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Abstract – This paper proposes using an artificial neural network (ANN) to estimate and predict the 

seismic demand of Single Degree of Freedom (SDOF) systems. Our methodology entails the production 

of a comprehensive dataset containing SDOF and earthquake characteristics. Nonlinear Time History 

Analysis (NL-THA) is performed on a randomly generated SDOF system using thirty-one artificial 

ground motions (GMs) matched to the EuroCode-8 (EC8) response spectrum to train the ANN model. To 

assess the performance of the ANN model, we compare the Incremental Dynamic Analysis (IDA) curves, 

the median IDA curve, and the 3D fragility surface in a case study. This analysis assists in determining 

the precision and dependability of the predicted maximum displacement of the SDOF system. The results 

showed a remarkable reduction in processing time without losing prediction accuracy. .  It was concluded 

that the ANN-based method can be used as an alternative for the current method for estimating the 

performance points and the fragility assessment of buildings. 
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I. INTRODUCTION 

The seismic vulnerability assessment represents a 

severe step to evaluate the buildings’ state, 

especially for existing ones [1] [2]. Nonlinear time 

history analysis (NL-THA) is the most reliable and 

accurate method to calculate the seismic response 

under seismic excitation [3]. In addition, 

incremental dynamic analysis (IDA) is highly used 

to perform a fragility assessment, i.e., estimate the 

probability of exceeding a damaged state or a 

performance level  [4]. However, both methods are 

time-consuming and require expertise to perform 

correctly. 

 For that reason, several methods have been 

proposed to determine the seismic demand or the 

performance point of buildings when subjected to 

earthquake excitation [5] [6], [7]  [8]  

FEMA 356 [9] introduced two methods to 

calculate the performance or target points. The 

capacity spectrum method (CSM)[10] is based on 

transforming the obtained pushover curve that 

represents the base shear versus the roof 

displacement into another acceleration 

displacement response spectrum (ADRS) 

representation. The response spectrum will also be 

transformed into ADRS form to estimate the 

performance point using one of three algorithms. 

Conversely, the Displacement coefficient method 

(DCM) [11] uses modification coefficients (C0, 

C1, C2, and C3) to estimate the target 

displacement. In FEMA 440 [12], both methods 

were changed into equivalent linearization and 

modified coefficient methods. This improvement 

allowed the methods to estimate the performance 

points more quickly than the NL-THA results. 

However, when it comes to accuracy, these 

methods underestimate the seismic demand in 

some cases. 

 This work proposes an artificial neural network 

(ANN) to predict and estimate the seismic. 
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demand of SDOF systems. The proposed 

methodology is based on generating a dataset that 

contains the SDOF characteristics (mass, stiffness, 

and yielding force) and the earthquake 

characteristics (peak ground acceleration (PGA), 

peak ground velocity (PGV), peak ground 

displacement (PGD), cumulative energy (Ecum), 

arias intensity (Ia), cumulative absolute velocity 

(CAV), spectral acceleration (Sa), spectral velocity 

(Sv), spectral displacement (Sd), Housner intensity 

(HI), acceleration spectrum intensity (ASI), 

Figure 2 The SDOF equivalent system obtained from the idealization of the pushover curve. 

Figure 1 The proposed ANN-based methodology for the seismic demand prediction 
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Figure 2 Response spectrum of the target and the mean 

matched spectra. 

velocity spectrum intensity (VSI), displacement 

spectrum intensity (DSI), dominant frequency, 

bandwidth, and central frequency). The NL-THA 

will be performed on a randomly generated SDOF 

system. The used ground motions (GMs) are 31 

artificial GMs generated and matched to the 

EuroCode-8 response spectrum. The generated 

dataset will be used to train the ANN after splitting 

the data into three datasets (training 80%, testing 

10%, and validating 10%). A case study will 

check the ANN's performance by comparing the 

IDA curves, the median IDA curve, and the 3D 

fragility surface. 

II. METHOD 

Our proposed methodology as it is illustrated 

in Figure 1 aims to develop an Artificial Neural 

Network (ANN) model that can predict the 

maximum displacement of a Single Degree of 

Freedom (SDOF) system. This prediction can be 

used to create the fragility curves for any damage 

state. To get started, we need to create a dataset 

that contains all the necessary information to 

train the ANN model. This includes the SDOF 

characteristics (mass, fundamental period, and 

yielding force) and seismic characteristics (PGA, 

PGV, PGD, Ecum, arias intensity, CAV, Sa, Sv, 

Sd, Housner Intensity, ASI, VSI, DSI, SI, 

dominant frequency, bandwidth, and central 

frequency). We will then perform Nonlinear Time 

History Analysis (NL-THA) to capture the 

maximum inelastic displacement under 31 ground 

motions, which will represent the output of the 

ANN model. To select the hyperparameters of the 

ANN model, we will use a random selection 

Figure 1 A comparison between the NL-THA using OpenSees and Nonlin software. 

Figure 3 ANN performance (R² and MSE) for: a) Training, b) Testing and c) Validation 
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technique to determine the optimal number of 

hidden layers and neurons.  

A. Dataset generating 

The NL-THA method is a numerical method that 

resolves the differential equation of motion. It is 

more efficient and accurate for calculating elastic.  

and inelastic seismic responses. Such an analysis 

was carried out using the OpenSees environment. 

The model is an SDOF with mass (m), period of 

vibration (T), and yielding force (fy) defined. The 

material behavior of the SDOF model is depicted 

in Figure 2. First, the OpenSees model was 

validated by comparing its output to that of the 

Nonlin software to ensure no programming error. 

Figure 3 depicts a comparison of the inelastic 

seismic response of an SDOF system and the 

Nonlin response under "El Centro 1940" ground 

motion. The Nonlin response can be observed to be 

identical to the inelastic displacement and 

hysteretic curves.    

           Second, The SDOF model will be 

subjected to 31 ground motions matched to a 

EuroCode-8 spectrum, and it is based on the 

following characteristics: 

·        PGA= 0.16 g. 

·        Spectrum type = Type 1. 

·        Ground type: A. 

·        Importance class: II. 

Figure 4 illustrates the target response spectrum 

and the generated artificial and synthetic matched 

response spectra. Before the NL-THA, the mass, 

period of vibration, and yield force will be chosen 

from the interval ranges shown in Table 1. 
Table 1. Selection interval of the SDOF parameters 

Feature Min Max Step 

Mass (kg) 100 1000 100 

Period (second) 0.1 3 0.1 

Yielding Force (N) 100 1000 100 

 

It is worth noting that the SDOF's material 

behavior is the elastic perfectly plastic (EPP) 

model, and more than 25,000 analyses were carried 

out and saved in the dataset.  

B. Artificial neural networks (ANN) 

The ANN algorithm is a type of supervised 

machine learning algorithm. It is widely used 

because it can accurately determine the relationship 

between inputs and outputs. This study used the 

ANN to determine the relationship between the 

SDOF and GM characteristics and the inelastic 

maximum displacement. 

 Before using the dataset, it should first be pre-

processed, which means that the dataset may 

contain noise, undefined values, and infinite 

values, which can affect ANN performance during 

training and prediction accuracy. Furthermore, the 

dataset should be standardized, with all inputs and 

outputs having the same scale, i.e., all features 

having a zero mean and a standard deviation equal 

to one. 

Second, define an optimization algorithm, 

learning rate, and activation functions. This work 

used the "Adam" algorithm as an optimizer, with a 

0.01 learning rate and "Relu and Linear" activation 

functions for the hidden and output layers, 

respectively. 

The number of hidden layers and neurons is 

chosen by repeatedly changing them and using the 

 
Figure 5 IDA points of the predicted response and the NL-

THA response 

best combination corresponding to the highest 

correlation coefficient (R2) and the lowest mean 

squared error (MSE). 

Figure 4 the median IDA curves of the predicted and the NL-

THA responses 
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Following the execution of 25 ANN models 

using a random selection technique, it was found 

that [20:4] is the best number of neurons and 

hidden layers combination. Figure 5 shows the 

ANN's performance in terms of R2. 

III. CASE STUDY 

This section will use an SDOF system as a case 

study for evaluating the accuracy and quality of the 

ANN model's predicted results. The IDA points 

earned will be compared to the NL-THA points 

earned. The median IDA and fragility curves will 

be compared to calculate the error between the 

ANN prediction and the NL-THA values. The used 

SDOF has a mass of 200 kg, a vibration period of 

0.7 seconds, and a yielding force of 1000 N. The 

SDOF model was subjected to 31 GMs matched to 

the same spectrum target. 

Figures 6 and 7 display the obtained IDA points 

and their medians. The 3D fragility surfaces of the 

ANN-based and NL-THA-based models are 

depicted in Figure 5. 

IV. RESULTS 

Figure 5 shows the performance of the ANN in 

terms of R2 and MSE for training, testing, and 

validation to be (93.6%), (95.0%), and (94.2%), 

respectively. Figure 8 illustrates the predicted and 

calculated IDA points with R2=90.4% and 

MSE=0.008, whereas Figure 9 represents the 

median IDA curve from the case study with 

R2=99.1% and MSE=0.001. 
 

Figure 10 depicts the R2 value of 98.6% and the 

MSE value of 0.0027 for the fragility assessment 

curves (surfaces). 

The processing time was also examined, and it 

was determined that the IDA for an SDOF subject 

to a 31-ground motion required approximately 10 

minutes, whereas the ANN-based prediction 

required only 4 seconds. 

V. DISCUSSION 

This work aimed to develop an ANN model that 

estimates the performance point of an SDOF 

system quickly and accurately. The SDOF system 

represents the equivalent single degree of freedom 

of a multi-degree of freedom. This type of 

simplification can only be performed for low- and 

mid-rise buildings where neither the torsional 

effect nor the higher mode effect is presented. 

The results demonstrated that the ANN model 

predicted the maximum inelastic displacement of 

an equivalent SDOF system with remarkable 

accuracy. The ANN performance demonstrated a 

high correlation coefficient between predicted and 

calculated responses during training and testing. As 

a result, for the IDA point, median curve, and 3D 

fragility surface, the IDA also shows remarkable 

accuracy between the ANN-based and NL-THA 

results. 

Finally, the time required to perform the IDA and 

build the fragility surface was reduced from 10 

minutes to 4 seconds without losing much 

accuracy. 

Figure 8 The fragility 3D surface of the predicted and the NL-THA responses: a) ANN-based, b) NL-THA-based and c) both 

fragility surfaces 
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VI. CONCLUSION 

 

The proposed ANN-based method has shown 

promising results in predicting maximum inelastic 

displacements.  The application of the ANN-based 

approach demonstrated in the research suggests 

that it can serve as a viable alternative to traditional 

analytical seismic evaluation and vulnerability 

assessment procedures. The study demonstrated 

that the ANN can accurately and quickly predict 

seismic response without the need for complex 

calculations. Furthermore, the proposed 

methodology has the potential to be extended to 

predict the behavior of complex structures. When 

performing Incremental Dynamic Analysis (IDA), 

the ANN-based method can provide a faster and 

more efficient solution. The methodology can 

overcome the limitations of artificial neural 

networks by using their computational power and 

pattern recognition capabilities. 

Overall, the work presented emphasizes the 

effectiveness of the ANN-based method in 

predicting seismic response, emphasizing its 

potential as a valuable tool in seismic engineering 

for assessing structural behavior and assessing 

vulnerability. More research and development in 

this area may improve the applicability and 

reliability of the proposed methodology in a variety 

of structural analysis and design contexts. 
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