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Abstract – In this article, we delve into the notions of ℐ2-statistical convergence and ℐ2-lacunary statistical 

convergence for sequences in general metric spaces, specifically g metric spaces. We thoroughly explore 
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I. INTRODUCTION 

The formal introduction of statistical convergence 

was pioneered by Fast [1], who built upon the 

concept of natural density. The definition of the 

natural density of a set 𝐾 ⊆ ℕ is as follows: 

𝛿(𝐾) = lim
𝑛→∞

 
1

𝑛
|{𝑖 ∈ 𝐾: 𝑖 ≤ 𝑛}|, 

where the vertical bars denote the cardinality of the 

set. A sequence of real numbers 𝑢 = (𝑢𝑖) is 

considered to be statistically convergent to 𝑢0 ∈ ℝ 

if, for any given 𝜎 > 0, the following condition is 

satisfied: 

𝛿({𝑖 ∈ ℕ: |𝑢𝑖 − 𝑢0| ≥ 𝜎}) = 0. 

The concept introduced by Mursaleen and Edely 

[2] was further expanded to encompass double 

sequences. In the existing literature, researchers 

such as Connor [3], Tripathy [4], and many others 

have explored statistical convergence. 

In a separate development, Fridy and Orhan [5] 

introduced an extension of statistical convergence 

known as lacunary statistical convergence. The 

definition of lacunary statistical convergence is 

outlined below: 

A lacunary sequence is an increasing integer 

sequence 𝜃 = (𝑘𝑛)𝑛∈ℕ∪{0} satisfying 𝑘0 = 0 and 

ℎ𝑛 = 𝑘𝑛 − 𝑘𝑛−1 → ∞, as 𝑛 → ∞. 

A sequence of real numbers 𝑢 = (𝑢𝑖) is defined to 

be lacunary statistically convergent to 𝑢0 ∈ ℝ if, for 

any given 𝜎 > 0, the following condition is met: 

lim
𝑛→∞

 
1

ℎ𝑛
|{𝑖 ∈ 𝐼𝑛: |𝑢𝑖 − 𝑢0| ≥ 𝜎}| = 0 

where 𝐼𝑛 = (𝑘𝑛−1, 𝑘𝑛]. 

In an effort to generalize the concept of statistical 

convergence, Kostyrko et al. [6] put forward the 

notions of ℐ and ℐ∗-convergence. These concepts 

involve the use of an ideal, denoted as ℐ, which 

represents a family of subsets of a non-empty set 𝑋. 

The ideal ℐ satisfies closure properties under finite 

unions and subsets of its elements. A non-trivial 

ideal ℐ is characterized by ℐ ≠ ∅ and 𝑋 ∉ ℐ. 
Furthermore, an admissible ideal in 𝑋 is a non-

trivial ideal ℐ ⊂ 𝑃(𝑋) that includes the singleton 

sets ℐ ⊃ {{𝑤}:𝑤 ∈ 𝑋}. 
It can be easily verified that 

ℐ𝑓 = {𝐴 ⊆ ℕ: |𝐴| < ∞},          ℐ𝛿 = {𝐴 ⊆ ℕ: 𝛿(𝐴) =

0}, ℐ𝑐 = {𝐴 ⊆ ℕ:∑𝑎∈𝐴  𝑎
−1 < ∞}, and ℐ = {𝐴 ⊆

ℕ: |{𝑝 ∈ ℕ: 𝐴 ∩ 𝐷𝑝 ≠ ∅}| < ∞}, where ℕ =
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⋃𝑝=1
∞  𝐷𝑝 is a disjoint decomposition of ℕ forms an 

admissible ideal in ℕ. 

In set theory, a filter ℱ on a non-empty set 𝑋 is a 

family of subsets of 𝑋 that satisfies closure under 

finite intersections and supersets. If ℐ is an ideal, the 

corresponding filter ℱ(ℐ), defined as {𝑋 ∖ 𝐴: 𝐴 ∈
ℐ}, is known as the dual filter or filter associated 

with the ideal ℐ. 

Consider a non-trivial ideal ℐ ⊂ 𝑃(ℕ) defined on 

the set of natural numbers, N. In the context of this 

ideal, a sequence of real numbers 𝑢 = (𝑢𝑖) is 

considered ℐ-convergent to 𝑢0 ∈ ℝ provided that for 

each 𝜎 > 0, the following condition holds: 

{𝑖 ∈ ℕ: |𝑢𝑖 − 𝑢0| ≥ 𝜎} ∈ ℐ. 

This type of convergence is symbolically denoted as 

ℐ − lim𝑖→∞  𝑢𝑖 = 𝑢0. 
Notably, when considering specific ideals, namely 

or ℐ = ℐ𝑓 and ℐ = ℐ𝛿 , the above definition simplifies 

to the familiar definitions of usual convergence and 

statistical convergence, respectively. 

In the field of mathematical analysis, the concept 

of distance functions, or metrics, serves as a 

generalization of physical distance. Various 

approaches have been developed to extend the 

notion of distance functions [7]. Due to the 

challenges posed by massive and intricate data sets, 

a generalized description of distance functions has 

become necessary. Gähler [8] introduced the idea of 

a 2-metric as a generalization of the conventional 

metric. However, subsequent research has shown 

that there is no direct relationship between these two 

types of functions. For instance, Ha et al. [9] 

demonstrated that a 2-metric does not necessarily 

exhibit continuity with respect to its variables. 

Building upon these findings, Bapure Dhage [10] 

conducted an in-depth investigation into a new class 

of generalized metric spaces known as D-metric 

spaces, aiming to establish topological properties 

within these spaces. Dhage's work laid the 

foundation for further studies in this field. However, 

subsequent research, as mentioned in [11,12], has 

indicated that many claims regarding the basic 

topological features of 𝐷-metric spaces are 

incorrect, thereby invalidating numerous results 

obtained within these spaces. 

Among these various generalizations, an 

alternative extension of the traditional metric is the 

concept of 𝐺-metric space developed by Mustafa 

and Sims [13]. Distances between three points form 

the metrics within this space. Notably, obtaining α 

within the interior of a triangle signifies that the 

perimeter of a triangle with vertices 𝑥, 𝑦, and 𝑧 in 

ℝ2, denoted as 𝐺(𝑥; 𝑦; 𝑧), is best represented by the 

property (𝐺5). The 𝐺-metric function generalizes 

the notion of distance between three points. Choi et 

al. [14] extended the study to g-metrics of degree n, 

which involves the distance between 𝑛 + 1 points, 

aiming to achieve greater generality. In their work, 

they investigated the extension of sequence 

convergence to ideal forms based on the topological 

features of 𝑔-metric spaces. Abazari [15] introduced 

statistically convergent sequences with respect to 

the metrics on g-metric spaces and explored 

fundamental properties of this statistical form of 

convergence. 

This research unveils a novel form of convergence 

for sequences within g-metric spaces. The study is 

organized as follows: Section 1 offers an extensive 

literature review, while Section 2 presents the 

principal findings. To establish the fundamental 

properties of these concepts, our analysis focuses on 

the notions of ℐ2−statistical convergence and 

ℐ2−lacunary statistical convergence for sequences in 

𝑔-metric spaces. 

 

II. DEFINITIONS AND BASIC PROPERTIES 

 

The purpose of this section is to bring together the 

essential data and methods needed to achieve our 

main objectives. We will start by introducing 

several crucial terms. 

 

Definition 2.1. Let 𝑌 be a nonempty set. A function 

𝐺: 𝑌 × 𝑌 × 𝑌 → ℝ+ is called a generalized metric, 

or 𝐺-metric, on 𝑌 if it satisfies the following five 

properties: 

G1.𝐺(𝑢, 𝑣, 𝑤) = 0 iff 𝑢 = 𝑣 = 𝑤, 
G2. 0 < 𝐺(𝑢, 𝑢, 𝑣); for each 𝑢, 𝑣 ∈ 𝐺, with 𝑢 ≠ 𝑣, 

G3. 𝐺(𝑢, 𝑢, 𝑣) ≤ 𝐺(𝑢, 𝑣, 𝑤), for each 𝑢, 𝑣, 𝑤 ∈ 𝑌 

with 𝑤 ≠ 𝑣, 
G4. 𝐺(𝑢, 𝑣, 𝑤) = 𝐺(𝑢,𝑤, 𝑣) = 𝐺(𝑣,𝑤, 𝑢) = ⋯ 

(symmetry in all three variables), 

G5.𝐺(𝑢, 𝑣, 𝑤) ≤ 𝐺(𝑢, 𝛼, 𝛼) + 𝐺(𝛼, 𝑣, 𝑤), for each 

𝑢, 𝑣, 𝑤, 𝛼 ∈ 𝑌 (rectangle inequality). 

The pair (𝑌, 𝐺) is referred to as a 𝐺-metric space. 

In a more scientifically precise manner, Choi et al. 

[14] proposed the introduction of 𝑔-metric functions 
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distinguished by their degree, represented as 𝑛. 

These functions essentially define a distance 

measure between 𝑛 + 1 points in a given space. To 

precisely define this concept, we present the 

subsequent definition, which describes the notion of 

a 𝑔-metric space with a specific degree, denoted as 

𝑝. 

 

Definition 2.2. Suppose 𝑌 be a nonempty set. A 

function 𝑔: 𝑌𝑝+1 → ℝ+that supplies the following 

features is named 𝑔-metric with order 𝑝 on 𝑌.  

(𝑌, 𝑔) is named as a 𝑔-metric space. 

(i) 𝑔(𝑤0, 𝑤1, … , 𝑤𝑝) = 0 iff 𝑤0 = 𝑤1 = ⋯ = 𝑤𝑝, 

(ii) 𝑔(𝑤0, 𝑤1, … , 𝑤𝑝) = 𝑔(𝑤𝜌(0), 𝑤𝜌(1), … , 𝑤𝜌(𝑝)), for permutation 𝜌 on {0,1, … , 𝑝}, 

(iii) 𝑔(𝑤0, 𝑤1, … , 𝑤𝑝) ≤ 𝑔(𝑞0, 𝑞1, … , 𝑞𝑝), for each (𝑤0, 𝑤1, … , 𝑤𝑝), (𝑞0, 𝑞1, … , 𝑞𝑝) ∈ 𝑌
𝑝+1 with 

{𝑤𝑖: 𝑖 = 0,1, … , 𝑝} ⊆ {𝑞𝑖: 𝑖 = 0,1, … , 𝑝} 

(iv) For all 𝑤0, 𝑤1, … , 𝑤𝑠, 𝑞0, 𝑞1, … , 𝑞𝑡, 𝑣 ∈ 𝑌 with 𝑠 + 𝑡 + 1 = 𝑝 

𝑔(𝑤0, 𝑤1, … , 𝑤𝑠, 𝑞0, 𝑞1, … , 𝑞𝑡) ≤ 𝑔(𝑤0, 𝑤1, … , 𝑤𝑠, 𝑣, 𝑣, … , 𝑣) + 𝑔(𝑞0, 𝑞1, … , 𝑞𝑡, 𝑣, 𝑣, … , 𝑣). 

It is obvious that when 𝑝 =  1 we have ordinary 

metric space and when 𝑝 =  2 we have 𝐺-metric 

space. 

Theorem 2.1. Let 𝑌 be a nonempty set and g be a 

metric on 𝑌 with order 𝑝. In this context, the 

following are provided: 

(i) 

𝑔(𝑤,… ,𝑤⏟    
s times 

, 𝑞, … , 𝑞) ≤ 𝑔(𝑤,… ,𝑤⏟    
s times 

, 𝑢, … , 𝑢) + 𝑔(𝑢,… , 𝑢⏟  
s times 

, 𝑞, … , 𝑞) 

(ii) 

𝑔(𝑤, 𝑞, … , 𝑞) ≤ 𝑔(𝑤, 𝑢,… , 𝑢) + 𝑔(𝑢, 𝑞, … , 𝑞), 
(iii) 

𝑔(𝑤,… ,𝑤⏟    
s times

, 𝑢, … , 𝑢) ≤ 𝑠𝑔(𝑤, 𝑢, … , 𝑢) 

and 

𝑔 (𝑤,… ,𝑤⏟    
𝑠 times 

, 𝑢, … , 𝑢) ≤ (𝑝 + 1 − 𝑠)𝑔(𝑢,𝑤,… ,𝑤), 

(iv) 

𝑔(𝑤0, 𝑤1, … , 𝑤𝑝) ≤ ∑𝑖=0
𝑛  𝑔(𝑤𝑖, 𝑢, … , 𝑢), 

(v) 

|𝑔(𝑞, 𝑤1, 𝑤2, … . , 𝑤𝑝) − 𝑔(𝑢, 𝑤1, 𝑤2, … . , 𝑤𝑝)| ≤ max{𝑔(𝑞, 𝑢, … , 𝑢), 𝑔(𝑢, 𝑞, … , 𝑞)}, 

(vı) 

 |𝑔(𝑤,… ,𝑤⏟    
s times

, 𝑢, … , 𝑢) − 𝑔(𝑤,… ,𝑤⏟    
𝑠′ times

, 𝑢, … , 𝑢)| ≤ |𝑠 − 𝑠′|𝑔(𝑤, 𝑢, … , 𝑢), 

(vıı) 

𝑔(𝑤, 𝑢, … , 𝑢) ≤ (1 + (𝑠 − 1))(𝑝 + 1 − 𝑠)𝑔(𝑤,… ,𝑤⏟    
s times

, 𝑢, … , 𝑢). 

Definition 2.3. Suppose (𝑌, 𝑔) be a 𝑔-metric space, 

𝑤 ∈ 𝑌 be a point and (𝑤𝑖) ∈ 𝑌. 

(i) (𝑤𝑖) is 𝑔-convergent to 𝑤, provided for all 𝜎 >
0, there exists 𝑁 ∈ ℕ so that for 𝑖1, 𝑖2, … , 𝑖𝑝 ≥ 𝑁 

𝑔(𝑤,𝑤1, 𝑤2, … , 𝑤𝑝) < 𝜎 

(ii) (𝑤𝑖) is called to be 𝑔-Cauchy, provided for all 

𝜎 > 0, there exists 𝑁 ∈ ℕ so that 

𝑖0, 𝑖1, 𝑖2, … , 𝑖𝑝 ≥ 𝑁 ⇒ 𝑔(𝑤𝑖0 , 𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖𝑝) < 𝜎 

Definition 2.4. Take 𝑝 ∈ ℕ,𝐾 ∈ ℕ𝑝 and 
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𝐾(𝑚) = {𝑖1, 𝑖2, … , 𝑖𝑝 ≤ 𝑚, (𝑖1, 𝑖2, … , 𝑖𝑝) ∈ ℕ
𝑝} 

then 

𝐷𝑝(𝐾):= lim
𝑚→∞

 
𝑝!

𝑚𝑝
|𝐾(𝑚)|, 

is called 𝑝-dimensional natural (or asymptotic) 

density of the set 𝐾. 

Definition 2.5. Assume (𝑤𝑖) be a sequence in a 𝑔-

metric space (𝑌, 𝑔). 

(i) (𝑤𝑖) is statistically convergent to 𝑤, provided 

for all 𝜎 > 0, 

lim
𝑚→∞

 
𝑝!

𝑚𝑝
|{

(𝑖1, 𝑖2, … , 𝑖𝑝) ∈ ℕ
𝑝

𝑖1, 𝑖2, … , 𝑖𝑝 ≤ 𝑚,𝑔 (𝑤,𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖𝑝) ≥ 𝜎
}| = 0,

and is indicated by 𝑔𝑆 − lim𝑚→∞  𝑤𝑖 = 𝑤. (𝑖𝑖) (𝑤𝑖) is called to be statistical 𝑔-Cauchy, 

provided for all 𝜎 > 0, there exists 𝑖𝜎 ∈ ℕ such that 

lim
𝑚→∞

 
𝑝!

𝑚𝑝
|{

(𝑖1, 𝑖2, … , 𝑖𝑝) ∈ ℕ
𝑝

𝑖1, 𝑖2, … , 𝑖𝑝 ≤ 𝑚,𝑔 (𝑤𝑖𝜎 , 𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖𝑝) ≥ 𝜎
}| = 0.

A nontrivial ideal ℐ2 of ℕ × ℕ is called strongly 

admissible if {𝑖} × ℕ and ℕ × {𝑖} belong to ℐ2 for 

each 𝑖 ∈ ℕ. 

It is obvious that a strongly admissible ideal is 

admissible also. 

Definition 2.6. Assume (𝑌, 𝜌) be a metric space A 

sequence 𝑢 = (𝑢𝑗𝑘) in 𝑌 is called to be ℐ2-

convergent to 𝑢0, provided that for any 𝜎 > 0 we 

have 

𝐴(𝜀) = {(𝑚, 𝑛) ∈ ℕ × ℕ: 𝜌(𝑢𝑗𝑘 , 𝑢0) ≥ 𝜀} ∈ ℐ2, 

and indicated as ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0. 

Definition 2.7. A sequence 𝑢 = (𝑢𝑗𝑘) is ℐ2-

statistically convergent to 𝑢0, provided that for any 

𝜎, 𝛿 > 0 

{(𝑛,𝑚) ∈ ℕ2:
1

𝑛𝑚
|{(𝑗, 𝑘), 𝑗 ≤ 𝑛, 𝑘 ≤ 𝑚: 𝜌(𝑢𝑗𝑘 , 𝑢0)

≥ 𝜎}| ≥ 𝛿} ∈ ℐ2, 

and illustrated as ℐ2 − 𝑠𝑡lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0. 

A double lacunary sequence, denoted as 𝜃2 =
𝜃𝑟,𝑠 = {(𝑘𝑟 , 𝑙𝑠)} is defined by the existence of two 

increasing sequences of integers (𝑗𝑟) and (𝑘𝑠), 
satisfying the subsequent conditions: 

𝑗0 = 0, ℎ𝑟 = 𝑗𝑟 − 𝑗𝑟−1 → ∞ and 𝑘0 = 0, ℎ𝑠
= 𝑘𝑠 − 𝑘𝑠−1 → ∞,  𝑟, 𝑠 → ∞ 

We will utilize the following notations 𝑘𝑟𝑠: =
𝑗𝑟𝑘𝑠, ℎ𝑟𝑠: = ℎ𝑟ℎ𝑠 and 𝜃𝑟𝑠 is given by 

𝐼𝑟𝑠: = {(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤ 𝑗𝑟 and 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠},

𝑞𝑟: =
𝑗𝑟
𝑗𝑟−1

, 𝑞𝑠: =
𝑘𝑠
𝑘𝑠−1

 and 𝑞𝑟𝑠: = 𝑞𝑟𝑞𝑠.
 

Throughout the paper, by 𝜃2 = 𝜃𝑟,𝑠 = {(𝑗𝑟 , 𝑘𝑠)} 
we will denote a double lacunary sequence of 

positive real numbers, respectively, unless 

otherwise stated.  

 

III. MAIN RESULTS 

 

Before we state the main results of this work, let us 

give the definition of a new statistical method. 

Definition 3.1. A sequence (𝑢𝑗𝑘) is defined as 𝑔-

lacunary statistically convergent to 𝑢 if, for all 𝜎 >
0, 

lim
𝑟→∞

 
𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤

≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

= 0, 

and is indicated by 𝑔𝑆𝜃2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 
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 Definition 3.2. The sequence (𝑢𝑗𝑘) is considered 

to be 𝑔 − ℐ2-convergent to 𝑢 provided that for all 

𝜎 > 0, 

{((𝑗1,⋯ , 𝑗𝑝), (𝑘1, ⋯ , 𝑘𝑝)) ∈ ℕ
𝑝 × ℕ𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∈ ℐ2,

and is demonstrated by 𝑔ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. Definition 3.3. The sequence (𝑢𝑗𝑘) is called to be 

𝑔-ℐ2-statistically convergent to 𝑢 if, for all 𝜎, 𝛿 > 0, 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∣ {((𝑗1,⋯ , 𝑗𝑝), (𝑘1, ⋯ , 𝑘𝑝)) ∈ ℕ

𝑝 × ℕ𝑝

𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣≥ 𝛿} ∈ ℐ2,

and is indicated by 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. Definition 3.4. The sequence (𝑢𝑗𝑘) is named to be 

𝑔 - ℐ2-lacunary statistically convergent to 𝑢 

provided that for all 𝜎, 𝛿 > 0, 

{(𝑟, 𝑠) ∈ ℕ2:
𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| ≥ 𝛿} ∈ ℐ2, 

and is indicated by 𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. Definition 3.5. The sequence (𝑢𝑗𝑘) is called to be 

𝑔-strongly ℐ2-lacunary convergent to 𝑢 provided 

that for all 𝜎 > 0, 

{(𝑟, 𝑠) ∈ ℕ2:
𝑝!

(ℎ𝑟𝑠)𝑝
∑  

(𝑗𝑤,𝑘𝑤)∈𝐼𝑟𝑠,1≤𝑤≤𝑝

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∈ ℐ2

and is indicated by, 𝑔𝑁𝜃2[ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. Definition 3.6. The sequence (𝑢𝑗𝑘) is named to be 

𝑔-strongly ℐ2-Cesàro summable to 𝑢 provided that 

for all 𝜎 > 0, 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∈ ℐ2 

and is indicated by, 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 =

𝑢. 

The subsequent theorem establishes the connection 

between 𝑔[𝐶, 1,1][ℐ2] and 𝑔𝑆ℐ2.  

Theorem 3.7. Assume (𝑌, 𝑔) be a 𝑔-metric space, 

(𝑢𝑗𝑘) ∈ 𝑌. 

(i) 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 implies 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

(ii) If 𝑔 is a bounded function, 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 implies [𝐶, 1,1][ℐ2] −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

Proof. (i) Take 𝜎 > 0 and  𝑔[𝐶, 1,1][ℐ2] −
lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. At that time, we have 
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𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

 ≥
𝑝!

(𝑛𝑚)𝑝
∑ ∑ 𝑔(𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

𝑚

𝑘1,⋯,𝑘𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)≥𝜎

𝑛

𝑗1,⋯,𝑗𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)≥𝜎

 

 ≥ 𝜎
𝑝!

(𝑛𝑚)𝑝
|{𝑗1,⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

 

and so 

𝑝!

𝜎(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

 ≥
𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| .

 

Then, for any 𝛿 > 0 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| ≥ 𝛿}

 ⊆ {(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎𝛿} .

 

As 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢, it can be 

inferred that the set on the right-hand side belongs 

to ℐ2, leading to the conclusion that 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

(ii) Now, presume that 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 

and 𝜎 > 0 given. From the boundedness of 𝑔, there 

exists 𝑄 > 0 such that 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≤ 𝑄 

for all 𝑗1, 𝑗2, ⋯ , 𝑗𝑝 and 𝑘1, 𝑘2, ⋯ , 𝑘𝑝. Then 

𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

=
𝑝!

(𝑛𝑚)𝑝
∑ ∑ 𝑔(𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

𝑚

𝑘1,⋯,𝑘𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)≥𝜎

𝑛

𝑗1,⋯,𝑗𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)≥𝜎

+ 
𝑝!

(𝑛𝑚)𝑝
∑ ∑ 𝑔(𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

𝑚

𝑘1,⋯,𝑘𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)<𝜎

𝑛

𝑗1,⋯,𝑗𝑝=1

𝑔(𝑢,𝑢𝑗1𝑘1 ,⋯,𝑢𝑗𝑝𝑘𝑝)<𝜎

≤ 𝑄
𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥

𝜎

2
}| +

𝜎

2
.

We determine the sets: 
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𝐻1: = {(𝑛,𝑚) ∈ ℕ
2:

𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}, 

𝐻2: = {(𝑛,𝑚) ∈ ℕ
2:

𝑝!

(𝑛𝑚)𝑝
∣ {𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,

𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥
𝜎

2
} ∣≥

𝜎

2𝑄
} .

 

If (𝑚, 𝑛) ∉ 𝐻2, then 

𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚, 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥

𝜎

2
}| <

𝜎

2𝑄

 

In addition, we obtain 

Thus (𝑚, 𝑛) ∉ 𝐻1. So, we obtain 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∑  

𝑛

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑚

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}

 ⊆ {(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∣ {𝑗1,⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,

𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥
𝜎

2
} ∣≥

𝜎

2𝑄
} ∈ ℐ2.

 

As a result, we get 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 =

𝑢. 

A similar theorem can be established for 𝑔𝑆𝜃2(ℐ2) 

and 𝑔𝑁𝜃2[ℐ2], providing a corresponding 

relationship between the two. 

Theorem 3.1. Assume (𝑌, 𝑔) be a 𝑔-metric space 

and take (𝑢𝑗𝑘) ∈ (𝑌, 𝑔). 

(i) 𝑔𝑁𝜃2[ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 implies 

𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

(ii) If 𝑔 is a bounded function, 

𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 

implies 𝑔𝑁𝜃2[ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

Theorem 3.2. Consider 𝜃 = {(𝑗𝑟, 𝑘𝑠)} as a lacunary 

sequence. If liminf𝑟    𝑞𝑟 > 1 and lim inf𝑠  𝑞𝑠 > 1, then 

𝑔𝑆ℐ2 − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘 = 𝑢 ⇒ 𝑔𝑆𝜃2(ℐ2) − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘 = 𝑢. 

Proof. Let's assume initially that lim inf𝑟  𝑞𝑟 > 1 and 

lim inf𝑠  𝑞𝑠 > 1. In this case, there exist positive 

constants 𝛾, 𝜏 > 0 such that 𝑞𝑟 ≥ 1 + 𝛾 and 𝑞𝑠 ≥
1 + 𝜏 for sufficiently large values of 𝑟 and 𝑠. This 

implies that 

ℎ𝑟𝑠
𝑗𝑟𝑘𝑠

≥
𝛾𝜏

(1 + 𝛾)(1 + 𝜏)
. 

Assume that 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. Then, for all 

𝜎 > 0 and for sufficiently large 𝑟, 𝑠 we get 
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𝑝!

(𝑗𝑟𝑘𝑠)𝑝
∣ {𝑗1 ⋯ , 𝑗𝑝 ≤ 𝑗𝑟 , 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑘𝑠: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣

 ≥
𝑝!

(𝑗𝑟𝑘𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

 = (
ℎ𝑟𝑠
𝑗𝑟𝑘𝑠

)
𝑝 𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

 ≥ (
𝛾𝜏

(1 + 𝛾)(1 + 𝜏)
)
𝑝 𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| .

 

Then, for any 𝛿 > 0, we get 

{(𝑟, 𝑠) ∈ ℕ2:
𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| ≥ 𝛿}

 ⊆ {(𝑟, 𝑠) ∈ ℕ2:
𝑝!

(𝑗𝑟𝑘𝑠)𝑝
∣ {𝑗1,⋯ , 𝑗𝑝 ≤ 𝑗𝑟 , 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑘𝑠:

𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣≥ 𝛿 (
𝛾𝜏

(1 + 𝛾)(1 + 𝜏)
)
𝑝

} ∈ ℐ2.

 

As a result, we obtain 

𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢.

Theorem 3.3. If 𝜃2 = 𝜃𝑟,𝑠 be a lacunary sequence 

with limsup𝑟  𝑞𝑟 < ∞,  limsup𝑠  𝑞𝑠 < ∞, then 

𝑔𝑆𝜃2(ℐ2) − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘 = 𝑢 ⇒ 𝑔𝑆2(ℐ2) − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘

= 𝑢. 

Proof. Assume limsup𝑟  𝑞𝑟 < ∞,  limsup𝑠  𝑞𝑠 < ∞. 

In this case, there exist positive constants 𝑃, 𝑅 > 0 

such that 𝑞𝑟 < 𝑃 and 𝑞𝑠 < 𝑅 for all 𝑟, 𝑠. 
Considering 𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢, let's 

assume that 

𝑁𝑟𝑠: = |{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| .

  Since 𝑔𝑆𝜃2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢, it supplies for 

all 𝜎 > 0 and 𝛿 > 0, 

{(𝑟, 𝑠) ∈ ℕ2:
𝑝!

(ℎ𝑟𝑠)𝑝
|{(𝑗𝑤, 𝑘𝑤) ∈ 𝐼𝑟𝑠, 1 ≤ 𝑤 ≤ 𝑝: 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| ≥ 𝛿}

 ⊆ {(𝑟, 𝑠) ∈ ℕ2:
𝑝! 𝑁𝑟𝑠
(ℎ𝑟𝑠)𝑝

≥ 𝛿} ∈ ℐ2.

 

So, we can select 𝑟0, 𝑠0 ∈ ℕ such that 
𝑝!𝑁𝑟𝑠

(ℎ𝑟𝑠)𝑝
< 𝛿 for 

all 𝑟 ≥ 𝑟0 and 𝑠 ≥ 𝑠0. 

𝑄:= max{𝑁𝑟𝑠: 1 ≤ 𝑟 ≤ 𝑟0 and 1 ≤ 𝑠 ≤ 𝑠0} 

and let 𝑛,𝑚 be integers supplying 𝑗𝑟−1 < 𝑛 ≤ 𝑗𝑟 

and 𝑘𝑠−1 < 𝑚 ≤ 𝑘𝑠. Then, for all 𝜎 > 0, 
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𝑝!

(𝑛𝑚)𝑝
|{𝑗1,⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

 ≤
𝑝!

(𝑗𝑟−1𝑘𝑠−1)𝑝
|{𝑗1,⋯ , 𝑗𝑝 ≤ 𝑗𝑟 , 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑘𝑠, 𝑔 (𝑤,𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖𝑝) ≥ 𝜎}|

 =
𝑝!

(𝑗𝑟−1𝑘𝑠−1)𝑝
{ ∑  

𝑟

𝑗1,⋯,𝑗𝑤=1𝑘1,⋯,𝑘𝑤=1

  ∑  

𝑠

𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤  }

 ≤
𝑝! 𝑄𝑟0

2𝑠0
2

(𝑗𝑟−1𝑘𝑠−1)𝑝
+

𝑝!

(𝑗𝑟−1𝑘𝑠−1)𝑝
{ ∑  

𝑟

𝑗1,⋯,𝑗𝑤=1𝑘1,⋯,𝑘𝑤=1

  ∑  

𝑠

𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤  }

 ≤
𝑝! 𝑄𝑟0

2𝑠0
2

(𝑗𝑟−1𝑘𝑠−1)𝑝
+

𝑝!

(𝑗𝑟−1𝑘𝑠−1)𝑝
{ ∑  

𝑟

𝑗1,⋯,𝑗𝑤=𝑟0+1𝑘1,⋯,𝑘𝑤=𝑟0+1

 ∑  

𝑠

𝑗1

 
𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤ℎ𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

ℎ𝑗1 ,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤
}

 ≤
𝑝!𝑄𝑟0

2𝑠0
2

(𝑗𝑟−1𝑘𝑠−1)𝑝
+

𝑝!

(𝑗𝑟−1𝑘𝑠−1)𝑝
( sup
𝑗1,⋯,𝑗𝑤≥𝑟0,𝑘1,⋯,𝑘𝑤≥𝑟0

 
𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤
ℎ𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

) ×

{ ∑  

𝑟

𝑗1,⋯,𝑗𝑤=𝑟0+1𝑘1,⋯,𝑘𝑤=𝑟0+1

  ∑ 𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤  

𝑠

𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

 }

 ≤
𝑝! 𝑄𝑟0

2𝑠0
2

(𝑗𝑟−1𝑘𝑠−1)𝑝
+ 𝛿 { ∑  

𝑠

𝑗1,⋯,𝑗𝑤=𝑟0+1𝑘1,⋯,𝑘𝑤=𝑟0+1

  ∑  

𝑟

𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤

 𝑁𝑗1,⋯,𝑗𝑤,𝑘1,⋯,𝑘𝑤}

 ≤
𝑝!𝑄𝑟0

2𝑠0
2

(𝑗𝑟−1𝑘𝑠−1)𝑝
+ 𝛿𝑃𝑅.

 

Since 𝑗𝑟−1𝑘𝑠−1 → ∞ as 𝑛,𝑚 → ∞, it concludes 

that for each 𝜎 > 0 

𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚,𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| → 0 

and as a result for any 𝛿 > 0, the set 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
∣ {((𝑗1,⋯ , 𝑗𝑝), (𝑘1, ⋯ , 𝑘𝑝)) ∈ ℕ

𝑝 × ℕ𝑝

𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣≥ 𝛿} ∈ ℐ2.

 

It gives that 𝑔𝑆2(ℐ2) − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

In 𝑔-metric spaces, we present the relationship 

between 𝑔[𝐶, 1,1][ℐ2] and 𝑔𝑁𝜃2[ℐ2]. 

 

Theorem 3.4. Considering any lacunary sequence 

in (𝑌, 𝑔) with liminf𝑟  𝑞𝑟 > 1 and lim inf𝑠  𝑞𝑠 > 1 

𝑔[𝐶, 1,1][ℐ2] − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘 = 𝑢 implies 𝑔𝑁𝜃2[ℐ2] − lim
𝑗,𝑘→∞

 𝑢𝑗𝑘 = 𝑢. 

Proof. Assume that lim inf𝑟  𝑞𝑟 > 1 and 

lim inf𝑠  𝑞𝑠 > 1. Then, there are 𝛾, 𝜏 > 0 such that 

𝑞𝑟 ≥ 1 + 𝛾 and 𝑞𝑠 ≥ 1 + 𝜏 for sufficiently large 𝑟, 𝑠 
which gives that 
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𝑗𝑟𝑘𝑠
ℎ𝑟𝑠

≤
(1 + 𝛾)(1 + 𝜏)

𝛾𝜏
 and 

𝑗𝑟−1𝑘𝑠−1
ℎ𝑟𝑠

≤
1

𝛾𝜏
 

Assume that 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢. 

Then, we write 

𝑝!

ℎ𝑟𝑠
𝑝 ∑  
(𝑗𝑤,𝑘𝑤)∈𝐼𝑟𝑠,1≤𝑤≤𝑝

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

 =
𝑝!

ℎ𝑟𝑠
𝑝 ∑  

𝑗𝑟

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑘𝑠

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

 −
𝑝!

(ℎ𝑟𝑠)𝑝
∑  

𝑗𝑟−1

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑘𝑠−1

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)

 =
(𝑗𝑟𝑘𝑠)

𝑝

(ℎ𝑟𝑠)𝑝
[

𝑝!

(𝑗𝑟𝑘𝑠)𝑝
∑  

𝑗𝑟

𝑗1,⋯,𝑗𝑝=1𝑘1,⋯,𝑘𝑝=1

 ∑  

𝑘𝑠

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)]

 −
(𝑗𝑟−1𝑘𝑠−1)

𝑝

(ℎ𝑟𝑠)𝑝
[

𝑝!

𝑗𝑢−1𝑘𝑠−1
∑  

𝑗𝑟−1

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑘𝑠−1

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝)] . 

 

Since 𝑔[𝐶, 1,1][ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢, then we 

get 

𝑝!

(𝑗𝑟𝑘𝑠)𝑝
∑  

𝑗𝑟

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑘𝑠

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) →
ℐ2
0 and 

𝑝!

𝑗𝑢−1𝑘𝑠−1
∑  

𝑗𝑟−1

𝑗1,⋯,𝑗𝑝=1

  ∑  

𝑘𝑠−1

𝑘1,⋯,𝑘𝑝=1

 𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) →
ℐ2
0.

 

Upon examining the aforementioned equality, we 

obtain the following relation: 

𝑝!

ℎ𝑟𝑠
𝑝 ∑  
(𝑗𝑤,𝑘𝑤)∈𝐼𝑟𝑠,

𝑔 (𝑢, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) →
ℐ2
0. 

Namely, 𝑔𝑁𝜃2[ℐ2] − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢.. So, we 

obtain 𝑔[𝐶, 1,1][ℐ2] ⊆ 𝑔𝑁𝜃2[ℐ2]. 

Theorem 3.5. Assume (𝑢𝑗𝑘) be a sequence in 𝑔-

metric space (𝑌, 𝑔) so that 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 =

𝑢0 and 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢1, then 𝑢0 = 𝑢1. 

Proof. Let (𝑢𝑗𝑘) be a double sequence in 𝑔-metric 

space such that 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0 and 

𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢1. For arbitrary 𝜎, 𝛿 > 0, 

establish the sets: 

𝑇1 = {(𝑛,𝑚) ∈ ℕ
2:

𝑝!

(𝑛𝑚)𝑝
∣ {𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:

𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣< 𝛿} ∈ ℱ(ℐ2)

 

and 

𝑇2 = {(𝑛,𝑚) ∈ ℕ
2:

𝑝!

(𝑛𝑚)𝑝
∣ {𝑗1,⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑚:

𝑔 (𝑢1, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} ∣< 𝛿} ∈ ℱ(ℐ2).
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So, 𝑇1 ∩ 𝑇2 ≠ ∅, since 𝑇1 ∩ 𝑇2 ∈ ℱ(ℐ2). Take 

(𝑠, 𝑞) ∈ 𝑇1 ∩ 𝑇2 and taket 𝜎 =
𝑔(𝑤0,𝑤1)

3
> 0, so 

𝑝!

(𝑠𝑞)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑠, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑞: 𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| < 𝛿

 and 

𝑝!

(𝑠𝑞)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑠, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑞: 𝑔 (𝑢1, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}| < 𝛿 

i.e, for maximum 𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑠, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑞 will 

supply 

𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) < 𝜎, 

and 

𝑔 (𝑢1, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) < 𝜎 

for a small 𝛿 > 0. As a result, we have to get 

{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑠, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑞, 𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) < 𝜎}

∩ {𝑗1,⋯ , 𝑗𝑝 ≤ 𝑠, 𝑘1, ⋯ , 𝑘𝑝 ≤ 𝑞: 𝑔 (𝑢1, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) < 𝜎} ≠ ∅
 

a contradiction, as the neighborhood of 𝑢0 and 𝑢1 

are disjoint. So, 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 determined 

uniquely. 

Theorem 3.6. For any sequence (𝑢𝑗𝑘) ∈

(𝑌, 𝑔), 𝑔𝑆2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0 implies 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0. 

Proof. Suppose 𝑔𝑆2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0. Then, 

for all 𝜎 > 0, the set 

𝐴(𝜎) = {𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝

≤ 𝑚: 𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎} 

has natural density zero. So, we get 

lim
𝑛,𝑚→∞

 
𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝

≤ 𝑚:𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

= 0. 

As a result, for all 𝜎, 𝛿 > 0, 

{(𝑛,𝑚) ∈ ℕ2:
𝑝!

(𝑛𝑚)𝑝
|{𝑗1, ⋯ , 𝑗𝑝 ≤ 𝑛, 𝑘1, ⋯ , 𝑘𝑝

≤ 𝑚:𝑔 (𝑢0, 𝑢𝑗1𝑘1 , ⋯ , 𝑢𝑗𝑝𝑘𝑝) ≥ 𝜎}|

≥ 𝛿} 

is a finite set and so belongs to ℐ2, where ℐ2 is an 

admissible ideal. Therefore, we obtain 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0. 

Theorem 3.7. For any sequence (𝑢𝑗𝑘), 𝑔ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢0, means 𝑔𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 

𝑢0. 

Proof. The proof is obvious. But the vice versa is 

not supplying. 

Example 3.1. Let 𝑋 = ℝ and 𝑔 be the metric as 

follows; 

𝑔 ∶ ℝ3 → ℝ+

𝑔(𝑢, 𝑣, 𝑤)  = max{|𝑢 − 𝑣|, |𝑢 − 𝑤|, |𝑣 − 𝑤|}.
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When we assume ℐ2 = ℐ2
𝑓
 the sequence (𝑢𝑗𝑘), 

where 

𝑢𝑗𝑘 = {
0,  if 𝑗 = 𝑢2, 𝑘 = 𝑣2, 𝑢, 𝑣 ∈ ℕ
1,  otherwise 

 

Then, 𝑆ℐ2 − lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 1. But (𝑢𝑗𝑘) is not 𝑔ℐ2-

convergent. 

Theorem 3.8. If all subsequence of (𝑢𝑗𝑘) is 𝑔ℐ2-

statistically convergent to 𝑢, then 𝑔𝑆ℐ2 −

lim𝑗,𝑘→∞  𝑢𝑗𝑘 = 𝑢 

Proof. The proof is clear, so omitted. 

CONCLUSION 

In this article, we have extensively explored the 

concepts of ℐ2-statistical convergence and ℐ2-

lacunary statistical convergence for sequences in 

general metric spaces, with a specific focus on g-

metric spaces. By delving into the intricacies of 

these notions, we have gained a deeper 

understanding of the behavior of sequences within 

the framework of g-metric spaces. 

 

Throughout our investigation, we have examined 

the properties and characteristics of ℐ2-statistical 

convergence and ℐ2-lacunary statistical 

convergence, shedding light on their significance in 

the context of general metric spaces. The study has 

allowed us to establish a clear relationship between 

these convergence concepts and the underlying g-

metric structures, enabling a more comprehensive 

analysis of sequence convergence. 

 

By expanding our understanding of these 

convergence notions in g-metric spaces, we have 

contributed to the existing body of knowledge in the 

field. The insights gained from our exploration can 

pave the way for further research and applications 

in various areas that utilize g-metric spaces, such as 

analysis, functional analysis, and other related 

fields. 

 

In summary, our investigation into ℐ2-statistical 

convergence and ℐ2-lacunary statistical 

convergence in g-metric spaces has provided 

valuable insights and expanded our understanding 

of these convergence concepts. We anticipate that 

this research will inspire future studies and 

contribute to the advancement of mathematical 

analysis in general metric spaces. 
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