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Abstract – In this research, we investigate a specific family of conoid surfaces within the three-dimensional 
Euclidean space 𝔼ଷ. We consider the differential geometry of the family. We determine the curvatures of 
these particular surfaces. Moreover, we provide the necessary conditions for minimality within this 
framework. Additionally, we compute the Laplace−Beltrami operator for this family and present an 
example. 
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I. INTRODUCTION 
 
Chen [4, 5, 6, 7] initially introduced the concept 

of finite order sub-manifolds (SM) of immersed into 
Euclidean 𝑚-space 𝔼௠ or pseudo-Euclidean 𝑚-
space 𝔼௩

௠ by utilizing a finite set of eigenfunctions 
derived from their Laplacian. Since then, this topic 
has undergone extensive scrutiny and investigation. 
 

Takahashi demonstrated that a Euclidean 
submanifold is classified as 1-type if and only if it 
is minimal or minimal within a hypersphere of 𝔼௠. 
The minimal SM were provided by Lawson [20]. 
Garay subsequently [16] examined Takahashi's 
theorem in 𝔼௠. Aminov [2] extensively explored 
the geometry of SM. Chen et al. [8], over the span of 
four decades, dedicated their research efforts to 
investigating 1-type SM and the 1-type Gauss map 
(Gm) within the realm of space forms. 

 
In the three-dimensional Euclidean space, 

denoted as 𝔼ଷ, Takahashi [22] conducted an 
exploration of minimal surfaces. Within this 
context, spheres and surfaces with minimal sections 
are the exclusive types of surfaces identified. 
Ferrandez et al. [14] determined that surfaces with 
specific characteristics are either minimal sections 

of a sphere or a right circular cylinder. Choi and 
Kim [10] focused their study on the minimal 
helicoid, which exhibits a pointwise 1-type Gm of 
the first kind. Garay [15] derived a category of finite 
type surfaces that are based on revolution. Dillen et 
al. [11] investigated a distinct set of surfaces 
characterized by certain properties, including 
minimal surfaces, spheres, and circular cylinders. 
 

Additionally, the extensive research has been 
carried out by Berger and Gostiaux [3], Do Carmo 
[12], Gray [17], and Kreyszig [18] on the right 
conoids in three-dimensional space. These studies 
have focused on various right conoids, such as the 
helicoid, Whitney umbrella, Wallis's conical edge, 
Plücker's conoid, and hyperbolic paraboloid. 

 
The objective of this study is to examine the 

characteristics of the conoid surfaces family within 
the three-dimensional Euclidean space 𝔼ଷ. Our 
specific goals are to calculate the matrices 
corresponding to the fundamental form, Gm, and 
shape operator (SO) of this family. By utilizing the 
Cayley−Hamilton theorem, we aim to ascertain the 
curvatures of these surfaces. Furthermore, we strive 
to establish the criteria for determining minimality 
within this framework. Additionally, our aim is to 
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explore the relationship between the Laplace− 
Beltrami operator and these types of surfaces. 

In Section 2, a detailed explanation of the 
fundamental principles and concepts underlying 
three-dimensional Euclidean geometry is provided.  

 
Section 3 is dedicated to the presentation of the 

curvature formulas applicable to surfaces in 𝔼ଷ.  
 
In Section 4, a comprehensive definition of 

conoid surfaces family is offered, emphasizing their 
distinctive properties and characteristics.  

 
In Section 5, the focus shifts to the discussion of 

the Laplace−Beltrami operator for a smooth 
function in 𝔼ଷ, and the application of the previously 
examined surfaces in its computation.  

 
Finally, we conclude the research in the last 

section. 

II. PRELIMINARIES 

 
In this paper, we use the following notations, 

formulas, Eqs., etc. 
 
Let 𝑀 be an oriented hypersurface in 𝔼௡ାଵ with 

its SO 𝑆, position vector x. Consider a local 
orthonormal frame field {𝑒ଵ, 𝑒ଶ, … , 𝑒௡} consisting of 
principal directions of 𝑀 coinciding with the 
principal curvature 𝑘௜ for 𝑖 = 1,2, … , 𝑛.  

 
Let the dual basis of this frame field be 

{𝜃ଵ, 𝜃ଶ, … , 𝜃௡}. Then, the first structural Eq. of 
Cartan is determined by 
 

𝑑𝜃௜ = ෍ 𝜃௝

௡

௜,௝ୀଵ

⋀ω௜௝ , 

 
where ω௜௝ indicates the connection forms 
coinciding with the chosen frame field. By the 
Codazzi Eq., we derive the Eqs.: 
 

𝑒௜൫𝑘௝൯ = ω௜௝൫𝑒௝൯൫𝑘௜ − 𝑘௝൯, 
 

ω௜௝(𝑒௟)൫𝑘௜ − 𝑘௝൯ = ω௜௟൫𝑒௝൯(𝑘௜ − 𝑘௟), 
 
for different 𝑖, 𝑗, 𝑙 = 1,2, … , 𝑛. 

 

We let 
 

𝑠௝ = 𝜎௝(𝑘ଵ, 𝑘ଶ, … , 𝑘௡), 
 
where 𝜎௝ denotes the 𝑗-th elementary symmetric 
function defined by 
 

𝜎௝(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) = ෍ 𝑎௜భ
𝑎௜మ

… 𝑎௜ೕ

ଵஸ௜భழ௜మழ⋯ழ௜ೕஸ௡

. 

 
We consider the notation 
 

𝑟௜
௝

= 𝜎௝(𝑘ଵ, 𝑘ଶ, … , 𝑘௜ିଵ, 𝑘௜ାଵ, … , 𝑘௡). 
 

We have 
 

𝑟௜
଴ = 1, 

 
and 
 

𝑠௡ାଵ = 𝑠௡ାଶ = ⋯ = 0. 
 
The function 𝑠௞ is referred to as the 𝑘-th mean 
curvature (MC) of the oriented hypersurface 𝑀. The 
MC is described by 
 

𝐻 =
1

𝑛
𝑠ଵ, 

 
and the Gauss−Kronecker curvature of 𝑀 is 
determined by 
 

𝐾 = 𝑠௡. 
 
If 𝑠௝ ≡ 0, the hypersurface 𝑀 is known as 𝑗-
minimal. 
 

In Euclidean (𝑛 + 1)-space, to obtain the 
curvature formulas 𝒦௜ (See [1] and [19] for details.), 
𝑖 = 0,1, … , 𝑛, we have the following characteristic 
polynomial Eq.: 

 
𝑃ௌ(𝜆) = 0, 

 
that is, 
 

෍(−1)௞

௡

௞ୀ଴

𝑠௞𝜆௡ି௞ = det(𝑆 − 𝜆)ℐ௡ = 0.    (2.1) 
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Here, 𝑖 = 0,1, … , 𝑛, ℐ௡ denotes the identity matrix. 
Hence, we reveal the curvature formulas 
 

ቀ
𝑛
𝑖

ቁ 𝒦௜ = 𝑠௜. 

 
Consider the immersion ℑ = ℑ(𝑢, 𝑣) from 𝑀ଶ ⊂
𝔼ଶ to 𝔼ଷ. 
 
Definition 1. An inner product of two vectors 
 

𝛔 = (σଵ, σଶ, σଷ) and 𝛠 = (ϱଵ, ϱଶ, ϱଷ) 
 
of 𝔼ଷ is determined by 
 

〈𝛔, 𝛠〉 = σଵϱଵ + σଶϱଶ + σଷϱଷ. 
 
Definition 2. A vector product of 
 

𝛔 = (σଵ, σଶ, σଷ) and 𝛠 = (ϱଵ, ϱଶ, ϱଷ) 
 

of 𝔼ଷ is defined by 
 

𝛔 × 𝛠 = det ൭

𝑒ଵ 𝑒ଶ 𝑒ଷ

σଵ σଶ σଷ

ϱଵ ϱଶ ϱଷ
൱. 

 
Definition 3. The matrix 
 

൫𝔤௜௝൯
ିଵ

൫𝔥௜௝൯ 
 

determines the SO matrix 𝑆 of surface ℑ in 
Euclidean 3-space 𝔼ଷ, where 
 

൫𝔤௜௝൯
ଶ×ଶ

 and ൫𝔥௜௝൯
ଶ×ଶ

 

 
describe the first and the second fundamental form 
matrices, respectively, and  
 

𝔤௜௝ = 〈ℑ௜, ℑ௝〉,   𝔥௜௝ = 〈ℑ௜௝, 𝓖〉,   𝑖, 𝑗 = 1,2, 
 

ℑ௨ =
డℑ

డ௨
 when 𝑖 = 1, ℑ௨௩ =

డమℑ

డ௨డ௩
 when 𝑖 = 1 and 

𝑗 = 2, etc., 𝑒௞ denotes the natural base elements of  

𝔼ଷ, and 
 

𝓖 =
ℑ௨ × ℑ௩

‖ℑ௨ × ℑ௩‖
                         (2.2) 

 
determines the Gm of the surface ℑ. 

III. CURVATURES IN THREE-SPACE 
 
In this section, we obtain the curvature formulas 

of any surface ℑ = ℑ(𝑢, 𝑣) in 𝔼ଷ. 
 

Theorem 1. A surface ℑ in 𝔼ଷ exhibits the following 
formulas, 
 

𝒦଴ = 1,   2𝒦ଵ = −
𝔭ଵ

𝔭ଶ
,   𝒦ଶ =

𝔭଴

𝔭ଶ
        (3.1) 

  
where 
 

𝔭ଶ𝜆ଶ + 𝔭ଵ𝜆 + 𝔭଴ = 0 
 

describes the characteristic polynomial Eq. of the 
shape operator matrix, 
 

𝔭ଶ = det൫𝔤௜௝൯, 𝔭଴ = det൫𝔥௜௝൯, 
 

൫𝔤௜௝൯
ଶ×ଶ

 represent the first fundamental form matrix  

and ൫𝔥௜௝൯
ଶ×ଶ

 represent the second fundamental 

form matrix. 
 
Proof. The matrix 
 

൫𝔤௜௝൯
ିଵ

൫𝔥௜௝൯ 
 

describes the shape operator matrix of surface ℑ in 
Euclidean 3-space 𝔼ଷ. We reveal the characteristic 
polynomial Eq. 
 

det(𝑆 − 𝜆ℐଶ) = 0. 
 
Thus, we obtain the curvatures 
 

                    ቀ
2
0

ቁ 𝒦଴ = 1, 

 

                    ቀ
2
1

ቁ 𝒦ଵ = 𝑘ଵ + 𝑘ଶ = −
𝔭ଵ

𝔭ଶ
, 

 

                    ቀ
2
2

ቁ 𝒦ଶ = 𝑘ଵ𝑘ଶ =
𝔭଴

𝔭ଶ
. 

 
Definition 4. A surface ℑ is called 𝑗-minimal if 
𝒦୨ = 0, where 𝑗 = 1,2. 
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Theorem 2. A surface ℑ = ℑ(𝑢, 𝑣) in 𝔼ଷ has the 
following relation 
 

𝒦଴𝕀𝕀𝕀 − 2𝒦ଵ𝕀𝕀 + 𝒦ଶ𝕀 = 𝒪ଶ, 
 

where 𝕀, 𝕀𝕀, 𝕀𝕀𝕀 determines the fundamental form 
matrices, 𝒪ଶ represents the zero matrix having 
order 2 of the surface. 
 
Proof. Regarding 𝑛 = 2 in (2.1), it runs. 
 

IV. CONOID SURFACES FAMILY IN 𝔼ଷ 
 
In this section, we define the conoid surfaces 

family (CSF), then find its differential geometric 
properties in Euclidean 3-space 𝔼ଷ. 
 

A ruled surface 
 
  𝔯(𝑢, 𝑣) = 𝑝(𝑣) + 𝑢 𝑞(𝑣) 

 
= ൫0,0, 𝛽(𝑣)൯ 

 
+𝑢(cos𝛼(𝑣), sin𝛼(𝑣), 0) 

 
is termed a right conoid in 𝔼ଷ if it can be generated 
by the translation of a straight line that intersects a 
fixed straight line, while ensuring that the lines 
maintain a perpendicular relationship throughout 
the generation process. By considering the xy-plane 
as the perpendicular plane and selecting the z-axis 
as the reference line, the parametric Eq. for the right 
conoid is given by 
 

𝔯(𝑢, 𝑣) = ቆ
𝑥
𝑦
𝑧

ቇ = ቌ

𝑢 cos𝛼(𝑣)

𝑢 sin𝛼(𝑣)

𝛽(𝑣)
ቍ, 

 
Helicoid, Whitney umbrella, Wallis's conical edge, 
Plücker's conoid, hyperbolic paraboloid are each 
examples of a right conoid surface. For details see 
Berger and Gostiaux [3], Do Carmo [12], Gray [17], 
Kreyszig [18]. 
 
Definition 5. A CSF is an immersion ℑ from 
𝑀ଶ ⊂ 𝔼ଶ to 𝔼ଷ with the reference line 𝑧, defined by 
 

ℑ(𝑢, 𝑣) = ቆ
𝑥
𝑦
𝑧

ቇ = ቌ

𝑓(𝑢) cos𝑔(𝑣)

𝑓(𝑢) sin𝑔(𝑣)

ℎ(𝑣)

ቍ    (4.1) 

 
where 
 

𝑓 = 𝑓(𝑢),   𝑔 = 𝑔(𝑣),   ℎ = ℎ(𝑣)  
 
denote the differentiable functions. 

 
Taking the first derivatives of CSF determined by 

Eq. (4.1) w.r.t. 𝑢, 𝑣, respectively, we obtain the first 
fundamental form matrix  
 

  ൫𝔤௜௝൯ = ൬
𝑓௨

ଶ 0

0 𝑓ଶ𝑔௩
ଶ + ℎ௩

ଶ൰            (4.2) 

 
 

and 
 

𝑓௨
ଶ = ൬

𝜕𝑓

𝜕𝑢
൰

ଶ

,   𝑔௩
ଶ = ൬

𝜕𝑔

𝜕𝑣
൰

ଶ

,   ℎ௩
ଶ = ൬

𝜕ℎ

𝜕𝑣
൰

ଶ

. 

 
Hence, 
 

det൫𝔤௜௝൯ = 𝑓௨
ଶ𝒲, 

 
where 
 

𝒲 = 𝑓ଶ𝑔௩
ଶ + ℎ௩

ଶ. 
 

Using (2.2) we obtain the following Gm of the CSF 
determined by Eq. (4.1): 
 

𝓖 =
1

𝒲ଵ/ଶ
ቌ

ℎ௩  sin𝑔(𝑣)

−ℎ௩ cos𝑔(𝑣)

𝑓𝑔௩

ቍ.          (4.3) 

 
By taking the second derivatives w.r.t. 𝑢, 𝑣, of CSF 
described by Eq. (4.1), and by using the Gm given 
by Eq. (4.3), we find the second fundamental form 
matrix 
 

൫𝔥௜௝൯ =
1

𝒲ଵ/ଶ
൬

0 −𝑓௨𝑔௩ℎ௩

−𝑓௨𝑔௩ℎ௩ 𝑓(𝑔௩ℎ௩௩ − ℎ௩𝑔௩௩)
൰   (4.4) 

 
and 
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𝑔௩௩ =
𝜕ଶ𝑔

𝜕𝑣ଶ
,   ℎ௩௩ =

𝜕ଶℎ

𝜕𝑣ଶ
, 

 

ect. . By using (4.2) and (4.4), we compute the 
following SO matrix 
 
 

𝑆 = ൫𝔰௜௝൯
ଶ×ଶ

 

 
of (4.1): 
 

𝑆 =

⎝

⎜
⎛

0 −
𝑔

𝑣
ℎ𝑣

𝑓
𝑢
𝒲ଵ/ଶ

−
𝑓

𝑢
𝑔

𝑣
ℎ𝑣

𝒲ଷ/ଶ

𝑓൫𝑔
𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯

𝒲ଷ/ଶ ⎠

⎟
⎞

. 

 
Finally, using (3.1), with (4.2), (4.4), respectively, 
we find the curvatures of the CSF defined by Eq. 
(4.1) as follows. 
 
Theorem 3. Let ℑ be a CSF determined by Eq. (4.1) 
in 𝔼ଷ. ℑ contains the following curvatures 
 
                𝒦଴ = 1, 
 

              2𝒦ଵ =
𝑓൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯

𝒲ଷ/ଶ
, 

 

                𝒦ଶ = −
𝑔௩

ଶℎ௩
ଶ

𝒲²
. 

 
Here, 𝒦ଵ represents the MC, 𝒦ଶ denotes the 
Gaussian curvature. 
 
Proof. By using the Cayley−Hamilton theorem, we 
reveal the following characteristic polynomial Eq. 
of the SO matrix of CSF defined by Eq. (4.1): 
 

𝒦଴𝛿ଶ − 2𝒦ଵ𝛿 + 𝒦ଶ = 0 
 

where 
 
                             𝒦଴ = 1, 
 
                           2𝒦ଵ = 𝔰ଶଶ, 
 
                             𝒦ଶ = −𝔰ଵଶ𝔰ଶଵ. 
 
The curvatures 𝒦௜ of ℑ are obtained by the above 
Eqs. 
 
Theorem 4. Let ℑ be a CSF described by Eq. (4.1) 
in 𝔼ଷ. ℑ has the following principal curvatures 
 

 
 
 

 
 

𝑘ଵ,ଶ =
𝑓൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ ± ቀ4𝑔௩

ଶℎ௩
ଶ(𝑓ଶ𝑔௩

ଶ + ℎ௩
ଶ) + 𝑓2൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯

2
ቁ

1/2

2(𝑓ଶ𝑔௩
ଶ + ℎ௩

ଶ)ଷ/ଶ
. 

 
 

 
Proof. By using Eq. 
 

det(𝑆 − 𝑘ℐଶ) = 0, 
 
we have  

 

𝑘ଵ,ଶ =
1

2
(𝔰ଶଶ ± (4𝔰ଵଶ𝔰ଶଵ + 𝔰ଶଶ

ଶ)1/2). 

 
Then, it is clear. 
 
Corollary 1. Let ℑ be a CSF defined by Eq. (4.1) in 
𝔼ଷ. ℑ is 1-minimal iff the following partial 

differential Eq. supplies 
 

𝑓൫𝑔
𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ = 0,  

 
where 𝒲 ≠ 0. 
 
Corollary 2. Let ℑ be a CSF determined by Eq. 
(4.1) in 𝔼ଷ. ℑ is 2-minimal iff the following partial 
differential Eq. occurs  

 
𝑔௩

ଶℎ௩
ଶ = 0,  
 

where 𝒲 ≠ 0. 
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V. LAPLACE−BELTRAMI OPERATOR OF THE CONOID 

SURFACES FAMILY IN 𝔼ଷ 

 
In this section, our focus is on the Laplace− 

Beltrami operator (LBo) of a smooth function in 𝔼ଷ. 
We will proceed to compute it utilizing the CSF, 
which is defined by Eq. (4.1). 

 
Definition 6. The LBo of a smooth function 
𝜙 = 𝜙(𝑥ଵ, 𝑥ଶ)|𝒟 (𝒟 ⊂ ℝଶ) of class 𝐶ଶ is the 
operator defined by 
 

∆𝜙 =
1

𝐠ଵ/ଶ
෍

𝜕

𝜕𝑥௜

ଶ

௜,௝ୀଵ

൬𝐠ଵ/ଶ𝔤௜௝
𝜕𝜙

𝜕𝑥௝
൰ , (5.1) 

 
where 
 

൫𝔤௜௝൯ = (𝔤௞௟)
ିଵ 

 
and 
 

𝐠 = det൫𝔤௜௝൯.  
 
Therefore, the LBo of the CSF given by Eq. (4.1) 
is determined by 
 

∆ℑ =
1

𝐠ଵ/ଶ
൤

𝜕

𝜕𝑢
൬𝐠ଵ/ଶ𝔤ଵଵ

𝜕ℑ

𝜕𝑢
൰ +

𝜕

𝜕𝑢
൬𝐠ଵ/ଶ𝔤ଵଶ

𝜕ℑ

𝜕𝑣
൰ 

(5.2) 

+
𝜕

𝜕𝑣
൬𝐠ଵ/ଶ𝔤ଶଵ

𝜕ℑ

𝜕𝑢
൰ +

𝜕

𝜕𝑣
൬𝐠ଵ/ଶ𝔤ଶଶ

𝜕ℑ

𝜕𝑣
൰൨,  

 
where 
 

𝔤ଵଵ =
1

𝑓௨
ଶ

,   𝔤ଵଶ = 0, 

(5.3) 

 𝔤ଶଵ = 0,   𝔤ଶଶ =
1

𝒲
. 

 
Taking the derivatives of the functions determined 
by Eqs. (5.3) in (5.2), w.r.t. 𝑢 and 𝑣, resp., we find 
the following. 
 
Theorem 5. The LBo of the CSF ℑ denoted by Eq. 
(4.1) is determined by  
 

∆ℑ = 2𝒦ଵ𝓖, 
 

where 𝒦ଵ describes the MC, 𝓖 represents the Gm of 
ℑ. 
 
Proof. With direct calculating by (5.2), we obtain 
 

∆ℑ = (∆ℑଵ, ∆ℑଶ, ∆ℑଷ), 
 
with components 
 
 

           ∆ℑଵ =
𝑓ℎ௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ sin𝑔(𝑣)

𝒲ଶ
, 

 

∆ℑଶ = −
𝑓ℎ௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ cos𝑔(𝑣)

𝒲ଶ
, 

 

           ∆ℑଷ =
𝑓2𝑔௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯

𝒲ଶ
, 

 
Definition 7. The surface ℑ is called harmonic if 
each componets of ∆ℑ is zero. 
 
Example 1. Substituting  
 

𝑓(𝑢) = 𝑢,   𝑔(𝑣) = 𝑣,   ℎ(𝑣) = 𝑣 
 

into a CSF defined by Eq. (4.1) in 𝔼ଷ, we have the 
Gm and the SO matrix, respectively, 
 

𝓖 =
1

(𝑢ଶ + 1)ଵ/ଶ
൭

 sin𝑣
− cos𝑣

𝑢
൱, 

 

𝑆 =

⎝

⎛
0

1

(𝑢ଶ + 1)ଵ/ଶ

−
1

(𝑢ଶ + 1)ଷ/ଶ
0

⎠

⎞. 

 
The principal curvatures are given by 
 

𝑘ଵ = −𝑘ଶ =
1

𝑢ଶ + 1
, 

 
and the curvatures are determined by 
 

𝒦଴ = 1,   𝒦ଵ = 0,   𝒦ଶ = −
1

(𝑢ଶ + 1)ଶ
. 

 
Then, we obtain 
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∆ℑ = (0,0,0). 
 

Finally, the surface is 1-minimal and harmonic. 
 
Theorem 6. The LBo of the CSF ℑ denoted by Eq. 

(4.1) is given by 
 

∆ℑ = 𝒜ℑ, 
where 
 

 
  

𝒜 =

⎝

⎜
⎜
⎜
⎛

ℎ௩൫𝑔
𝑣

ℎ𝑣𝑣 − ℎ𝑣𝑔
𝑣𝑣

൯ tan𝑔

𝒲ଶ
0 0

0 −
ℎ௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ cot𝑔

𝒲ଶ
0

0 0
𝑓2𝑔௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯

ℎ𝒲ଶ ⎠

⎟
⎟
⎟
⎞

. 

 
 
 

 
Proof. By using 
 

∆ℑ = 2𝒦ଵ𝓖, 
 
it is clear. 
 
Corollary 3. The LBo of the CSF ℑ denoted by Eq. 
(4.1) is given by  
 

∆ℑ = (0,0,0), 
 
where ℎ𝒲2 ≠ 0, 
 
∆ℑଵ = ℎ௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ tan𝑔(𝑣) = 0,  
 

∆ℑଶ = −ℎ௩(𝑔௩ℎ௩௩ − ℎ௩𝑔௩௩) cot𝑔(𝑣) = 0, 
 
∆ℑଷ = 𝑓2𝑔௩൫𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
൯ = 0. 

 

VI. CONCLUSIONS 
 
This paper focuses on investigating the 

geometric properties of the conoid surfaces family 
within the three-dimensional Euclidean space 𝔼ଷ.  

 
The primary objective is to analyze and 

comprehend the characteristics of these surfaces. 
The differential geometry of the conoid surfaces 
family plays a vital role in providing essential 
information about the local geometry, such as 
curvatures and tangent spaces. The 
Cayley−Hamilton theorem is employed to 

effectively determine the curvatures of these 
specific surfaces by expressing the characteristic 
polynomial in terms of the matrices themselves. 
Furthermore, the research establishes the conditions 
for minimality within the context of the conoid 
surfaces family, which serve as criteria to identify 
when a surface can be considered minimal in this 
particular family. Additionally, the exploration of 
the Laplace−Beltrami operator sheds light on its 
relationship with the conoid surfaces family.  

 
This research contributes to an enhanced 

understanding of the geometric properties, 
curvatures, minimality conditions, and the interplay 
with the Laplace−Beltrami operator within the 
conoid surfaces family in 𝔼ଷ. 
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