

All Sciences Proceedings
http://as-proceeding.com/

5th International Conference on Applied

Engineering and Natural Sciences

July 10-12, 2023 : Konya, Turkey

https://www.icaens.com/ © 2023 Published by All Sciences Proceedings

1050

Creating Large Language Model Applications Utilizing LangChain: A

Primer on Developing LLM Apps Fast

Oguzhan Topsakal1*, and Tahir Cetin Akinci 2

1Computer Science Department, Florida Polytechnic University, FL, USA

2WCGEC, University of California at Riverside, CA, USA

*(otopsakal@floridapoly.edu) Email of the corresponding author

Abstract – This study focuses on the utilization of Large Language Models (LLMs) for the rapid

development of applications, with a spotlight on LangChain, an open-source software library. LLMs have

been rapidly adopted due to their capabilities in a range of tasks, including essay composition, code

writing, explanation, and debugging, with OpenAI’s ChatGPT popularizing their usage among millions of

users. The crux of the study centers around LangChain, designed to expedite the development of bespoke

AI applications using LLMs. LangChain has been widely recognized in the AI community for its ability

to seamlessly interact with various data sources and applications. The paper provides an examination of

LangChain's core features, including its components and chains, acting as modular abstractions and

customizable, use-case-specific pipelines, respectively. Through a series of practical examples, the study

elucidates the potential of this framework in fostering the swift development of LLM-based applications.

Keywords – Large Language Models, LangChain, Concepts, Application, ChatGPT, NLP, GPT

I. INTRODUCTION

The past decade has witnessed an unparalleled

evolution in the realm of artificial intelligence (AI).

This period, characterized by the ascendancy of

deep learning through the utilization of neural

networks, has resulted in significant enhancements

in capabilities pertaining to image and speech

recognition. One salient milestone highlighting this

progress is the ImageNet Large Scale Visual

Recognition Challenge, which effectively

demonstrated the prowess of AI capabilities in

image recognition. [1][2]

Another major milestone in the AI landscape is

the successful implementation of reinforcement

learning, as exemplified by DeepMind's AlphaGo

and AlphaZero. [3] These innovations have

demonstrated extraordinary performance in

complex games, such as Go and Chess, using self-

play algorithms, thereby signifying a leap forward

in reinforcement learning techniques. In parallel,

the evolution of generative models has facilitated

the creation of convincingly realistic synthetic

multimedia content.

During the same period, the field of natural

language processing (NLP) experienced

remarkable transformations. The advent of

advanced models, exemplified by the likes of

BERT (Bidirectional Encoder Representations

from Transformers) by Google [4] and GPT

(Generative Pretrained Transformer) by OpenAI

[5], and T5 (Text-to-Text Transfer Transformer) by

Google [6] has fostered significant improvements

in machine translation, sentiment analysis, and text

generation, thus ushering in a new era for NLP.

BERT, GPT, T5 and similar technologies all

utilized transformers architecture and were trained

on huge amount of data and hence named as Large

Language Models (LLMs). [7] As LLMs were

trained using more and more data, and

encompassed more parameters, their capabilities

increased. For example, GPT-1 (June 2018), GPT-

2 (February 2019), and GPT-3 (June 2020) had 117

http://as-proceeding.com/
https://www.icaens.com/

1051

million, 1.5 billion, and 175 billion parameters,

respectively.

A large language model (LLM) is a subtype of

artificial intelligence model that generates text with

human-like proficiency. [7] Characterized by a

sizable number of parameters and trained on

expansive text corpora, these models are equipped

to produce contextually pertinent and

grammatically coherent outputs.

Utilizing machine learning techniques such as

deep learning, these models are trained to predict

subsequent words in a sentence based on prior

context, thereby enabling the generation of

comprehensive sentences and paragraphs that bear

a resemblance to human-authored text.

Even though the LLMs present limitations, such

as occasionally producing erroneous or illogical

outputs (also called hallucination), they achieved

rapid success due to their performance in doing

various tasks such as composing essays, writing,

explaining, and debugging code. The recent

OpenAI’s LLM, ChatGPT, made the technology

known to most, acquiring millions of users in a

short amount of time. The capabilities of GPTs

have become even more impressive with the

release of GPT4. [8].

Many started to think about how to leverage this

technology to provide solutions for fields like

education, research, customer service, content

creation, healthcare, entertainment, etc. It became

possible to develop AI applications much faster

than ever before by interacting with an LLM.

However, custom AI apps require more than just

interacting via a web interface. A recent open-

source software library called LangChain, started

providing solutions for the steps of developing a

custom AI app utilizing LLMs and gained much

attention from the AI community. [9][10] In this

article, we describe the capabilities of LangChain

and provide a primer on developing large language

model applications rapidly utilizing LangChain.

II. MATERIALS AND METHOD

LangChain is a framework for developing

applications utilizing large language models, and

its goal is to enable developers to conveniently

utilize other data sources and interact with other

applications. To enable this, LangChain provides

components (modular abstractions) and chains

(customizable use case-specific pipelines). We first

provide an overview of components and then

describe several use cases.

A. Components

Next, the main components of LangChain, such

as Prompts, Memory, Chains, and Agents are

explained.

A.A.1 Prompts

A "prompt" is the input to a LLM. They are

generally generated dynamically when used in an

LLM application and includes user’s input

(question), a set of few shot examples to help the

language model generate a better response, and

instructions for the LLM regarding how to process

the input that comes from the user. LangChain

provides several classes to construct prompts

utilizing several specialized Prompt Templates. A

prompt template refers to a reproducible way to

generate a prompt. It contains a text string ("the

template") that can take in a set of parameters from

the end user and generates a prompt.

Table 1. Examples of prompts. The examples are adapted

from the DeepLearning.AI course on LangChain.

Task Prompt

Extracting

information

For the following text, extract the

following information:

gift: Was the item purchased as a gift for

someone else? Answer True if yes, False

if not or unknown.

delivery_days: How many days did it

take for the product to arrive? If this

information is not found, output -1.

price_value: Extract any sentences about

the value or price.

text: {text}

Writing a

response

Write a follow-up response to the

following summary in the specified

language:

Summary: {summary}

Language: {language}

A.A.2 Models

Large Language Models (LLMs) are the main

type of models utilized in LangChain. They accept

a text string (prompt) and output a text string.

There are other types of models that are used in

LangChain, namely, Chat Models and Text

Embedding Models. Chat Models have more

structured API processing chat messages, and text

embedding models take text and return its

corresponding embedding as a list of floats. The

embeddings are required when we want to work

1052

with our own documents, as discussed in the

following Question Answering from Documents

section.

A.A.3 Chains

The most important key building block of

LangChain is the chain. The chain usually

combines an LLM together with a prompt, and

with this building block, you can also put a bunch

of these building blocks together to carry out a

sequence of operations on your text or on your

other data.

A simple chain takes one input prompt and

produces an output. Multiple chains can be run one

after another, where the output of the first chain

becomes the input of the next chain. Multiple

chains can be concatenated using the Simple

Sequential Chain class when there is one input and

one output, as illustrated in Fig 1.

Fig. 1 Example of a Simple Sequential Chain

LangChain provides another class named

SequentialChain, when there can be multiple inputs

but one output, as illustrated in Fig 2.

Fig. 2 Example of a Sequential Chain that gets two inputs and

outputs one result.

A pretty common scenario is to use several

chains and to route an input to a chain depending

on what the input is. For example, if you have

multiple chains, each of which specialized for a

particular type of input, you could have a router

chain which first decides which subchain to pass it

to and then passes it to that chain. An example of

router chain is depicted in Fig 3.

Fig. 3 Example of a Router Chain that routes the input to a

chain that can answer the input the best.

Each chain can utilize a different or the same

LLM and would be differentiated mostly based on

their prompt. The prompts that go into an LLM as

input include a description of the role of the chain.

The input coming from the user is combined with

the description of the expected output to form the

prompt so that the chain behaves as expected.

Table 1 gives examples of these prompt

descriptions that are used along with the user

inputs to let LLM produce a result.
Table 2. Examples of chain prompts. The examples are

adapted from the DeepLearning.AI course on LangChain.

Name Description

Math

You are a very good mathematician. You are

great at answering math questions. You are

so good because you can break down hard

problems into their component parts, answer

the component parts, and then put them

together to answer the broader question.

History

You are a very good historian. You have an

excellent knowledge of and understanding of

people, events, and contexts from a range of

historical periods. You can think, reflect,

debate, discuss, and evaluate the past. You

have respect for historical evidence and the

ability to make use of it to support your

explanations and judgments.

A.A.4 Memory

The language model itself is stateless and does

not remember the conversation you've had so far.

Each transaction (call) to the LLM’s API endpoint

is independent. The illusion of memory in chatbot

systems is facilitated by supplementary code,

which incorporates the context of preceding

dialogues when interacting with the LLM. A

memory component is needed that can store the

previous conversations and pass them to the LLM

with the next prompt.

In the LangChain framework, memory

implementation can take multiple forms. The

1053

'buffer' type delineates memory bounds based on a

set quantity of conversational exchanges, whereas

the 'token' type imposes limitations contingent on

the number of tokens. The 'summary memory' type

applies an abstracted summary of tokens when a

certain threshold is exceeded. Beyond these

memory types, developers have the discretion to

archive the entire conversation within a

conventional database or a key-value store. This

can be beneficial for auditing purposes or to

enhance system performance through reflective

analysis of past interactions.

A.A.5 Question Answering from Documents

One of the most common and complex

applications that are being built using an LLM is a

system that can answer questions on top of or

about a document. Given a piece of text, extracted

from a PDF file, a webpage, a csv file or another

type of document, apps can be developed to use an

LLM to answer questions about the content of

those documents to help users gain a deeper

understanding and get access to the information

that they need. Once LLMs can be utilized to

process data that they were not originally trained

for, there are many use cases that can be achieved.

There are various steps involved in answering

questions from own documents, as depicted in Fig

4.

Fig. 4 Steps to answer questions from own documents.

LangChain provides functionality to easily achieve

these steps to load, transform (split), store, and

query your data. LangChain has the following

classes that help to perform these functionalities.

• Document Loaders: Loads documents from

many different sources, including CSV, PDF,

HTML, JSON, Excel, GitHub, Google Drive,

One Drive, XML, Wikipedia, and many more.

• Document transformers: Splits documents into

smaller chunks so that they can be processed by

LLMs.

• Text embedding models: Take unstructured text

and turn it into a list of floating-point numbers

that represent corresponding embeddings.

• Vector stores: Helps to store and search over

embedded data.

• Retrievers: Helps to query your data based on

embedding similarities.

Embeddings generate quantitative representations

for textual units, encapsulating their semantic

essence in a numerical format. When applied to

similar textual content, these embeddings yield

closely aligned vectors. This enables an evaluation

of textual similarity within the vector space,

facilitating an intuitive understanding of textual

coherence. This becomes particularly instrumental

when selecting text pieces to feed into a language

model for query resolution.

These embeddings are stored in vector databases.

When a user query comes in, it is converted into

embeddings and then sent to the vector database to

find the most semantically close text based on the

similarity scores computed by getting a dot product

of the query embedding and the embeddings stored

in the vector database. The dot product can also be

expressed as the product of the magnitudes of the

vectors and the cosine of the angle between them,

as shown in the following equation, where a and b

are the vectors being compared [12]:

a ⋅ b = ∣a∣ ∣b∣ cosα

There are several methods to pass the content of

the documents and process them via LLM. The

most used method is the stuff method which is

simple and works well if the text chunks that were

returned from the vector store similarly function fit

into the context size of the LLM. The Fig 5. depicts

the stuff method where retrieved similar documents

are passed to LLM in a single prompt.

Fig. 5 Stuff method passes similar documents in a single

prompt.

The other methods that can be used in processing

documents when the retrieved documents do not fit

in a single prompt are “map reduce,” “refine,” and

“map rerank.”

Map reduce takes all the chunks, passes them

along with the question to a language model, gets

back a response, and then uses another language

model call to summarize all of the individual

responses into a final answer. Map reduce can

1054

operate over any number of documents and can

process individual questions in parallel. However,

it requires more calls and does treat all the

documents as independent, which may not always

be the most desired thing. Map reduce process is

depicted in Figure 6.

Fig. 6 Map reduce passes similar documents to multiple

LLMs and then uses another LLM to finalize the output.

Refine is used to loop over many documents

iteratively, building upon the answer from the

previous document, which generally leads to

longer answers. However, many calls are required,

and the calls cannot be done in parallel, causing

slower execution. The refine methods is depicted in

Fig 7.

Fig. 7 Refine method iteratively builds the answer.

Map rerank does a single call to the language

model for each document and asks for a score.

Then it selects the document with the highest

score. The map rerank method is shown in Fig. 8.

Fig. 8 Map rerank method gets an output score and then

selects the output with the highest score.

A.A.6 Agents

When an app needs a flexible chain of calls to

LLMs and other tools based on user input, agents

can be utilized. An agent determines which tool

from a suite of tools needs to be used for the user

input. An agent can be either an action agent that

decides on the next action using the outputs of all

previous actions or a plan-and-execute agent that

decide on the full sequence of actions upfront, then

execute them all without updating the plan.

• Action Agent operates at a high level by

receiving user input, determining the

appropriate tool and its input, executing the

tool and recording its output (termed as an

'observation'), and making decisions on

subsequent steps based on the history of tool

usage, inputs, and observations. This cycle

repeats until the agent can directly respond to

the user. These agents are encapsulated in agent

executors that manage the sequence of actions

and interactions with the tools.

• Plan and Execute Agent operates at a high level

by receiving user input, devising a

comprehensive sequence of steps, and

implementing these steps in a sequential

manner, where outputs from previous steps are

utilized as inputs for subsequent ones. A

common implementation involves using a

language model as the planner and an action

agent as the executor.

Within the framework of agent-based systems,

the concepts of tools and toolkits play a significant

role. Tools, defined as interfaces that facilitate

agent-world interactions, constitute specific actions

that an agent can perform, purposefully selected

based on the agent's functional objective.

Conversely, toolkits represent aggregated

collections of synergistic tools, assembled to cater

to particular use cases. Toolkits are specifically

designed to consolidate tools that function

effectively in unison for distinct tasks, and they

encompass convenience methods for easy loading.

For instance, an agent interfacing with a SQL

database would necessitate a tool for executing

queries and another for inspecting tables.

B. Use Cases

LangChain framework provides walkthroughs of

common end-to-end use cases on the topics such as

autonomous agents, chatbots, code understanding

agents, extraction, question answering over

documents, summarization, and analyzing

structured data. Each of these categories provides

several examples of how to utilize LangChain to

implement the LLM app using Langchain. For

example, the AutoGPT sample given under the

‘autonomous agents’ category provides a notebook

implementing AutoGPT using LangChain that

1055

aims to autonomously achieve whatever goal is

given. An increasing number of examples of

LangChain use cases are documented at the

LangChain website. [12]

III. DISCUSSION

The rise of Large Language Models (LLMs),

specifically OpenAI's ChatGPT, signifies a

transformative phase in AI development with

broad-ranging applications. LangChain, an open-

source library, stands out due to its proficiency in

integrating with diverse data sources and

applications, making it an influential tool in the AI

community.

LangChain's modular structure, with

customizable pipelines for specific use cases,

expedites the development process for LLM

applications. This paper contributes to the

discourse on LLM application development,

aiming to spur further exploration of LangChain

and similar tools. To help facilitate the

development of LLM applications utilizing

LangChain, we provide a sample Jupyter Notebook

page showcasing many of the concepts described

here at a GitHub page. [13]

IV. CONCLUSION

In conclusion, the advent and rapid adoption of

Large Language Models, underscored by the rise of

OpenAI’s ChatGPT, signify a new frontier in the

AI landscape. These models have exhibited

proficiency across a multitude of tasks, setting a

precedent for future advancements.

Particularly, LangChain, with its ability to

streamline the development process of LLM

applications, has demonstrated significant potential

in the AI ecosystem. It has pioneered a new

approach that enables developers to interact with

various data sources and applications effortlessly.

This flexibility and efficiency, characterized by

LangChain's modular abstractions and

customizable use-case-specific pipelines, make it

an invaluable tool for the future of LLM

applications.

This paper provides insights into LangChain's

structure and usage in specific use-cases,

elucidating its capacity to foster rapid

development. It is hoped that the potential and

capabilities identified will spur more exploration

and innovation in the field of LLMs and serve as a

basis for the development of more sophisticated

applications, thus expanding the boundaries of

what is possible with artificial intelligence.

REFERENCES

[1] OlgaRussakovsky, JiaDeng, HaoSu, JonathanKrause,

SanjeevSatheesh, SeanMa, Zhiheng, Huang,

AndrejKarpathy, AdityaKhosla, MichaelBernstein, et al.

Imagenet large scale visual recognition challenge. IJCV,

2015.

[2] Krizhevsky, Alex & Sutskever, Ilya & Hinton,

Geoffrey. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. Neural Information

Processing Systems. 25. 10.1145/3065386.

[3] Sean D. Holcomb, William K. Porter, Shaun V. Ault,

Guifen Mao, and Jin Wang. 2018. Overview on

DeepMind and Its AlphaGo Zero AI. In Proceedings of

the 2018 International Conference on Big Data and

Education (ICBDE '18). Association for Computing

Machinery, New York, NY, USA, 67–71.

https://doi.org/10.1145/3206157.3206174

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota. Association

for Computational Linguistics.

[5] Radford, A., Narasimhan, K., Salimans, T. & Sutskever,

I. (2018). Improving language understanding by

generative pre-training.

[6] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei

Li, & Peter J. Liu (2020). Exploring the Limits of

Transfer Learning with a Unified Text-to-Text

Transformer. Journal of Machine Learning Research,

21(140), 1-67.

[7] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou,

Y., ... & Wen, J. R. (2023). A survey of large language

models. arXiv preprint arXiv:2303.18223

[8] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,

Horvitz, E., Kamar, E., ... & Zhang, Y. (2023). Sparks

of artificial general intelligence: Early experiments with

gpt-4. arXiv preprint arXiv:2303.12712.

[9] Chase, H. LangChain LLM App Development

Framework. https://langchain.com/ Accessed Jul 10th,

2023

[10] Chase, H. LangChain, Building applications with LLMs

through composability, GitHub Repo,

https://github.com/hwchase17/langchain Accessed Jul

10th, 2023

[11] Vector Similarity Explained, The Pinecone Vector DB,

https://www.pinecone.io/learn/vector-similarity/,

Accessed July 10th, 2023.

[12] LangChain Use Case Examples,

https://docs.langchain.com/docs/category/use-cases ,

Accessed July 10th, 2023

1056

[13] GitHub page for sample Jupyter Notebook page

showcasing usage of LangChain framework,

https://github.com/research-outcome/llm-langchain-

examples Accessed Jul 10th, 2023

