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Abstract –This study introduces the concept of rough 𝐼∗-statistical convergence in a normed linear space, 

extending the notion of rough 𝐼-statistical convergence. Furthermore, we propose the concept of rough 

𝐼𝐾-statistical convergence in a more comprehensive framework. We examine the properties related to 

these novel concepts and explore the interconnections among rough 𝐼-statistical convergence, rough 𝐼∗-

statistical convergence, and rough 𝐼𝐾-statistical convergence. By doing so, we enhance our understanding 

of these convergence modes and pave the way for their application in various mathematical contexts. 
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I. INTRODUCTION 

In the realm of real number sequences, the 

traditional notion of convergence has been 

extended to statistical convergence by Fast [1]. 

Since then, several advancements have emerged in 

this area from various researchers. One notable 

extension of statistical convergence is the 

introduction of 𝐼-convergence by Kostyrko et al. 

[2]. These developments have expanded our 

understanding of convergence in a statistical 

context and have paved the way for further 

investigations in this field. 

A closely related convergence concept, referred 

to as 𝐼∗-convergence, was introduced by Kostyrko 

et al. [3]. The equivalence between this concept 

and the previously mentioned 𝐼-convergence has 

been established in [2], specifically when the ideal 

satisfies property (𝐴𝑃). This result highlights the 

interplay between these two convergence notions 

and sheds light on the conditions under which they 

coincide. 

Rough convergence was originally presented by 

Phu [4] in a finite-dimensional space. Building 

upon this notion, Dündar et al. [5] expanded the 

framework in 2014 by introducing the concept of 

rough 𝐼-convergence. This novel concept combines 

the ideas of 𝐼-convergence and rough convergence. 

The concept of 𝐼𝐾-convergence in a topological 

space, considering two arbitrary ideals 𝐼 and 𝐾 on 

a set 𝑆, was introduced as a generalization of 𝐼∗-

convergence by Mačaj and M. Sleziak in [6]. In 

their study, they modified the condition (AP) and 

demonstrated that when the condition 𝐴𝑃(𝐼, 𝐾) is 

satisfied, 𝐼-convergence implies 𝐼𝐾-convergence. 

Notably, they employed functions instead of 

sequences in their analysis, as utilizing functions 

can often lead to simplified notations. Banerjee and 

Paul [7] have investigated the concepts of rough 

𝐼∗-convergence and rough 𝐼𝐾-convergence into the 

literature. 

Within the framework of a normed linear space 

(NLS), we have introduced two new concepts: 

rough 𝐼∗-statistical convergence and rough 𝐼𝐾-

statistical convergence. The latter, rough 𝐼𝐾-

statistical convergence, can be viewed as a broader 

concept that encompasses rough 𝐼∗-statistical 

convergence. By introducing and exploring these 
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novel convergence modes, we contribute to the 

understanding and application of statistical 

convergence in the context of NLS. 

Rough 𝐼∗-statistical convergence and rough 𝐼𝐾-

statistical convergence in the context of NLSs 

carries substantial importance. These concepts 

expand upon the existing notion of rough 𝐼-

statistical convergence, allowing for a more 

comprehensive understanding of convergence 

modes in mathematical analysis. By examining the 

properties associated with these newly introduced 

concepts, we deepen our comprehension of their 

behavior and characteristics. Additionally, 

exploring the interconnections among rough 𝐼-

statistical convergence, rough 𝐼∗-statistical 

convergence, and rough 𝐼𝐾-statistical convergence 

provides valuable insights into the relationships 

between these convergence modes. The outcomes 

of this study contribute to the advancement of 

mathematical knowledge and lay the foundation for 

their practical application in various mathematical 

contexts.

 

II. MAIN RESULTS 

 

Throughout our discourse, we will consistently 

refer to an NLS denoted as (𝑋, ∥⋅∥), or simply 𝑋, 

over the field ℂ or ℝ. The ideals 𝐼, 𝐾 are assumed 

to be non-trivial and admissible ideals on ℕ. 

Moreover, unless explicitly mentioned otherwise, 

the symbol 𝑟 represents a non-negative real 

number. 

Definition 2.1. We say that the sequence {𝑦𝑛}𝑛∈ℕ 

in (𝑋, ∥⋅∥) is rough 𝐼∗-statistical convergent of 

roughness degree (r.deg.) 𝑟 to 𝑦 if there is a set 

𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} in the collection 𝐹(𝐼) of 

admissible ideals so that the subsequence {𝑦𝑝𝑖
}

𝑖∈ℕ
 

is rough statistical convergent of r.deg. 𝑟 to 𝑦. In 

other words, for each 𝜌 > 0, there exists a 𝑖 ∈ ℕ 

such that 

lim
𝑡→∞

1

𝑡
|{𝑘 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| = 0. 

This is illustrated by 𝑦𝑛 ⟶
𝑟−𝐼∗−𝑠𝑡

𝑦. 

The term "rough 𝐼∗-statistical limit" is used to refer 

to the limit of the sequence {𝑦𝑛}𝑛∈ℕ in terms of 

r.deg. 𝑟. When 𝑟 equals 0, it corresponds to the 

definition of 𝐼∗-statistical convergence of 

sequences in NLSs. It is important to note that the 

rough 𝐼∗-statistical limit of a sequence in NLSs is 

not unique. As a result, we define the rough 𝐼∗-

statistical limit set of the sequence {𝑦𝑛}𝑛∈ℕ as 

follows: 

𝐼∗ − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛 = {𝑦 ∈ 𝑋: 𝑦𝑛 ⟶
𝑟−𝑠𝑡−𝐼∗

𝑦}. 

Definition 2.2. In an NLS (𝑋, ∥⋅∥), a sequence 

{𝑦𝑛}𝑛∈ℕ is called to be rough 𝐼𝐾-statistical 

convergent of r.deg. 𝑟 to 𝑦 if there exists a set 𝑀 =
{𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} in the family of sets 𝐹(𝐼), so that 

the subsequence {𝑦𝑝𝑖
}

𝑖∈ℕ
 is rough 𝐾 ∣ 𝑀-statistical 

convergent of r.deg. 𝑟 to 𝑦. Here, 𝐾 ∣ 𝑀 represents 

the trace of the ideal 𝐾 on 𝑀, defined as 𝐾 ∣ 𝑀 =
{𝐴 ∩ 𝑀: 𝐴 ∈ 𝐾}. In other words, for all 𝜌, 𝛾 > 0, 

there is a 𝑖 ∈ ℕ such that 

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐾

∣ 𝑀. 

We indicate this by 𝑦𝑛 ⟶
𝑟−𝑠𝑡−𝐼𝐾

𝑦. 

The term "rough 𝐼𝐾-statistical limit" is used to 

refer to the limit of the sequence {𝑦𝑛}𝑛∈ℕ in an 

NLS, considering the r.deg. 𝑟 and the ideal 𝐾. 

When 𝑟 equals 0, it corresponds to the concept of 

𝐼𝐾-statistical convergence of sequences in NLSs. It 

is important to note that for any 𝑀 ∈ 𝐹(𝐼), the 

trace 𝐾 ∣ 𝑀 = {𝐴 ∩ 𝑀: 𝐴 ∈ 𝐾} of the ideal 𝐾 on 𝑀 

also forms an ideal on ℕ. The rough 𝐼𝐾-statistical 

limit of a sequence in NLSs is not unique. So, we 

establish the rough 𝐼𝐾-statistical limit set of the 

sequence {𝑦𝑛}𝑛∈ℕ as 

𝐼𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛 = {𝑦 ∈ 𝑋: 𝑦𝑛 ⟶
𝑟−𝑠𝑡−𝐼𝐾

𝑦}. 

If the ideal 𝐾 consists of all finite subsets of ℕ, 

then Definition 2.1 and Definition 2.2 coincide. It 

is worth noting that if 𝑦 is a rough 𝐼∗-statistical 

limit of a sequence {𝑦𝑛}𝑛∈ℕ, then y is also a rough 

𝐼𝐾-statistical limit of {𝑦𝑛}𝑛∈ℕ. However, there are 

cases where 𝑦 is a rough 𝐼𝐾-statistical limit of a 
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sequence {𝑦𝑛}𝑛∈ℕ in an NLS without being a rough 

𝐼∗-statistical limit of the sequence {𝑦𝑛}𝑛∈ℕ. This 

can be observed in the following example. 

Therefore, in general, for a sequence {𝑦𝑛}𝑛∈ℕ in an 

NLS and for any 𝑟 ≥ 0, we have 𝐼∗ − 𝑠𝑡 −
𝐿𝐼𝑀𝑟𝑦𝑛 ⊂ 𝐼𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. 

Example 2.1. Suppose we have a set ℕ 

decomposed into ℕ = 𝐴 ∪ ⋃𝑖=1
∞  𝐴𝑖, where 𝐴 =

{1,3,5, ⋯ } and 𝐴𝑖 = {2𝑘(2𝑖 − 1): 𝑘 ∈ ℕ}. We 

observe that each of 𝐴𝑖′𝑠 are disjoint from each 

other and each of 𝐴𝑖′𝑠 are disjoint from 𝐴. Now, 

let's introduce 𝐼 as the set of all subsets of ℕ that 

can intersect 𝐴 and a finite number of 𝐴𝑖 's. Moving 

forward, we examine an alternative decomposition 

of ℕ as ℕ = ⋃𝑗=1
∞  𝐷𝑗 , where 𝐷𝑗 = {2𝑗−1(2𝑢 −

1): 𝑢 = 1,2, … }. Each of 𝐷𝑗  is infinite and it is 

obvious that 𝐷𝑗 ∩ 𝐷𝑞 = 𝜙 for 𝑗 ≠ 𝑞. Assume that 

𝐾 be the ideal of all subsets of ℕ that intersect with 

only a finite number of 𝐷𝑗 's. So, 𝐾 are non-trivial 

admissible ideal on ℕ. Now, let's examine a 

sequence  in the real number space with the usual 

norm. We define this sequence as 𝑦𝑛 =
1

𝑗
 if 𝑛 ∈ 𝐷𝑗. 

Take 𝑀 = ℕ ∈ 𝐹(𝐼). Then 𝐾 ∣ 𝑀 = 𝐾. Let's 

assume that we have an arbitrary positive number 

𝑟. By applying the Archimedean property, for any 

arbitrary 𝜌 , 𝛾 >  0, there is an 𝑣 ∈ ℕ such that 𝜌 >
1

𝑣
. Hence 

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: |𝑦𝑖 − (−𝑟)| = |𝑦𝑖 + 𝑟| ≥ 𝑟 +

𝜌}| ≥ 𝛾} ⊂ 𝐷1 ∪ 𝐷2 ∪ ⋯ ∪ 𝐷𝑣 ∈ 𝐾 = 𝐾 ∣ 𝑀. As a 

result −𝑟 ∈ 𝐼𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. 

Let's explore the possibility of −𝑟 ∈ 𝐼∗ − 𝑠𝑡 −

𝐿𝐼𝑀𝑟𝑦𝑛. In this case, there is a set 𝑀 =
{𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} ∈ 𝐹(𝐼) for which the subsequence 

{𝑦𝑛}𝑛∈𝑀 of the sequence {𝑦𝑛}𝑛∈ℕ is rough 

statistical convergent to 𝑦 of r.deg. 𝑟. Since 𝑀 ∈

𝐹(𝐼), we have ℕ ∖ 𝑀 = 𝐻 ∈ 𝐼. This implies that 

there is a positive integer 𝑡 such that 𝐻 ⊂ 𝐴 ∪ 𝐴1 ∪

𝐴2 ∪ ⋯ ∪ 𝐴𝑡, and therefore 𝐴𝑖 ⊂ 𝑀 for each 𝑖 ≥

𝑡 + 1. 

Now, since each set 𝐴𝑖 contains an element from 

each set 𝐷𝑖 's for 𝑖 ≥ 2, there is a 𝑢 > 0 such that 

𝑦𝑝𝑖
=

1

𝑢
 for infinitely many 𝑖 when 𝑝𝑖 ∈ 𝐷𝑢. 

Considering −𝑟 ∈ 𝐼∗ − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛, we can 

choose 𝜌 =
1

𝑢+1
. By the definition of rough 

statistical convergence, for each 𝜌 > 0, there exists 

a 𝑖 ∈ ℕ such that 

lim
𝑡→∞

1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| = 0. →  (∗). 

However, since 𝑦𝑝𝑖
=

1

𝑢
 for infinitely many 𝑘, the 

condition in (*) cannot hold. This leads to a 

contradiction. Hence, we conclude that −𝑟 ∉ 𝐼∗ −

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. 

Theorem 2.1. If {𝑦𝑛}𝑛∈ℕ is rough 𝐼∗-statistical 

convergent with r.deg. 𝑟 to 𝑦, then it is also rough 

𝐼-statistical convergent with r.deg.  𝑟 to 𝑦. 

Proof. Suppose {𝑦𝑛}𝑛∈ℕ is rough 𝐼∗-statistical 

convergent with r.deg. 𝑟 to 𝑦. This implies the 

existence of a set 𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} such that 

{𝑦𝑝𝑖
}

𝑖∈ℕ
 is rough statistical convergent of r.deg. 𝑟 

to 𝑦. For all 𝜌 > 0, there exists a 𝑖 ∈ ℕ such that 

lim
𝑡→∞

1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| = 0. 

So, for any 𝜌 > 0 there exists 𝑚 ∈ ℕ so that 

∥∥𝑦𝑝𝑖
− 𝑦∥∥ < 𝑟 + 𝜌 for all 𝑖 ≥ 𝑚. Then 

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ⊂ ℕ ∖

𝑀 ∪ {𝑝1, 𝑝2, ⋯ , 𝑝𝑚−1} → (𝑖). 

Since  

ℕ ∖ 𝑀 ∪ {𝑝1, 𝑝2, ⋯ , 𝑝𝑚−1} ∈ 𝐼, 

it follows that 

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐼. 

Therefore the sequence {𝑦𝑛}𝑛∈ℕ is rough 𝐼-

statistical convergent of r.deg.  𝑟 to 𝑦. 

According to Theorem 2.1, the rough 𝐼∗-statistical 

limit set with r.deg. 𝑟 is a subset of the rough 𝐼-
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statistical limit set with the same r.deg. 𝑟. 

However, the converse of Theorem 2.1 does not 

necessarily hold true. In other words, if a sequence 
{𝑦𝑛}𝑛∈ℕ is rough 𝐼-statistical convergent with some 

r.deg. 𝑟 to 𝑦, it may not be rough 𝐼∗-statistical 

convergent with the same r.deg 𝑟 to 𝑦. This fact 

becomes apparent from the following example. 

Example 2.2. Let's consider a decomposition of the 

set of ℕ as ℕ = ⋃𝑗=1
∞  𝐷𝑗, where 𝐷𝑗 = {2(𝑗−1)(2𝑢 −

1): 𝑢 =1,2, … }. Each set 𝐷𝑗  is infinite and disjoint 

from each other. Now, let 𝐼 be the class of subsets 

of  ℕ that intersect with only a finite number of 

𝐷𝑗 's. It can be shown that 𝐼 is an admissible ideal 

on ℕ. 

We present a sequence {𝑦𝑛}𝑛∈ℕ in the real number 

space with the usual norm, such that 𝑦𝑛 =
1

𝑗𝑗 if 𝑛 

belongs to 𝐷𝑗 . Let 𝑟 ≥ 0. For any arbitrarily chosen 

𝜌 >  0, we can find 𝑣 > 0 such that 𝜌 >
1

𝑣𝑣. 

Consequently, we obtain [−𝑟, 𝑟] ⊂ 𝐼 − 𝑠𝑡 −

𝐿𝐼𝑀𝑟𝑦𝑛, since the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥

𝑟 + 𝜌}| ≥ 𝛾} is contained in 𝐷1 ∪ 𝐷2 ∪ ⋯ 𝐷𝑣, 

which belongs to 𝐼 for any 𝑦 in the interval [−𝑟, 𝑟]. 

Now, let's assume that the aforementioned 

sequence is rough 𝐼∗-statistically convergent to −𝑟, 

where −𝑟 has the same r.deg 𝑟. This implies the 

existence of a set 𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} such that 

{𝑦𝑝𝑖
}

𝑖∈ℕ
 is rough statistical convergent to −𝑟 of 

r.deg 𝑟. Since 𝑀 ∈ 𝐹(𝐼), we have ℕ ∖ 𝑀 = 𝐻 ∈ 𝐼. 
Therefore, there is a 𝑡 > 0 so that 𝐻 is a subset of 

𝐷1 ∪ 𝐷2 ∪ ⋯ ∪ 𝐷𝑡,  and thus 𝐷𝑡+1 ⊂ 𝑀. 
Consequently, for any 𝑝𝑖 ∈ 𝐷𝑡+1, we get 𝑦𝑝𝑖

=
1

(𝑡+1)𝑡+1
.  Now, selecting 𝜌 =

1

(𝑡+2)𝑡+1
, we can 

observe that for 𝑝𝑖 ∈ 𝐷𝑡+1, 

lim
𝑡→∞

1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| = 0. 

for infinitely many values of 𝑖. Therefore, the 

sequence {𝑦𝑛}𝑛∈ℕ is not rough 𝐼∗-statistical 

convergent of r.deg 𝑟 to −𝑟, even though −𝑟 

belongs 𝐼 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. 

For a sequence {𝑦𝑛}𝑛∈ℕ in an NLS, the rough 𝐼-

statistical limit of the sequence with r.deg 𝑟 is also 

a rough 𝐼∗-statistical limit with the same r.deg 𝑟, 

provided that the ideal 𝐼 supplies condition (𝐴𝑃). 

To establish this result, we will make use of the 

following lemma. 

Lemma 2.1. Suppose that {𝐴𝑛}𝑛∈ℕ be a countable 

family of subsets of ℕ, where all 𝐴𝑛 belongs to 

𝐹(𝐼), the filter associated with an admissible ideal 

𝐼 that satisfies property (𝐴𝑃). Then, there exists a 

set 𝐵 ⊂  ℕ such that 𝐵 ∈  𝐹(𝐼) and the set 𝐵 ∖ 𝐴𝑛 

is finite for all 𝑛 ∈ ℕ. 

Theorem 2.2. Assume that 𝐼 be an ideal that 

satisfies property (𝐴𝑃), and consider a sequence 

{𝑦𝑖}𝑖∈ℕ ∈ (𝑋, ∥⋅∥).  If 𝑦 is a rough 𝐼-statistical limit 

of the sequence {𝑦𝑖}𝑖∈ℕ with a certain r.deg. 𝑟, then 

𝑦 is also a rough 𝐼∗-statistical limit of the sequence 

{𝑦𝑖}𝑖∈ℕ with the same r.deg. 𝑟. 

Proof.  Consider an ideal 𝐼, on the set of ℕ, 

satisfying the condition (𝐴𝑃). Let {𝑦𝑖}𝑖∈ℕ ∈ (𝑋, ∥⋅∥

).   Suppose 𝑦 is a rough 𝐼-statistical limit of the 

sequence {𝑦𝑖}𝑖∈ℕ with a r.deg. of 𝑟. This implies 

that for any 𝜌, 𝛾 > 0, the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} belongs to the ideal 𝐼. 

Let 𝑙 ∈ ℝ+, and note that 𝑙/𝑠 ∈ ℝ+ for each 𝑠 ∈ ℕ. 

We define 𝐴𝑠 as the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 +
𝑙

𝑠
}| < 𝛾} for every 𝑠 ∈ ℕ. It 

follows that 𝐴𝑠 ∈ 𝐹(𝐼)  for all 𝑠 ∈ ℕ. Additionally, 

according to lemma 2.1, there is a set 𝐵 ⊂ ℕ that 

belongs to the 𝐹(𝐼)  class and 𝐵 ∖ 𝐴𝑠 is finite for 

all 𝑠 ∈ ℕ. 

For any arbitrary 𝜌 > 0, there exists a 𝑗 ∈ ℕ such 

that 𝜌 <
𝑙

𝑗
. Since 𝐵 ∖ 𝐴𝑗  is finite, we can find a 𝑡 =

𝑡(𝑗) ∈ ℕ such that for all 𝑖 ∈ 𝐵 with 𝑖 ≥ 𝑡, we have 

𝑖 ∈ 𝐵 ∩ 𝐴𝑗. Consequently, for all 𝑖 ∈ 𝐵, we have 

lim
𝑡→∞

1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| = 0. 

This implies that the subsequence {𝑦𝑖}𝑖∈𝐵 is rough 

statistical convergent of r.deg. 𝑟 to 𝑦. So, 𝑦 is also 

a rough 𝐼∗-statistical limit of r.deg. 𝑟. Hence, the 

result follows. 
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Corollary 2.1. Let {𝑦𝑛}𝑛∈ℕ be a sequence in an 

NLS (𝑋, ∥⋅∥). Consider 𝐼, an ideal on ℕ, satisfying 

the condition (𝐴𝑃). We aim to prove that both the 

rough 𝐼-statistical limit set of r.deg. 𝑟 and the 

rough 𝐼∗-statistical limit set of r.deg. 𝑟 for the 

sequence {𝑦𝑛}𝑛∈ℕ are equal. 

By Theorem 2.1 and Theorem 2.2, we can 

conclude that the result holds. 

The rough 𝐼-statistical limit set of a sequence 

{𝑦𝑛}𝑛∈ℕ in an NLS is a subset of the rough 𝐼-

statistical limit set of a subsequence {𝑦𝑛𝑘
}

𝑘∈ℕ
. 

However, the rough 𝐼∗-statistical limit set of a 

sequence {𝑦𝑛}𝑛∈ℕ in an NLS may not necessarily 

be a subset of the rough 𝐼∗-statistical limit set of a 

subsequence {𝑦𝑛𝑘
}

𝑘∈ℕ
. 

Theorem 2.3. If we have an ideal 𝐼 that supplies 

condition (𝐴𝑃), then the rough 𝐼∗-statistical limit 

set of a sequence {𝑦𝑛}𝑛∈ℕ with a r.deg. 𝑟 is 

contained in the rough 𝐼∗-statistical limit set of a 

subsequence {𝑦𝑛𝑘
}

𝑘∈ℕ
 with the same r.deg. 𝑟. 

Proof. Consider 𝑦 to be a rough 𝐼∗-statistical limit 

of a sequence {𝑦𝑛}𝑛∈ℕ with a r.deg. 𝑟. Since a 

rough 𝐼∗-statistical limit is also a rough 𝐼-statistical 

limit of {𝑦𝑛}𝑛∈ℕ, it follows that 𝑦 is a rough 𝐼-

statistical limit of {𝑦𝑛}𝑛∈ℕ. Furthermore, as the 

rough 𝐼-statistical limit of a sequence {𝑦𝑛}𝑛∈ℕis a 

subset of the rough 𝐼-statistical limit of a 

subsequence{𝑦𝑛𝑘
}

𝑘∈ℕ
, we can conclude that 𝑦 is 

also a rough 𝐼-statistical limit of the subsequence 

{𝑦𝑛𝑘
}

𝑘∈ℕ
. 

Now, since the ideal 𝐼 supplies the condition (𝐴𝑃), 

𝑦 is also a rough 𝐼∗-statistical limit of the 

subsequence {𝑦𝑛𝑘
}

𝑘∈ℕ
. Therefore, we can affirm 

that x is both a rough 𝐼-statistical limit and a rough 

𝐼∗-statistical limit of the subsequence {𝑦𝑛𝑘
}

𝑘∈ℕ
. 

Theorem 2.4. Let's consider an NLS (𝑋, ∥⋅∥), and 

let 𝐼 and 𝐾 be two admissible ideals on the set of 

ℕ. Suppose we have a sequence {𝑦𝑛}𝑛∈ℕ in 𝑋 that 

is rough 𝐼𝐾-statistical convergent to 𝑦, with a 

r.deg. of 𝑟. We can state that if 𝐾 is a subset of 𝐼, 

then the sequence {𝑦𝑛}𝑛∈ℕ is also rough 𝐼-

statistical convergent to 𝑦, maintaining the same 

r.deg. of 𝑟. 

Proof. Consider two admissible ideals, 𝐼 and 𝐾, on 

the set of ℕ, where 𝐾 is a subset of 𝐼. Suppose we 

have a sequence {𝑦𝑛}𝑛∈ℕ that is rough 𝐼𝐾-statistical 

convergent to 𝑦 with a r.deg. of 𝑟. According to the 

theorem, there is a set 𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} ∈ 𝐹(𝐼) 

so that for any 𝜌, 𝛾 >  0, the set 𝐴(𝜌, 𝛾) =

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐾 ∣

𝑀. It is also given that 𝐴(𝜌, 𝛾) = {𝑡 ∈

ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} = 𝐾1 ∩ 𝑀 

for some 𝐾1 ∈ 𝐾. Since 𝐾 is an ideal and 𝐾1 ∩
𝑀 ⊂ 𝐾1, we can conclude that 𝐾1 ∩ 𝑀 ∈ 𝐾. 

Additionally, {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 +

𝜌}| ≥ 𝛾} ⊂ (𝐾1 ∩ 𝑀) ∪ ℕ ∖ 𝑀. As ℕ ∖ 𝑀 ∈ 𝐼 and 

𝐾 ⊂ 𝐼, it follows that (𝐾1 ∩ 𝑀) ∪ ℕ ∖ 𝑀 ∈ 𝐼. So 

{𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐼. 

Thus, the result is established. 

Conversely, the validity of the converse part of 

Theorem 2.4 holds true as well. If a rough 𝐼𝐾-

statistical limit 𝑦 of a sequence {𝑦𝑛}𝑛∈ℕ with a 

r.deg. of 𝑟 implies that 𝑦 is also a rough 𝐼-

statistical limit with the same r.deg. of 𝑟, then 𝐾 ⊂
 𝐼. To establish this, we require the utilization of 

the following lemma. 

Lemma 2.2. Suppose 𝐼 and 𝐾 are ideals on the set 

of natural numbers, ℕ. If a sequence {𝑦𝑛}𝑛∈ℕ has a 

rough 𝐾-statistical limit, characterized by a r.deg. 

𝑟, then it is also a rough 𝐼𝐾-statistical limit with the 

same r.deg. 𝑟. 

Proof. Consider two ideals, 𝐼 and 𝐾, on the set of 

ℕ, and let 𝑟 ≥ 0. Suppose 𝑦 is a rough 𝐾-statistical 

limit of the sequence {𝑦𝑛}𝑛∈ℕ with a r.deg. of 𝑟, 

denoted by 𝑦 ∈ 𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. It means that 

for any 𝜌, 𝛾 >  0, the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} belongs to 𝐾. Now, 

since the empty set belongs to 𝐼, we can conclude 

that ℕ ∈ 𝐹(𝐼). Let 𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} = ℕ ∈

𝐹(𝐼). This implies that the subsequence {𝑦𝑝𝑖
} is 

equal to the original sequence {𝑦𝑛} and 𝐾 ∣ 𝑀 = 𝐾. 

Therefore, the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥

𝑟 + 𝜌}| ≥ 𝛾} is equivalent to {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐾 = 𝐾 ∣ 𝑀. As a 
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result, we can say that 𝑦 ∈ 𝐼𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛.  
Thus, the desired result is obtained. 

Theorem 2.5. Suppose the rough 𝐼𝐾-statistical limit 

of a sequence {𝑦𝑛}𝑛∈ℕ with a r.deg. of 𝑟 is 𝑦. If 𝑦 

is also a rough 𝐼-statistical limit of the same 

sequence {𝑦𝑛}𝑛∈ℕ with the same r.deg. of 𝑟, then it 

implies that 𝐾 is a subset of 𝐼. 

Proof. Assume that 𝐾 is not a subset of 𝐼, and 𝑟 is 

a non-negative real number. This implies the 

existence of a set 𝐴 ∈  𝐾 ∖  𝐼. Let's select 𝑢 and 𝑣 

from the NLS 𝑋, where ∥ 𝑢 ∥ =  1 and 𝑣 =  (𝑟 +
 2)𝑢. We observe that ∥ 𝑢 − 𝑣 ∥ ≥  𝑟 + 𝜌 for 0 <
 𝜌 ≤  1 and ∥ 𝑢 − 𝑣 ∥ <  𝑟 +  𝜌 for 𝜌 >  1. 

Next, we shall establish a sequence {𝑦𝑛}𝑛∈ℕ in the 

following manner: 

 𝑦𝑛 = {
𝑢 + 𝑟, 𝑛 ∈ ℕ ∖ 𝐴
𝑦, 𝑛 ∈ 𝐴

. 

For any 𝜌 >  0, the set {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑢∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} will either be equal to 

the set 𝐴 (when 0 <  𝜌 ≤  1) or the empty set ∅ 

(when 𝜌 >  1). Since 𝐾 is an admissible ideal and 

𝐴 ∈  𝐾, it follows that {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑢∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∈ 𝐾. Thus, 𝑢 is a rough 

𝐾-statistical limit of the sequence {𝑦𝑛}𝑛∈ℕ with a 

r.deg. of 𝑟. 

Now, using lemma 2.2, we can conclude that 𝑢 is 

also a rough 𝐼𝐾-statistical limit of the sequence 

{𝑦𝑛}𝑛∈ℕ with a r.deg. of 𝑟. However, considering 

the case where 0 < 𝜌 ≤  1, we see that {𝑡 ∈

ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑖 − 𝑢∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} = 𝐴, and 

since 𝐴 ∉  𝐼, it follows that {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑢∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} ∉  𝐼. This implies that 

𝑢 is not a rough 𝐼-statistical limit with a r.deg. of 𝑟. 

We have reached a contradiction, as our 

assumption stated that 𝑢 is a rough 𝐼-statistical 

limit of {𝑦𝑛}𝑛∈ℕ. Therefore, we can conclude that 

𝐾 ⊂  𝐼. 

Corollary 2.2. The rough 𝐼𝐾-statistical limit set of 

a sequence {𝑦𝑛}𝑛∈ℕ with a r.deg. of 𝑟 is a subset of 

the 𝐼-statistical limit set if and only if 𝐾 is a subset 

of 𝐼. 

In general, the fact that 𝑦 is a rough 𝐼-statistical 

limit of a sequence {𝑦𝑛}𝑛∈ℕ in a normed linear 

space (NLS) does not necessarily imply that y is 

also a rough 𝐼𝐾-statistical limit of the same 

sequence. To support this claim, we provide the 

following example. 

Example 2.3. Consider the ideal 𝐼, as described in 

Example 2.2 Suppose that 𝐾 be the ideal on ℕ, 

defined as the collection of all subsets of ℕ whose 

natural density is zero. We create a sequence {𝑦𝑛} 

in ℝ with the usual norm, where 𝑦𝑛 =
1

𝑗
 if 𝑛 ∈ 𝐷𝑗 . 

Let 𝑟 ≥ 0.  

Now, let 𝜌 >  0. We can find an 𝑙 ∈  𝑁 such that 

𝜌 >  1/𝑙. It is clear that [−𝑟, 𝑟] is contained in the 

𝐼-statistical set of {𝑦𝑛} with a r.deg. of 𝑟, indicated 

by 𝐼 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛, since {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤

𝑡: ∥∥𝑦𝑖 − 𝑦∥∥ ≥ 𝑟 + 𝜌}| ≥ 𝛾} is a subset of 𝐷1 ∪

𝐷2 ∪ ⋯ 𝐷𝑙, which belongs to 𝐼 for any 𝑦 ∈
 [−𝑟, 𝑟]. 

Suppose, for contradiction, that −𝑟 is a rough 𝐼𝐾-

statistical limit of {𝑦𝑛} with a r.deg. of 𝑟. This 

implies the existence of an 𝑀 = {𝑝𝑖: 𝑝𝑖 < 𝑝𝑖+1} ∈

𝐹(𝐼) such that the subsequence {𝑦𝑝𝑖
} is rough 𝐾 ∣

𝑀-statistical convergent to −𝑟 with a r.deg. of 𝑟. 

Since 𝑁 ∖ 𝑀 =  𝐻 belongs to 𝐼, there exists a 𝑠 ∈
ℕ such that 𝐻 is a subset of 𝐷1 ∪ 𝐷2 ∪ ⋯ ∪ 𝐷𝑠. 

Consequently, for all 𝑖 ≥  𝑠 + 1, we have 𝐷𝑖 ⊂ 𝑀. 

Now, consider  𝜌 =
1

𝑠+1
, and 𝛾 > 0. Then, 

 {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 +
1

𝑠+1
}| ≥ 𝛾} =

{𝑖 ∈ ℕ: 𝑝𝑖 ∈ 𝐷𝑠+1}. 

As 𝐷𝑠+1 = {2𝑠(2𝑢 − 1): 𝑢 = 1,2, ⋯ }, and the 

natural density of 𝐷𝑠+1 is 
1

2𝑠+1. So, 𝛿 ({𝑡 ∈

ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥ 𝑟 +
1

𝑠+1
}| ≥ 𝛾} ) ≠ 0. As 

a result, we obtain {𝑡 ∈ ℕ:
1

𝑡
|{𝑖 ≤ 𝑡: ∥∥𝑦𝑝𝑖

− 𝑦∥∥ ≥

𝑟 +
1

𝑠+1
}| ≥ 𝛾} ∉ 𝐾 ∣ 𝑀, since natural density of 

all set belongs to 𝐾 ∣ 𝑀 is also zero. So −𝑟 is not a 

rough 𝐼𝐾-statistical limit of {𝑦𝑛} of r.deg. 𝑟. 

Let {𝑦𝑛}𝑛∈ℕ be a sequence, and let 𝐼 be an ideal 

satisfying condition (𝐴𝑃). If 𝑦 is a rough 𝐼-
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statistical limit of {𝑦𝑛}𝑛∈ℕ, then 𝑦 is also a rough 

𝐼𝐾-statistical limit of {𝑦𝑛}𝑛∈ℕ. 

Theorem 2.6. Consider two admissible ideals, 

denoted as 𝐼 and 𝐾, on the set of ℕ. Assume that 𝐼 

satisfies the condition (𝐴𝑃). Additionally, let 
{𝑦𝑛}𝑛∈ℕ. be a sequence in an NLS (𝑋, ∥⋅∥). 
Then 𝑦 ∈ 𝐼 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛 implies 𝑦 ∈ 𝐼𝐾 − 𝑠𝑡 −
𝐿𝐼𝑀𝑟𝑦𝑛. 

Proof. Let 𝐼 and 𝐾 be ideals on ℕ so that the ideal 

𝐼 supplies the condition (AP). Assume that {𝑦𝑛}𝑛∈ℕ 

be sequence so that 𝑦 ∈ 𝐼 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. since 𝐼 

holds the condition (AP), so 𝑦 ∈ 𝐼∗ − 𝑠𝑡 −
𝐿𝐼𝑀𝑟𝑦𝑛. Now as 𝐼∗ − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥𝑛 ⊂ 𝐼𝐾 − 𝑠𝑡 −
𝐿𝐼𝑀𝑟𝑦𝑛, therefore 𝑦 ∈ 𝐼𝐾 − 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑦𝑛. 

CONCLUSION 

In this study, we have introduced and explored the 

concept of rough 𝐼∗-statistical convergence in a 

normed linear space, thereby extending the existing 

notion of rough 𝐼-statistical convergence. 

Additionally, we have proposed the concept of 

rough 𝐼𝐾-statistical convergence, which provides a 

more comprehensive framework for understanding 

these convergence modes. 

Through our examination of the properties 

associated with these novel concepts, we have 

gained insights into their characteristics and 

established their interconnections. We have 

identified relationships between rough 𝐼-statistical 

convergence, rough 𝐼∗-statistical convergence, and 

rough 𝐼𝐾-statistical convergence, thus contributing 

to our understanding of these convergence modes. 

By expanding our knowledge of these convergence 

modes, we have opened up avenues for their 

application in various mathematical contexts. The 

enhanced understanding and interconnections 

provided by our study offer valuable insights for 

future research in this field. These convergence 

modes have the potential to find applications in 

diverse mathematical areas, enabling further 

advancements in related theories and applications. 

Overall, this study has expanded our understanding 

of rough 𝐼∗-statistical convergence, introduced the 

concept of rough 𝐼𝐾-statistical convergence, and 

elucidated the relationships between these 

convergence modes. This research paves the way 

for further investigations and applications of these 

concepts, benefiting the broader mathematical 

community and promoting advancements in related 

fields. 
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