
 

All Sciences Proceedings 
http://as-proceeding.com/ 

5th International Conference on Applied 
Engineering and Natural Sciences 

 

July 10-12, 2023 : Konya, Turkey 

 
https://www.icaens.com/ © 2023 Published by All Sciences Proceedings 

 

147 
 

 
Conoid Surfaces Family in Minkowski 3-Space 

Erhan Güler 1,* and Ömer Kişi 2 

1Department of Mathematics, Faculty of Sciences, Bartın University, Turkey 
ORCID ID 0000-0003-3264-6239 

2Department of Mathematics, Faculty of Sciences, Bartın University, Turkey 
ORCID ID 0000-0001-6844-3092 

*eguler@bartin.edu.tr 
 
 
Abstract – This study focuses on exploring a distinct family of conoid surfaces in the three-dimensional 
Minkowski space 𝕃 . Our main objective is to delve into the differential geometry of this family, analyzing 
its curvatures in detail. Furthermore, we establish the essential conditions for achieving minimality within 
this specific framework. Additionally, we calculate the Laplace−Beltrami operator for this family of 
surfaces and illustrate our findings through an example. 
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I. INTRODUCTION 
 
The concept of submanifolds of finite order 

immersed in Euclidean m-space 𝔼  or pseudo-
Euclidean m-space 𝔼   was originally introduced by 
Chen [4, 5, 6, 7], utilizing a finite set of 
eigenfunctions derived from their Laplacian. Since 
then, this subject has been extensively examined 
and investigated. 
 

Takahashi demonstrated that a Euclidean 
submanifold is classified as 1-type if and only if it 
is either minimal or minimal within a hypersphere 
of 𝔼 . The minimal submanifolds were originally 
provided by Lawson [20]. Subsequently, Garay [16] 
examined Takahashi's theorem in the context of 𝔼 . 
Aminov [2] conducted extensive research on the 
geometry of submanifolds. Over the course of four 
decades, Chen et al. [8] dedicated their research 
efforts to investigating 1-type submanifolds and the 
1-type Gauss map (Gm) within the realm of space 
forms. 

 
In the three-dimensional Euclidean space, 

denoted as 𝔼 , Takahashi [22] conducted an 
investigation into minimal surfaces. Within this 
framework, two types of surfaces were identified: 

spheres and surfaces with minimal sections. 
Ferrandez et al. [14] established that surfaces 
possessing specific characteristics can be classified 
as either minimal sections of a sphere or a right 
circular cylinder. Choi and Kim [10] directed their 
research towards the study of the minimal helicoid, 
which exhibits a pointwise 1-type Gm of the first 
kind. Garay [15] introduced a category of surfaces 
of finite type that are based on revolution. Dillen et 
al. [11] explored a distinct set of surfaces 
characterized by various properties, including 
minimal surfaces, spheres, and circular cylinders. 

 
Furthermore, researchers such as Berger and 

Gostiaux [3], Do Carmo [12], Gray [17], and 
Kreyszig [18] have conducted in-depth 
investigations on right conoids in three-dimensional 
space. These studies have specifically examined 
different types of right conoids, including the 
helicoid, Whitney umbrella, Wallis's conical edge, 
Plücker's conoid, and hyperbolic paraboloid. 

 
The aim of this study is to investigate the 

properties of the conoid surfaces family in the three-
dimensional Minkowski space 𝕃 . Our specific 
objectives are to compute the matrices associated 
with the fundamental form, Gm, and the shape 
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operator (so) of this family. We will employ the 
Cayley−Hamilton theorem to determine the 
curvatures of these surfaces. Moreover, we seek to 
establish criteria for identifying minimality within 
this context. Additionally, we will explore the 
connection between the Laplace−Beltrami operator 
and these particular types of surfaces. 

 
Section 2 provides a comprehensive overview of 

the fundamental principles and concepts that form 
the basis of three dimensional Minkowski geometry. 

 
Section 3 is devoted to presenting the curvature 

formulas that are applicable to surfaces in 𝕃 . 
 
In Section 4, a thorough definition of the conoid 

surfaces family is presented, highlighting their 
unique properties and characteristics. 

 
Section 5 delves into the discussion of the 

Laplace−Beltrami operator for a smooth function in 
𝕃 , and explores the utilization of the previously 
examined surfaces in its computation. 

 
Finally, the research concludes in the last section. 
 

II. PRELIMINARIES 

 
In this paper, the following notations, formulas, 

equations (Eqs.), etc., are utilized. 
 
Consider a hypersurface 𝑀 in (𝑛 + 1)-

dimensional Minkowski space 𝕃 , characterized 
by its position vector 𝑥 and its so 𝑆. Let 
{𝑒 , 𝑒 , … , 𝑒 } denote a local orthonormal frame 
field comprising the principal directions of 𝑀, 
which align with the principal curvatures 𝑘 , where 
𝑖 = 1,2, … , 𝑛. 

 
Let the dual basis of this frame field be 

{𝜃 , 𝜃 , … , 𝜃 }. Then, the first structural Eq. of 
Cartan is determined by 
 

𝑑𝜃 = 𝜃

,

⋀ω , 

 
where ω  indicates the connection forms 
coinciding with the chosen frame field. By the 
Codazzi Eq., we derive the Eqs. 

𝑒 𝑘 = ω 𝑒 𝑘 − 𝑘 , 
 

ω (𝑒 ) 𝑘 − 𝑘 = ω 𝑒 (𝑘 − 𝑘 ), 
 
for different 𝑖, 𝑗, 𝑙 = 1,2, … , 𝑛. 

 
We let 
 

𝑠 = 𝜎 (𝑘 , 𝑘 , … , 𝑘 ), 
 
where 𝜎  denotes the 𝑗-th elementary symmetric 
function defined by 
 

𝜎 (𝑎 , 𝑎 , … , 𝑎 ) = 𝑎 𝑎 … 𝑎

⋯

. 

 
We consider the notation 
 

𝑟 = 𝜎 (𝑘 , 𝑘 , … , 𝑘 , 𝑘 , … , 𝑘 ). 
 

According to the given definition, we have  
 

𝑟 = 1, 
 
and 
 

𝑠 = 𝑠 = ⋯ = 0. 
 
The 𝑠  is referred to as the 𝑘-th mean curvature of 
the oriented hypersurface 𝑀. The mean curvature is 
described by 
 

𝐻 =
1

𝑛
𝑠 , 

 
and the Gauss−Kronecker curvature of 𝑀 is 
determined by 
 

𝐾 = 𝑠 . 
 
If 𝑠 ≡ 0, the hypersurface 𝑀 is known as 𝑗-
maximal if it is space-like,  𝑗-minimal if it is time-
like hypersurface. 
 

In Minkowski (𝑛 + 1)-space, to obtain the 
curvature formulas 𝒦  (See [1] and [19] for details.), 
𝑖 = 0,1, … , 𝑛, we have the following characteristic 
polynomial Eq.: 
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𝑃 (𝜆) = 0, 
 

i.e., 
 

(−1) 𝑠 𝜆 = det(𝑆 − 𝜆)ℐ = 0.    (2.1) 

 
Here, 𝑖 = 0,1, … , 𝑛, ℐ  denotes the identity matrix. 
Hence, we reveal the curvature formulas 
 

𝑛
𝑖

𝒦 = 𝑠 . 

 
Let 𝔵 = 𝔵(𝑢, 𝑣) indicates an immersion from 
𝑀 ⊂ 𝔼  to 𝕃 . 
 
Definition 1. An inner product of two vectors 
 

𝐯 = (𝓋 , 𝓋 , 𝓋 ) and 𝐰 = (𝓌 , 𝓌 , 𝓌 ) 
 
of 𝕃  is described by 
 

〈𝐯, 𝐰〉 = 𝓋 𝓌 + 𝓋 𝓌 − 𝓋 𝓌 . 
 
Definition 2. A vector product of  
 

𝐯 = (𝓋 , 𝓋 , 𝓋 ) and 𝐰 = (𝓌 , 𝓌 , 𝓌 ) 
 
of 𝕃  is determined by 
 

𝐯 × 𝐰 = det

𝑒 𝑒 −𝑒

𝓋 𝓋 𝓋
𝓌 𝓌 𝓌

. 

 
 

Definition 3. The matrix 
 

𝔤 𝔥  
 

determines the so matrix 𝑆 of surface  in 
Minkowski 3-space 𝕃 , where 
 

𝔤
×

 and 𝔥
×

 

 
indicate the first and the second fundamental form 
matrices, respectively, and  
 

𝔤 = 〈𝔵 , 𝔵 〉,   𝔥 = 〈𝔵 , 𝒢〉,   𝑖, 𝑗 = 1,2, 
 

𝔵 =
𝔵
 when 𝑖 = 1, 𝔵 =

𝔵
 when 𝑖 = 1 and 

𝑗 = 2, etc., 𝑒  denotes the natural base elements of 

𝔼 , and 
 

𝒢 =
𝔵 × 𝔵

‖𝔵 × 𝔵 ‖
                         (2.2) 

 
determines the Gm of the surface 𝔵. 
 

III. CURVATURES IN MINKOWSKI THREE-SPACE 
 
In this section, we obtain the curvature formulas 

of any surface 𝔵 = 𝔵(𝑢, 𝑣) in 𝕃 . 
 

Theorem 1. A surface 𝔵 in 𝕃  has the following 
curvature formulas, 
 

𝒦 = 1 
 
by definition, 
 

2𝒦 = −
𝔠

𝔠
,   𝒦 =

𝔠

𝔠
               (3.1) 

 
where 
 

𝔠 𝜆 + 𝔠 𝜆 + 𝔠 = 0 
 

describes the characteristic polynomial Eq. of the so 
matrix, 
 

𝔠 = det 𝔤 , 𝔠 = det 𝔥 , 
 

and 
 

𝔤
×

 and 𝔥
×

 

 
denote the first, and the second fundamental form 
matrices, respectively. 
 
Proof. The matrix 
 

𝔤 𝔥  
 

describes the so matrix of surface 𝔵 in Minkowski 3-
space 𝕃 . We reveal the characteristic polynomial 
Eq.: 
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det(𝑆 − 𝜆ℐ ) = 0. 
 
Thus, we obtain the curvatures 
 

                    
2
0

𝒦 = 1, 

 

                    
2
1

𝒦 = 𝑘 + 𝑘 = −
𝔠

𝔠
, 

 

                    
2
2

𝒦 = 𝑘 𝑘 =
𝔠

𝔠
. 

 
Definition 4. A surface 𝔵 is called 𝑗-maximal 
(resp. 𝑗-minimal) if 𝒦 = 0 and surface is space-like 
(resp., time-like), where 𝑗 = 1,2. 
 
Theorem 2. A surface 𝔵 = 𝔵(𝑢, 𝑣) in 𝕃  has the 
following relation 
 

𝒦 𝕀𝕀𝕀 − 2𝒦 𝕀𝕀 + 𝒦 𝕀 = 𝒪 , 
 

where 𝕀, 𝕀𝕀, 𝕀𝕀𝕀 determines the fundamental form 
matrices, 𝒪  represents the zero matrix having 
order 2 of the surface. 
 
Proof. Regarding 𝑛 = 2 in (2.1), it runs. 
 

IV. CONOID SURFACES FAMILY IN 𝕃  
 
In this section, we establish the definition of the 

conoid surfaces family (CSF) and subsequently 
explore its differential geometric properties within 
the Minkowski 3-space 𝕃 . 
 

A ruled surface described by the Eq. 
 
𝓇(𝑢, 𝑣) = 𝑚(𝑣) + 𝑢 𝑛(𝑣) 

 
= (𝛽(𝑣), 0,0) 

 
+𝑢 0, cosh𝛼(𝑣), sinh𝛼(𝑣)  

 
is termed a right conoid in 𝕃  if it can be generated 
by the translation of a straight line that intersects a 
fixed straight line, while ensuring that the lines 
maintain a perpendicular relationship throughout 
the generation process. By considering the 𝑦𝑧-plane 
as the perpendicular plane and selecting the 𝑥-axis 
as the reference line, the parametric Eq. for the right 

conoid is given by 
 

𝓇(𝑢, 𝑣) =
𝑥
𝑦
𝑧

=

𝛽(𝑣)

𝑢 cosh𝛼(𝑣)

𝑢 sinh𝛼(𝑣)
. 

 
The helicoid, Whitney umbrella, Wallis's conical 
edge, Plücker's conoid, and hyperbolic paraboloid 
are all instances of right conoid surfaces in 𝔼 . For 
further information, refer to the works of Berger and 
Gostiaux [3], Do Carmo [12], Gray [17], and 
Kreyszig [18]. 
 
Definition 5. A CSF is an immersion 𝔵 from 
𝑀 ⊂ 𝔼  to 𝕃  with the reference line 𝑥, defined by 
 

𝔵(𝑢, 𝑣) =
𝑥
𝑦
𝑧

=

ℎ(𝑣)

𝑓(𝑢) cosh𝑔(𝑣)

𝑓(𝑢) sinh𝑔(𝑣)
       (4.1) 

 
where 
 

𝑓 = 𝑓(𝑢),   𝑔 = 𝑔(𝑣),   ℎ = ℎ(𝑣)  
 
denote the differentiable functions. 

 
Taking the first derivatives of CSF 𝔵 determined 

by Eq. (4.1), w.r.t. 𝑢, 𝑣, respectively, we obtain the 
first fundamental form matrix  
 

𝔤 =
𝑓 0

0 −𝑓 𝑔 + ℎ
         (4.2) 

 
and 
 

𝑓 =
𝜕𝑓

𝜕𝑢
,   𝑔 =

𝜕𝑔

𝜕𝑣
,   ℎ =

𝜕ℎ

𝜕𝑣
. 

 
Hence, 
 

det 𝔤 = 𝜀𝑓 𝒬, 
 
where 𝜀 = −1, 
 

𝒬 = 𝑓 𝑔 − ℎ . 
 

Using (2.2) we obtain the following Gm of the CSF 
determined by Eq. (4.1): 
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𝒢 =
1

𝒬 /

𝑓𝑔

ℎ  sinh𝑔(𝑣)

ℎ  cosh𝑔(𝑣)
.           (4.3) 

 
Taking the second derivatives w.r.t. 𝑢, 𝑣, of CSF 
described by Eq. (4.1), and by using the Gm given 
by Eq. (4.3), we find the second fundamental form 
matrix 
 

𝔥 =
1

𝒬 /

0 −𝑓 𝑔 ℎ

−𝑓 𝑔 ℎ 𝑓(𝑔 ℎ − ℎ 𝑔 )
   (4.4) 

 
and 
 

𝑔 =
𝜕 𝑔

𝜕𝑣
,   ℎ =

𝜕 ℎ

𝜕𝑣
, 

 
ect. By using (4.2) and (4.4), we compute the 
following so matrix 
 

𝑆 = 𝔰
×

 

 
of (4.1): 
 

𝑆 =

⎝

⎜
⎛

0 −
𝑔

𝑣
ℎ𝑣

𝑓
𝑢
𝒬 /

𝑓
𝑢

𝑔
𝑣
ℎ𝑣

𝒬 /

𝑓 𝑔
𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣

𝒬 /
⎠

⎟
⎞

. 

 
Hence, using (3.1), with (4.2), (4.4), respectively, 
we find the curvatures of the CSF defined by Eq. 
(4.1) as follows. 
 
Theorem 3. Let 𝔵 be a CSF determined by Eq. (4.1) 

in 𝕃 . 𝔵 contains the following curvatures 
 

𝒦 = 1, 
 

2𝒦 =
𝑓 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣

𝒬 /
, 

 

𝒦 =
𝑔 ℎ

𝒬²
. 

 
Here, 𝒦  represents the mean curvature, 𝒦  
denotes the Gaussian curvature. 
 
Proof. By the Cayley−Hamilton theorem, we reveal 
the following characteristic polynomial Eq. of the so 
matrix of CSF defined by Eq. (4.1): 
 

𝒦 𝜇 − 2𝒦 𝜇 + 𝒦 = 0, 
 

where 
 
                             𝒦 = 1, 
 
                           2𝒦 = 𝔰 , 
 
                             𝒦 = −𝔰 𝔰 . 
 
The curvatures 𝒦  of 𝔵 are obtained by the above 
Eqs. 
 
Theorem 4. Let 𝔵 be a CSF described by Eq. (4.1) 
in 𝕃 . 𝔵 has the following principal curvatures 
 
 

 

𝑘 , =
𝑓 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
± −4𝑔 ℎ (𝑓 𝑔 − ℎ ) + 𝑓2 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣

2 1/2

2(𝑓 𝑔 − ℎ ) /
. 

 
 

 
Proof. By using Eq. 
 

det(𝑆 − 𝑘ℐ ) = 0, 
 
we have  

 

𝑘 , =
1

2
(𝔰 ± (4𝔰 𝔰 + 𝔰 )1/2). 

Then, it is obvious. 
 
Corollary 1. Let  be a CSF defined by Eq. (4.1) in 
𝕃 . 𝔵 is 1-minimal iff the following partial 
differential Eq. appears 
 

𝑓 𝑔
𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
= 0,  

 
where 𝒬 ≠ 0. 
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Corollary 2. Let  be a CSF determined by Eq. 
(4.1) in 𝕃 . 𝔵 is 2-minimal iff the following partial 
differential Eq. occurs  

 
𝑔 ℎ = 0,  

 
where 𝒬 ≠ 0. 
 

V. LAPLACE−BELTRAMI OPERATOR OF THE CONOID 

SURFACES FAMILY IN 𝕃  

 
In this section, our focus is on the Laplace− 

Beltrami operator (LBo) of a smooth function in 𝕃 . 
We will proceed to compute it utilizing the CSF, 
which is defined by Eq. (4.1). 
 
Definition 6. The LBo of a smooth function 𝜙 =
𝜙(𝑥 , 𝑥 )  (𝒟 ⊂ ℝ )  of class 𝐶  is the operator 
defined by 
 

∆𝜙 =
1

𝐠 /

𝜕

𝜕𝑥
𝐠 / 𝔤

𝜕𝜙

𝜕𝑥
,

,     (5.1) 

 
where 
 

𝔤 = (𝔤 )  
 
and 
 

𝐠 = det 𝔤 .  
 

Therefore, the LBo of the CSF given by Eq. (4.1) 
is determined by 

 

∆𝔵 =
1

𝐠 /

𝜕

𝜕𝑢
𝐠 / 𝔤

𝜕𝔵

𝜕𝑢
+

𝜕

𝜕𝑢
𝐠 / 𝔤

𝜕𝔵

𝜕𝑣
 

 (5.2) 

+
𝜕

𝜕𝑣
𝐠 / 𝔤

𝜕𝔵

𝜕𝑢
+

𝜕

𝜕𝑣
𝐠 / 𝔤

𝜕𝔵

𝜕𝑣
 

 
where 
 

𝔤 =
1

𝑓
,   𝔤 = 0, 

(5.3) 

 𝔤 = 0,   𝔤 =
1

𝒬
. 

 

By taking the derivatives of the functions 
determined by Eqs. (5.3) in (5.2), w.r.t. 𝑢 and 𝑣, 
resp., we determine the following. 
 
Theorem 5. The LBo of the CSF 𝔵 denoted by Eq. 
(4.1) in 𝕃  is given by  
 

∆𝔵 = 2𝒦 𝒢, 
 
where 𝒦  describes the mean curvature, 𝒢 
represents the Gm of 𝔵. 
 
Proof. Via direct calculating by (5.2), we obtain 
 

∆𝔵 = (∆𝔵 , ∆𝔵 , ∆𝔵 ), 
 
with components 
 

             ∆𝔵 =
𝑓2𝑔 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣

𝒬
, 

 

∆𝔵 =
𝑓ℎ 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
 sinh𝑔(𝑣)

𝒬
, 

 

∆𝔵 =
𝑓ℎ 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
 cosh𝑔(𝑣)

𝒬
. 

 
Definition 7. The surface 𝔵 in 𝕃  is called harmonic 
if each componets of ∆𝔵 is zero. 
 
Example 1. Substituting 
 

𝑓(𝑢) = 𝑢,   𝑔(𝑣) = 𝑣,   ℎ(𝑣) = 𝑣 
 

into a CSF 𝔵 defined by Eq. (4.1) in 𝕃 , the 
curvatures are determined by 
 

𝒦 = 1,   𝒦 = 0,   𝒦 =
1

(𝑢 − 1)
. 

 
Then, the surface is 1-maximal if 𝔵 is space-like, 1-
minimal if 𝔵 is time-like. Therefore, 
 

∆𝔵 = (0,0,0). 
 

Finally, 𝔵 is a harmonic surface. 
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Theorem 6. The LBo of the CSF 𝔵 denoted by Eq. 
(4.1) in 𝕃 is given by 

 
 

∆𝔵 = ℬ𝔵, 
 

where 
 

 

ℬ =

⎝

⎜
⎜
⎜
⎛

𝑓2𝑔 𝑔
𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣

ℎ𝒬
0 0

0
ℎ 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
 tanh𝑔(𝑣)

𝒬
0

0 0
ℎ 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
 coth𝑔(𝑣)

𝒬 ⎠

⎟
⎟
⎟
⎞

. 

 
 

Proof. Taking care of 
 

∆𝔵 = 2𝒦 𝒢, 
 
it is obvious. 
 
Corollary 3. The LBo of the CSF 𝔵 denoted by Eq. 
(4.1) in 𝕃  is given by 
 

∆𝔵 = (0,0,0), 
 
where 
 
∆𝔵 = 𝑓2𝑔 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
= 0,   ℎ𝒬 ≠ 0, 

 
∆𝔵 = ℎ 𝑔

𝑣
ℎ𝑣𝑣 − ℎ𝑣𝑔

𝑣𝑣
 tanh𝑔(𝑣) = 0,  𝒬 ≠ 0, 
 

∆𝔵 = ℎ (𝑔 ℎ − ℎ 𝑔 ) coth𝑔(𝑣) = 0, 𝒬 ≠ 0. 
 

 
Proof. If ℬ = 0 in Theorem 6, then it is clear. 
 

VI. CONCLUSIONS 
 
This paper aims to explore the geometric 

characteristics of the conoid surfaces family in the 
three-dimensional Minkowski space 𝕃 . 

 
The differential geometry of the conoid surfaces 

family plays a crucial role in providing important 
insights into the local geometry, including 
curvatures and tangent spaces. The utilization of the 
Cayley−Hamilton theorem effectively determines 
the curvatures of these specific surfaces by 
expressing the characteristic polynomial in terms of 
the matrices themselves. Moreover, this study 

establishes the conditions for minimality within the 
conoid surfaces family, serving as criteria to 
determine when a surface can be considered 
minimal in this particular family. Furthermore, 
investigating the Laplace−Beltrami operator sheds 
light on its relationship with the conoid surfaces 
family. 

 
This research significantly enhances our 

understanding of the geometric properties, 
curvatures, conditions for minimality, and the 
relationship with the Laplace−Beltrami operator in 
the context of the conoid surfaces family in 𝕃 . 
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