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Abstract – Knee osteoarthritis (OA) is a prevalent degenerative joint disease that requires accurate 

assessment of its severity for effective treatment planning. In this study, we propose an automatic knee 

OA severity-grading system based on deep neural networks. Specifically, we explore various network 

architectures, including VGG-16, VGG-19, ResNet-101, EfficientNet-B7, and EfficientNet-B6, along 

with different optimization functions such as SGD, ADAM, Nadam, AdamW, and AdaDelta. 

Furthermore, we investigate two loss functions, namely, the novel ordinal loss and the cross-entropy loss. 

The proposed system is evaluated on a carefully curated dataset, and comprehensive experimental settings 

are employed to ensure reliable results. Our findings indicate that the combination of the EfficientNet-B7 

network with the Nadam optimizer yields the best performance, achieving an accuracy of 70.1% in knee 

OA severity grading. These results demonstrate the potential of deep neural networks in automating the 

grading process, offering a valuable tool for clinicians and researchers in the field of knee osteoarthritis 

management. 
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I. INTRODUCTION 

Knee osteoarthritis (OA) is a prevalent 

degenerative joint disease that affects a significant 

portion of the population, leading to pain, 

functional impairment, and reduced quality of life 

[1]. Accurate assessment of knee OA severity plays 

a crucial role in effective treatment planning, 

enabling clinicians to tailor interventions and 

monitor disease progression [2]. However, manual 

grading of knee OA severity can be subjective, 

time-consuming, and prone to inter-observer 

variability, highlighting the need for automated and 

reliable grading systems [3]. 

In recent years, deep learning techniques have 

demonstrated remarkable success in various fields, 

particularly in computer vision tasks [4]. 

Leveraging the power of deep neural networks 

(DNNs) offers a promising avenue for automating 

the knee OA severity grading process [5, 6]. By 

learning from large amounts of data, DNNs can 

extract complex features and patterns, potentially 

improving the accuracy and efficiency of knee OA 

severity assessment [7]. 

In this paper, we present an automatic knee OA 

severity-grading system based on deep neural 

networks. Our study focuses on exploring different 

DNN architectures, including VGG-16, VGG-19, 

ResNet-101, EfficientNet-B7, and EfficientNet-B6, 

to determine the most suitable model for this task. 

Each architecture possesses unique characteristics, 

such as depth, skip connections, or efficient 

scaling, which can potentially enhance the 

system’s ability to capture relevant features from 

knee OA images. 
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Deep learning architectures offer several 

advantages for knee OA severity grading [5-7]. 

They can learn hierarchical representations of 

image data, allowing for the identification of subtle 

patterns and markers indicative of disease severity. 

Furthermore, DNNs have the potential to 

generalize well across diverse patient populations, 

contributing to the scalability and applicability of 

the proposed grading system. 

To optimize the performance of our system, we 

investigate various optimization functions, 

including SGD, ADAM, Nadam, AdamW, and 

AdaDelta. These functions play a crucial role in 

guiding the training process of the DNNs, 

facilitating the convergence towards an optimal 

solution. Additionally, we compare two loss 

functions: the novel ordinal loss and the cross-

entropy loss, aiming to identify the most effective 

approach for knee OA severity grading. 

The successful development of an automatic knee 

OA severity-grading system holds immense value 

for both clinicians and researchers in the field. 

Such a system can streamline the grading process, 

reducing subjectivity and variability, while also 

providing consistent and reliable assessments. 

Moreover, it can assist in monitoring disease 

progression, evaluating treatment efficacy, and 

facilitating personalized interventions for patients 

with knee osteoarthritis. 

In conclusion, this paper proposes an automatic 

knee OA severity-grading system based on deep 

neural networks. By exploring different DNN 

architectures and optimization functions, we aim to 

develop an accurate and efficient tool for knee OA 

severity assessment. The application of deep 

learning in this domain holds great promise and 

can significantly contribute to the field of knee 

osteoarthritis management, ultimately improving 

patient care and outcomes.  

The remainder of this paper is structured as 

follows: Section 2 provides a brief overview of 

related work in the field. Section 3 outlines the 

methodology employed in this study, including the 

presentation of convolutional neural network 

architectures, optimization functions, and loss 

functions. In Section 4, the experimental results 

and subsequent discussion are presented. 

II. RELATED WORK 

Deep learning has been widely utilized in 

various computer vision tasks, including image 

classification, object detection, and segmentation, 

showcasing its effectiveness [8-10]. Over the past 

years, deep learning has gained significant traction 

in medical image analysis, with applications in cell 

detection and segmentation, mitosis detection, 

white matter lesion segmentation, and retinal blood 

vessel segmentation [11].  

Deep learning methods have also been applied 

to knee osteoarthritis (OA) analysis in previous 

studies [2, 3, 6]. However, there is still room for 

improvement in knee analysis. Considering the 

ordinal nature of the Kellgren-Lawrence (KL) 

grading task, the development of a better loss 

function has the potential to enhance knee KL 

grading performance.  

In this regard, Chen et al. [12] proposed a two-

step approach for automatically grading knee OA 

severity, utilizing customized one-stage detection 

architecture YOLOv2 to detect knee joints and 

introducing a novel ordinal loss as a replacement 

for the cross-entropy loss in fine-tuning the KL 

grade classification model. Extensive experiments 

are conducted on popular CNN models, and the 

results demonstrate that the VGG-19 model with 

the proposed ordinal loss achieves the best knee 

severity grading performance, outperforming the 

cross-entropy loss on all compared CNN models. 

In another study, Teoh et al. [13] highlighted the 

importance of considering different imaging 

modalities for traditional OA diagnosis and 

explored recent machine learning approaches for 

knee OA diagnosis and prognosis. Similarly, 

Alshamrani et al. [14] presented a method that 

achieves higher predictive performance on the 

early detection of knee osteoarthritis. The 

presented method involves utilizing transfer-

learning models based on sequential convolutional 

neural networks (CNNs), specifically VGG-16 and 

ResNet-50, for analyzing knee X-ray images. The 

analysis reveals that all the compared models 

achieved a predictive accuracy greater than 90% in 

detecting osteoarthritis. Among the models, the 

pre-trained VGG-16 model outperformed others, 

achieving a training accuracy of 99% and a testing 

accuracy of 92%. 

In a similar way, Li et al. [15] evaluated the 

performance of a deep learning (DL) algorithm 

using plain radiographs for detecting knee 

osteoarthritis (OA). A total of 4,200 paired knee 

joint X-ray images from 1,846 patients were 

analyzed, and Kellgren-Lawrence (K-L) grading by 
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expert radiologists served as the gold standard for 

knee OA evaluation. The DL method employed 

anteroposterior and lateral plain radiographs along 

with prior zonal segmentation for knee OA 

diagnosis. The overall accuracy of this DL model 

was 0.96, outperforming an experienced radiologist 

whose accuracy was 0.86. The study highlights the 

impact of combining different imaging views and 

prior zonal segmentation on the diagnostic 

performance of the DL algorithm. 

III. METHODOLOGY 

The methodology section of this study 

encompasses the deep learning architectures, 

optimization functions, and loss functions 

employed in the analysis.  

A. Deep Learning Architectures 

VGG-16 is a deep convolutional neural network 

(CNN) architecture that has been widely used and 

recognized for its strong performance in image 

classification tasks [16]. VGG-16 is characterized 

by its deep structure, consisting of 16 layers. It 

primarily comprises convolutional layers, which 

are responsible for extracting relevant features 

from input images. The architecture utilizes small-

sized filters, specifically 3x3 convolutional kernels, 

throughout the network. These smaller filters allow 

for a deeper network while still capturing local 

features effectively. Following each convolutional 

layer in VGG-16, a max-pooling layer is applied. 

Max-pooling helps reduce the spatial dimensions 

of the feature maps, aiding in downsampling and 

providing robustness against spatial translations. 

The pooling layers operate by selecting the 

maximum value within a defined pooling window, 

effectively summarizing the most prominent 

features within that region. VGG-16 also includes 

three fully connected layers towards the end of the 

architecture. These layers serve as classifiers and 

enable the network to make predictions based on 

the learned features. The final fully connected layer 

typically consists of neurons equal to the number 

of classes in the classification task. One notable 

aspect of VGG-16 is its simplicity and uniformity 

in architecture. The consistent use of 3x3 filters 

and max-pooling layers allows for better 

interpretability and visualization of the network's 

behavior. The deep structure and extensive use of 

convolutional layers enable VGG-16 to capture 

both low-level and high-level features in an image 

hierarchy. 

The VGG-19 architecture is an extension of the 

VGG-16 architecture [16, 17]. VGG-19 shares 

many similarities with VGG-16 but has a deeper 

structure with a total of 19 layers, including 16 

convolutional layers and 3 fully connected layers. 

Like VGG-16, VGG-19 utilizes small 3x3 

convolutional filters throughout the network, 

followed by max-pooling layers for downsampling. 

This uniformity in filter size and pooling 

operations allows for a better understanding of the 

network’s behavior and facilitates transferability of 

learned features across different tasks. The 

additional layers in VGG-19 provide a more 

complex representation of features compared to 

VGG-16. The extra depth can potentially capture 

more fine-grained details and higher-level features 

from input images. However, this increased depth 

also results in higher computational requirements. 

ResNet-101 is a convolutional neural network 

(CNN) architecture [18]. ResNet-101, short for 

Residual Network-101, is an extension of the 

original ResNet architecture. The core concept of 

ResNet-101 is residual learning, which introduces 

shortcut connections, or skip connections, between 

layers to enable the learning of residual functions. 

These skip connections facilitate the flow of 

information and gradients throughout the network, 

mitigating the vanishing gradient problem and 

making it easier to train deep networks. In ResNet-

101, residual blocks are employed, consisting of 

multiple stacked convolutional layers with shortcut 

connections. These residual blocks enable the 

network to learn residual mappings, which are the 

differences between the input and output feature 

maps. By explicitly learning the residual functions, 

ResNet-101 can effectively capture intricate and 

subtle image features, allowing for improved 

accuracy in image recognition tasks. ResNet-101 

has demonstrated impressive performance on 

various benchmarks, including the ImageNet 

Large-Scale Visual Recognition Challenge 

(ILSVRC). It has achieved state-of-the-art results 

in image classification and has been widely 

adopted as a backbone architecture in various 

computer vision applications, such as object 

detection and semantic segmentation [19]. 

EfficientNet-B6 and EfficientNet-B7 are part of 

the EfficientNet family of convolutional neural 

network (CNN) architectures  [20]. EfficientNet-
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B6 and EfficientNet-B7 are two of the larger 

variants in the EfficientNet series, designed to 

provide improved performance and accuracy for 

image classification tasks. The EfficientNet 

architecture introduces a novel compound scaling 

method that uniformly scales the depth, width, and 

resolution of the network to achieve optimal trade-

offs between model size and performance. 

EfficientNet-B6 and B7 exhibit deeper and wider 

structures compared to their predecessors. 

EfficientNet-B6 consists of 23 convolutional 

layers, while EfficientNet-B7 contains 31 

convolutional layers. These deeper architectures 

allow for increased model capacity and the ability 

to capture more complex and abstract features from 

input images. The width of the network is also 

increased in EfficientNet-B6 and B7, which refers 

to the number of channels in each layer. This 

widening enhances the representation power of the 

network and enables it to capture more fine-

grained details and patterns. EfficientNet models 

also introduce an additional scaling factor called 

"resolution" or "image size." By increasing the 

resolution of the input images, the network can 

extract more precise information and potentially 

achieve better performance. EfficientNet-B6 and 

B7 have demonstrated state-of-the-art performance 

on various image classification benchmarks, 

including the ImageNet dataset. The compound 

scaling approach of the EfficientNet family ensures 

that the models achieve strong accuracy while 

maintaining computational efficiency [20]. 

B. Optimization Functions 

Stochastic Gradient Descent (SGD) is an 

optimization algorithm commonly used in training 

deep neural networks. An iterative optimization 

algorithm updates the model’s parameters based on 

the gradients of the loss function with respect to 

those parameters. In each iteration of SGD, a mini-

batch of training samples is randomly selected 

from the training dataset. The gradients of the loss 

function with respect to the parameters are 

computed on this mini-batch. The model’s 

parameters are then updated by taking a step in the 

opposite direction of the gradients, scaled by a 

learning rate. SGD is known as a stochastic 

algorithm because it uses a random subset of the 

training data in each iteration. This randomness 

introduces noise into the gradient estimation, but it 

also allows the algorithm to escape shallow local 

minima and potentially find better solutions [21]. 

ADAM (Adaptive Moment Estimation) is an 

optimization algorithm that combines the benefits 

of both stochastic gradient descent (SGD) and 

adaptive learning rate methods [22]. It maintains 

adaptive learning rates for different parameters by 

estimating the first and second moments of the 

gradients. ADAM includes momentum-like 

behavior to speed up convergence and handles 

sparse gradients efficiently. It is widely used in 

deep learning due to its robustness, efficiency, and 

effectiveness in optimizing neural network models. 

Nadam is a variant of the ADAM optimizer that 

incorporates Nesterov accelerated gradient (NAG) 

into the ADAM algorithm [23]. Nesterov 

accelerated gradient adds a momentum term that 

takes into account the future gradient direction to 

improve convergence. Nadam combines the 

benefits of ADAM and Nesterov accelerated 

gradient, resulting in faster convergence and 

improved optimization performance. 

AdamW is an extension of the ADAM optimizer 

that introduces weight decay into the optimization 

process [24]. Weight decay is a regularization 

technique that helps prevent overfitting by adding a 

penalty term to the loss function based on the 

magnitudes of the model's weights. AdamW 

addresses the bias correction issue present in 

ADAM by decoupling weight decay from the 

adaptive learning rate calculation. This 

modification leads to improved generalization 

performance and better control over the weight 

decay effect. 

AdaDelta is an adaptive learning rate 

optimization algorithm that extends the concepts of 

ADAM [25]. It eliminates the need for a manually 

specified learning rate by using the root mean 

square (RMS) of the parameter updates to 

adaptively adjust the learning rate. AdaDelta 

addresses the limitations of traditional learning rate 

decay methods and performs well in scenarios 

where the optimal learning rate is unknown or 

varies across different parameters. It has been 

shown to be effective in training deep neural 

networks. 

C. Loss Functions 

Cross-entropy loss is a commonly used loss 

function in machine learning and deep learning 

tasks, particularly for classification problems [26]. 
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It measures the dissimilarity between predicted 

probabilities and the true class labels. In the 

context of classification, cross-entropy loss 

quantifies how well the predicted probability 

distribution aligns with the actual distribution of 

the classes. It is computed by taking the negative 

logarithm of the predicted probability of the true 

class. Mathematically, given a set of samples with 

true labels (one-hot encoded) represented as ytrue 

and the predicted probabilities (output of the 

model) represented as ypred, the cross-entropy loss 

is calculated as [27]: 

 

L = - ∑(ytrue * log(ypred))   (1) 

 

The summation is performed over all the classes 

in the classification task. The loss value is 

minimized when the predicted probabilities 

accurately match the true class labels. Cross-

entropy loss encourages the model to assign high 

probabilities to the correct classes and low 

probabilities to the incorrect ones. It effectively 

penalizes the model for making incorrect 

predictions, driving it towards better classification 

performance. 

The problem of predicting KL grades in knee 

osteoarthritis (OA) is an ordinal regression 

problem, where the proximity of predicted grades 

carries different levels of importance. The 

traditional cross-entropy loss used in classification 

models treats all categories equally and does not 

consider the closeness between different grades. To 

address this, a new ordinal loss is proposed that 

satisfies two properties: (1) maximizing the 

probability of the true grade and (2) reducing the 

probabilities of grades further away from the true 

grade [12].  

An adjustable ordinal matrix is devised to 

represent penalty weights between predicted and 

true grades. By adjusting the penalty weights, the 

proposed ordinal loss is formulated. To simplify 

the implementation, the adjusted ordinal matrix is 

revised, and the loss is rewritten accordingly. The 

squared form of the proposed ordinal loss is used 

in the CNN classifier fine-tuning process, as it 

demonstrates better performance compared to the 

cross-entropy loss. The proposed loss considers the 

ordinal nature of the KL grading task and aims to 

improve the accuracy of the prediction [12]. 

 

IV. EXPERIMENTAL RESULTS 

The knee X-ray images used in our study were 

obtained from the osteoarthritis initiative (OAI), a 

longitudinal observational study focusing on knee 

osteoarthritis. The images were acquired from a 

baseline cohort consisting of 4,796 participants 

[12]. We performed preprocessing on the X-ray 

images, resizing them to a standardized physical 

resolution and cropping them to a consistent size. 

From the processed images, we retained those with 

available Kellgren-Lawrence (KL) grades for both 

knee joints. After preprocessing and filtering, we 

were left with 4,130 X-ray images containing 

8,260 knee joints for further analysis. We then 

randomly divided the images into training, 

validation, and testing sets, ensuring a stable grade 

distribution across the sets. To facilitate knee joint 

detection and KL grade classification, we manually 

annotated the knee joints with the guidance of 

physicians, strictly covering the inner part of the 

knee joint and expanding the annotations for 

grading purposes. This allowed us to use the 

annotated knee joints for both knee joint detection 

and KL grade classification in our study. 

Table 1. Classification accuracy values obtained by different 

architectures and optimization functions 

Network Optimizer 
Learning 

Rate 
Epoch 

Batch 

Size 
Result 

VGG-19 SGD 0.0005 12 32 %67.6 

VGG-16 ADAM 0.0005 15 32 %17.9 

RESNET-

101 
ADAM 0.0005 12 16 %64.2 

EFFICIEN

TNET_B7 
Nadam 0.0002 12 8 %70.1 

EFFICIEN
TNET_B7 

AdamW 0.0002 12 8 %67.5 

EFFICIEN

TNET_B7 
Nadam 0.0001 12 8 %69.4 

EFFICIEN

TNET_B7 
Adadelta 0.0001 12 8 %67.0 

EFFICIEN

TNET_B7 
Adam 0.00001 12 8 %67.8 

EFFICIEN
TNET_B6 

Adam 0.00001 12 8 %64.2 

EFFICIEN

TNET_B7 
Adam 0.00001 15 8 %66.6 

 

The experimental results presented in Table 1 

demonstrate the performance of different models 

with varying optimizers, learning rates, epochs, 

and batch sizes. The models evaluated include 

VGG-19, VGG-16, RESNET-101, 

EFFICIENTNET_B7, and EFFICIENTNET_B6. 
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VGG-19 achieved an accuracy of 67.6% using 

Stochastic Gradient Descent (SGD) with a learning 

rate of 0.0005. It was trained for 12 epochs with a 

batch size of 32. The relatively high accuracy 

suggests that VGG-19 successfully learned 

meaningful representations from the data. In 

contrast, VGG-16 performed poorly with an 

accuracy of only 17.9%. It used the Adam 

optimizer with a learning rate of 0.0005, trained for 

15 epochs, and used a batch size of 32. The results 

indicate that VGG-16 might not be suitable for the 

given task, or the hyperparameters need further 

tuning to improve its performance. RESNET-101 

achieved an accuracy of 64.2% when trained with 

the Adam optimizer. The model utilized a learning 

rate of 0.0005 and was trained for 12 epochs with a 

batch size of 16. RESNET-101 is known for its 

ability to train deep networks effectively, but 

further exploration of optimizers and learning rates 

could potentially enhance its performance. 

EFFICIENTNET_B7 demonstrated promising 

results across different experiments. When trained 

with the Nadam optimizer and a learning rate of 

0.0002, it achieved the highest accuracy of 70.1%. 

The model was trained for 12 epochs with a batch 

size of 8. EFFICIENTNET_B7 is recognized for its 

efficiency and strong performance in image 

classification tasks, making it a suitable choice for 

the given task. Further experimentation with 

EFFICIENTNET_B7 involved testing different 

optimizers and learning rates. With the AdamW 

optimizer and a learning rate of 0.0002, the model 

achieved an accuracy of 67.5%. When the learning 

rate was reduced to 0.0001, the accuracy improved 

slightly to 69.4%. These results indicate the impact 

of different optimization algorithms and learning 

rates on the model's performance. Additionally, 

EFFICIENTNET_B6 was evaluated, achieving an 

accuracy of 64.2% with the Adam optimizer, a 

learning rate of 0.00001, and training for 12 epochs 

with a batch size of 8. While the accuracy is 

comparable to other models, it appears that 

EFFICIENTNET_B7 generally outperforms 

EFFICIENTNET_B6. In summary, the 

experimental results emphasize the significance of 

selecting appropriate models, optimizers, learning 

rates, and hyperparameters for achieving optimal 

performance. VGG-19 and RESNET-101 showed 

reasonable performance, while VGG-16 struggled 

to achieve good results. EFFICIENTNET_B7 

demonstrated strong performance, particularly 

when combined with the Nadam optimizer and 

lower learning rates.  

V. CONCLUSION 

The accurate assessment of knee osteoarthritis 

(OA) severity is crucial for effective treatment 

planning in this prevalent degenerative joint 

disease. To address this, we propose an automated 

knee OA severity-grading system based on deep 

neural networks. Our study investigates multiple 

network architectures, including VGG-16, VGG-

19, ResNet-101, EfficientNet-B7, and 

EfficientNet-B6, in combination with different 

optimization functions such as SGD, ADAM, 

Nadam, AdamW, and AdaDelta. Additionally, we 

examine two loss functions: the novel ordinal loss 

and the cross-entropy loss. Our system is evaluated 

using a carefully curated dataset, and rigorous 

experimental settings are employed to ensure 

reliable results. The findings reveal that the 

combination of the EfficientNet-B7 network with 

the Nadam optimizer achieves the highest 

performance, with an accuracy of 70.1% in knee 

OA severity grading. These results demonstrate the 

potential of deep neural networks to automate the 

grading process, providing a valuable tool for 

clinicians and researchers in the field of knee 

osteoarthritis management. 
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