonomously achieve whatever goal is 

given. An increasing number of examples of 

LangChain use cases are documented at the 

LangChain website. [12] 

III. DISCUSSION 

The rise of Large Language Models (LLMs), 

specifically OpenAI's ChatGPT, signifies a 

transformative phase in AI development with 

broad-ranging applications. LangChain, an open-

source library, stands out due to its proficiency in 

integrating with diverse data sources and 

applications, making it an influential tool in the AI 

community. 

LangChain's modular structure, with 

customizable pipelines for specific use cases, 

expedites the development process for LLM 

applications. This paper contributes to the 

discourse on LLM application development, 

aiming to spur further exploration of LangChain 

and similar tools. To help facilitate the 

development of LLM applications utilizing 

LangChain, we provide a sample Jupyter Notebook 

page showcasing many of the concepts described 

here at a GitHub page. [13] 

IV. CONCLUSION 

In conclusion, the advent and rapid adoption of 

Large Language Models, underscored by the rise of 

OpenAI’s ChatGPT, signify a new frontier in the 

AI landscape. These models have exhibited 

proficiency across a multitude of tasks, setting a 

precedent for future advancements.  

Particularly, LangChain, with its ability to 

streamline the development process of LLM 

applications, has demonstrated significant potential 

in the AI ecosystem. It has pioneered a new 

approach that enables developers to interact with 

various data sources and applications effortlessly. 

This flexibility and efficiency, characterized by 

LangChain's modular abstractions and 

customizable use-case-specific pipelines, make it 

an invaluable tool for the future of LLM 

applications. 

This paper provides insights into LangChain's 

structure and usage in specific use-cases, 

elucidating its capacity to foster rapid 

development. It is hoped that the potential and 

capabilities identified will spur more exploration 

and innovation in the field of LLMs and serve as a 

basis for the development of more sophisticated 

applications, thus expanding the boundaries of 

what is possible with artificial intelligence. 
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