${ }^{\text {st }}$ International Conference on Contemporary Academic Research

Power inequalities for the Berezin radius of operators in functional Hilbert spaces

Mehmet Gürdal ${ }^{1}$ and Orçun Yücel *
${ }^{l}$ Department of Mathematics/Suleyman Demirel University, Turkey
*(orcunycl@gmail.com) Email of the corresponding author

Abstract

A functional Hilbert space is the Hilbert space of complex-valued functions on some set $\Upsilon \subseteq \mathbb{C}$ that the evaluation functionals $\varphi_{\varsigma}(f)=f(\varsigma), \varsigma \in \Upsilon$ are continuous on \mathcal{H}. The Berezin number of an operator X is defined by $\operatorname{ber}(X)=\sup _{\varsigma \in \Upsilon}|\tilde{X}(\varsigma)|=\sup _{\xi \in Y}\left|\left\langle X K_{\zeta}, K_{\zeta}\right\rangle\right|$, where the operator X acts on the functional Hilbert space $\mathcal{H}=$ $\mathcal{H}(\Upsilon)$ over some (non-empty) set Y. We get a few Berezin number inequalities in this paper that build on some past findings in the literature. We also discover other associated inequalities.

Keywords - Berezin Transform, Bounded Operators, Functional Hilbert Space

I. Introduction

Berezin transformations have played a key role in several operator theory-related fields, including mathematical inequalities, mathematical analysis, numerical analysis, applied mathematics, and mathematical physics, to mention a few. To describe the Berezin number and norm, we start by discussing certain concepts and characteristics of operators on a Hilbert space.

Let \mathcal{H} be a complex Hilbert space. A functional Hilbert space (briefly, FHS) $\mathcal{H}=\mathcal{H}(\mathcal{F})$ is a Hilbert space complex-valued functions on some set on some set $\Upsilon \subseteq \mathbb{C}$ that the evaluation functionals $\varphi_{\varsigma}(f)=f(\varsigma), \varsigma \in \Upsilon$ are continuous on \mathcal{H}. Then by Riesz representation thorem, for each $\xi \in \Upsilon$ there is an unique element $k_{\varsigma}(\xi) \in \mathcal{H}$ such that $f(\varsigma)=$ $\left\langle f, k_{\varsigma}\right\rangle$, for all $f \in \mathcal{H}$. The function k on $\Upsilon \times \Upsilon$ defined by $k_{\varsigma}(\xi)=k(\xi, \varsigma)$ is called the reproducing kernel of \mathcal{H}. Let $\Im_{\varsigma}=\frac{k_{\varsigma}}{\left\|k_{\varsigma}\right\|}$ be the normalized reproducing kernel of the space \mathcal{H}. The Berezin symbol (or Berezin transform) of the operator $X \in$ $\mathbb{B}(\mathcal{H})$ is the bounded function \tilde{X} on Υ defined by

$$
\tilde{X}(\varsigma)=\left\langle X \Im_{\varsigma}, \widetilde{J}_{\varsigma}\right\rangle, \varsigma \in \Upsilon,
$$

(see, [1]), where $\mathbb{B}(\mathcal{H})$ is defined as the C^{*}-algebra
of all bounded linear operators on \mathcal{H}. The Berezin set and Berezin number of an operator X are defined by

$$
\operatorname{Ber}(X)=\{\tilde{X}(\varsigma): \varsigma \in \Upsilon\}
$$

and

$$
\begin{aligned}
& \operatorname{ber}(X)=\sup \{|\tilde{X}(\varsigma)|: \varsigma \in \Upsilon\} \\
&=\sup _{\xi \in \mathrm{Y}}\left|\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle\right|
\end{aligned}
$$

respectively (see, [15]). For more details on the Berezin symbol, we recommend the reader to [3, 7, 10, 11].

The Berezin range and Berezin number of an operator X in a FHS are, respectively, a subset of X 's numerical range and numerical radius (i.e., $w(X)=$ $\sup \{|\langle X u, u\rangle|,\|u\|=1\})$. We refer to $[8,16]$ for numerical radius for fundamental characteristics. It is significant that

$$
\begin{equation*}
\operatorname{ber}(X) \leq w(X) \leq\|X\| . \tag{1.1}
\end{equation*}
$$

It is commonly known that

$$
\begin{equation*}
\operatorname{ber}(X) \leq \frac{1}{2}\left(\|X\|+\left\|X^{2}\right\|^{\frac{1}{2}}\right) \tag{1.2}
\end{equation*}
$$

for every $X \in \mathbb{B}(\mathcal{H})$ (see [11, Theorem 4]). Huban et al. strengthened the second inequality in (1.2) using the Cartesian decomposition for operators in [13] by doing the following:

$$
\begin{align*}
& \frac{1}{4}\left\|X^{*} X+X X^{*}\right\|_{b e r} \leq \operatorname{ber}^{2}(X) \\
& \quad \leq \frac{1}{2}\left\|X^{*} X+X X^{*}\right\|_{b e r} . \tag{1.3}
\end{align*}
$$

for any operator $X \in \mathbb{B}(\mathcal{H})$ The same authors have also demonstrated that

$$
\begin{align*}
(\operatorname{ber}(X))^{\varepsilon} \leq & \frac{1}{2} \||X|^{2 \gamma \varepsilon} \tag{1.4}\\
& +\left|X^{*}\right|^{2(1-\gamma) \varepsilon} \|_{b e r}
\end{align*}
$$

and

$$
(\operatorname{ber}(X))^{2 \varepsilon} \leq\left\|\gamma|X|^{2 \varepsilon}+(1-\gamma)\left|X^{*}\right|^{2 \varepsilon}\right\|_{b e r}
$$

for $0<\gamma<1$ and $\varepsilon \geq 1$ (see, [14, Th. 3.1 and 3.2]). Recently, Gürdal [11, Theorem 1] generalized some inequalities for powers of the Berezin radius. See the most recent studies on Berezin radii inequalities [9,12] and Berezin radius inequalities of block matrix [2, 4] for more results in this area.

II. MAIN RESULTS

The results that follow are important in and of themselves.

Theorem 1. Let $X, Y, Z \in \mathbb{B}(\mathcal{H})$ with $X, Y \geq 0$, the operator matrix

$$
\left[\begin{array}{cc}
X & Z^{*} \\
Z & Y
\end{array}\right] \in \mathbb{B}(\mathcal{H} \oplus \mathcal{H})
$$

be positive and $\rho, \sigma>1$ with $\frac{1}{\rho}+\frac{1}{\sigma}=1$.
(i) If $\varepsilon>0$ and $\rho \varepsilon, \sigma \varepsilon \geq 1$, then

$$
\begin{equation*}
\operatorname{ber}^{2 \varepsilon}(Z) \leq\left\|\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right\|_{b e r} \tag{2.1}
\end{equation*}
$$

(ii) If $\varepsilon \geq 1$ and $\rho \varepsilon, \sigma \varepsilon \geq 2$, then

$$
\begin{align*}
\operatorname{ber}^{2 \varepsilon}(Z) \leq & \frac{1}{2}\left[\|X\|_{B e r}^{\varepsilon}\|Y\|_{B e r}^{\varepsilon}\right. \tag{2.2}\\
& \left.+\operatorname{ber}^{\varepsilon}(Y X)\right]
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{ber}^{2 \varepsilon}(Z) \leq \frac{1}{2} \tag{2.3}\\
&(\left\|\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right\|_{b e r} \\
&\left.+\operatorname{ber}^{\varepsilon}(Y X)\right)
\end{align*}
$$

Proof. Let $\varsigma \in \Upsilon$ be an arbitary. From the inequalities given by [16, Lemma 1, p. 2], we have

$$
\left|\left\langle Z \mathfrak{I}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle\right|^{2} \leq\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle\left\langle Y \mathfrak{I}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle
$$

By using the the Hölder-McCarthy inequality in [17, p. 20], we get

$$
\begin{aligned}
& \left|\left\langle Z \mathfrak{I}_{G}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2} \leq\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle^{\varepsilon}\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\zeta}\right\rangle^{\varepsilon} \\
& \leq \frac{1}{\rho}\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{\rho \varepsilon}+\frac{1}{\sigma}\left\langle Y \Im_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle^{\sigma \varepsilon} \\
& \leq \frac{1}{\rho}\left\langle X^{\rho \varepsilon} \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle+\frac{1}{\sigma}\left\langle Y^{\sigma \varepsilon} \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle \\
& =\left\langle\left(\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right) \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle
\end{aligned}
$$

for $\varepsilon>0$, and

$$
\begin{aligned}
& \sup _{\varsigma \in Y}\left|\left\langle Z \mathfrak{J}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right|^{2 \varepsilon} \\
& \leq \sup _{\varsigma \in \Upsilon}\left\langle\left(\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right) \mathfrak{J}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
\operatorname{ber}^{2 \varepsilon}(Z)= & \sup _{\varsigma \in Y}\left|\left\langle Z \mathfrak{J}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle\right|^{2 \varepsilon} \leq \\
& \leq \sup _{\varsigma \in Y}\left\langle\left(\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right) \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle \\
& =\left\|\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right\|_{b e r}
\end{aligned}
$$

which proves (2.1). So, by using extension of the celebrated Cauchy-Schwarz inequality in [6, p. 20], we get

$$
\begin{aligned}
\left|\left\langle Z \Im_{\zeta}, \Im_{\zeta}\right\rangle\right|^{2} & \leq\left\langle X \Im_{\varsigma}, \Im_{\Im}\right\rangle\left\langle Y \Im_{\zeta}, \Im_{\varsigma}\right\rangle \\
& \leq \frac{\left\|X \Im_{\varsigma}\right\|\left\|Y \Im_{\varsigma}\right\|+\left|\left\langle X \Im_{\zeta}, Y \Im_{\varsigma}\right\rangle\right|}{2}
\end{aligned}
$$

and for $\varepsilon \geq 1$

$$
\begin{align*}
& \left|\left\langle Z \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle\right|^{2 \varepsilon} \\
& \leq\left(\frac{\left\|X \mathfrak{I}_{\zeta}\right\|\left\|Y \Im_{\zeta}\right\|+\left|\left\langle X \Im_{\zeta}, Y \Im_{\zeta}\right\rangle\right|}{2}\right)^{\varepsilon} \\
& \leq \frac{\left\|X \Im_{\varsigma}\right\|^{\varepsilon}\left\|Y \Im_{\varsigma}\right\|^{\varepsilon}+\left|\left\langle X \Im_{G}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}}{2} \tag{2.4}\\
& =\frac{\left\|X \mathfrak{I}_{\zeta}\right\|^{\varepsilon}\left\|Y \mathfrak{I}_{\varsigma}\right\|^{\varepsilon}+\left|\left\langle Y X \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{\varepsilon}}{2}
\end{align*}
$$

Taking the supremum over $\varsigma \in \Upsilon$ in the above inequality, we deduce

$$
\begin{aligned}
& \sup _{\zeta \in Y}\left|\left\langle Z \Im_{\zeta}, \Im_{\zeta}\right\rangle\right|^{2 \varepsilon} \\
& \quad \leq \sup _{\varsigma \in Y}\left(\frac{\left\|X \mathfrak{I}_{\zeta}\right\|^{\varepsilon}\left\|Y \Im_{\zeta}\right\|^{\varepsilon}+\left|\left\langle X \Im_{\zeta}, Y \Im_{\zeta}\right\rangle\right|^{\varepsilon}}{2}\right) \\
& \quad \leq \frac{1}{2}\left(\sup _{\varsigma \in Y}\left\{\left\|X \Im_{\zeta}\right\|^{\varepsilon}\left\|Y \Im_{\zeta}\right\|^{\varepsilon}\right\}\right. \\
& \left.+\sup _{\varsigma \in Y}\left|\left\langle Y X \Im_{\zeta}, \Im_{\zeta}\right\rangle\right|^{\varepsilon}\right) \\
& \quad \leq \frac{1}{2}\left(\sup _{\varsigma \in Y}\left\|X \Im_{\zeta}\right\|^{\varepsilon} \sup _{\zeta \in Y}\left\|Y \Im_{\zeta}\right\|^{\varepsilon}\right. \\
& \left.\quad+\sup _{\varsigma \in Y}\left|\left\langle Y X \Im_{\zeta}, \Im_{\zeta}\right\rangle\right|^{\varepsilon}\right) \\
& \text { which is equivalent to }
\end{aligned}
$$

$$
\operatorname{ber}^{2 \varepsilon}(Z) \leq \frac{1}{2}\left(\|X\|_{B e r}^{\varepsilon}\|Y\|_{B e r}^{\varepsilon}+\operatorname{ber}^{\varepsilon}(Y X)\right)
$$

This inequality gives the inequality (2.2). By using the inequality (2.4), we get

$$
\begin{aligned}
& \left|\left\langle Z \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2 \varepsilon} \leq \frac{1}{2}\left(\left\|X \mathfrak{I}_{\varsigma}\right\|^{\varepsilon}\left\|Y \Im_{\zeta}\right\|^{\varepsilon}\right. \\
& \left.+\left|\left\langle X \Im_{\varsigma}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}\right) \\
& \leq \frac{1}{2}\left(\frac{1}{\rho}\left\|X \mathfrak{I}_{\varsigma}\right\|^{p \varepsilon}+\frac{1}{\sigma}\left\|Y \Im_{\varsigma}\right\|^{\sigma \varepsilon}\right. \\
& \left.+\left|\left\langle X \Im_{\varsigma}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}\right) \\
& =\frac{1}{2}\left(\frac{1}{\rho}\left\|X \Im_{\varsigma}\right\|^{2 \frac{p \varepsilon}{2}}+\frac{1}{\sigma}\left\|Y \Im_{\varsigma}\right\|^{2 \frac{\sigma \varepsilon}{2}}\right. \\
& \left.+\left|\left\langle X \Im_{\varsigma}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}\right) \\
& =\frac{1}{2}\left(\frac{1}{\rho}\left\langle X^{2} \mathfrak{J}_{\varsigma}, \mathfrak{J}_{\varsigma}\right)^{\frac{\rho \varepsilon}{2}}\right. \\
& \left.+\frac{1}{\sigma}\left\langle Y^{2} \mathfrak{J}_{\zeta}, \mathfrak{J}_{\varsigma}\right\rangle^{\frac{\sigma \varepsilon}{2}}+\left|\left\langle X \Im_{\zeta}, Y \Im_{\zeta}\right\rangle\right|^{\varepsilon}\right) \\
& \leq \frac{1}{2}\left(\frac{1}{\rho}\left\langle X^{\rho \varepsilon} \mathfrak{J}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle+\frac{1}{\sigma}\left\langle Y^{\sigma \varepsilon} \mathfrak{J}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right. \\
& \left.+\left|\left\langle X \Im_{\varsigma}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}\right) \\
& =\frac{1}{2}\left(\left\langle\left(\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right) \mathfrak{J}_{\zeta}, \mathfrak{J}_{\varsigma}\right\rangle\right. \\
& \left.+\left|\left\langle X \Im_{\varsigma}, Y \Im_{\varsigma}\right\rangle\right|^{\varepsilon}\right)
\end{aligned}
$$

and, we reach that

$$
\begin{gathered}
\sup _{\varsigma \in Y}\left|\left\langle Z \Im_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2 \varepsilon} \leq \frac{1}{2} \sup _{\varsigma \in Y}\left(\left\langle\left(\frac{1}{\rho} X^{\rho \varepsilon}+\right.\right.\right. \\
\left.\left.\left.\frac{1}{\sigma} Y^{\sigma \varepsilon}\right) \mathfrak{J}_{\zeta}, \mathfrak{J}_{\varsigma}\right\rangle+\left|\left\langle X \Im_{\zeta}, Y \Im_{\zeta}\right\rangle\right|^{\varepsilon}\right)
\end{gathered}
$$

which implies that
$\operatorname{ber}^{2 \varepsilon}(Z) \leq \frac{1}{2}\left(\left\|\frac{1}{\rho} X^{\rho \varepsilon}+\frac{1}{\sigma} Y^{\sigma \varepsilon}\right\|_{b e r}+\operatorname{ber}^{\varepsilon}(Y X)\right)$ as required.

With special choices ρ, σ and ε in Theorem 1, we get the following result.

Corollary 1. (i) $\operatorname{ber}^{2 \varepsilon}(Z) \leq \frac{1}{2}\left\|X^{2 \varepsilon}+Y^{2 \varepsilon}\right\|_{\text {ber }}$ for $\varepsilon \geq \frac{1}{2}$ and $\rho=\sigma=2$ in (2.1),
(ii) $\operatorname{ber}(Z) \leq \frac{1}{2}\|X+Y\|_{\text {ber }}$ for $\varepsilon=\frac{1}{2}$ and $\rho=\sigma=$ 2 in (2.1),
(iii) $\operatorname{ber}^{2}(Z) \leq \frac{1}{2}\left\|X^{2}+Y^{2}\right\|_{\text {ber }}$ for $\varepsilon=1$ and $\rho=$ $\sigma=2$ in (2.1) (see [5]), (iv) $\operatorname{ber}^{2}(Z) \leq\left\|\frac{1}{\rho} X^{\rho}+\frac{1}{\sigma} Y^{\sigma}\right\|_{\text {ber }}$ for $\varepsilon=1$ in (2.1) (see [5]).
(v) $\operatorname{ber}^{2}(Z) \leq \frac{1}{2}\left[\|X\|_{B e r}\|Y\|_{B e r}+\operatorname{ber}(Y X)\right]$ for $\varepsilon=1$ in (2.2) (see [5])
(vi) $\operatorname{ber}^{4}(Z) \leq \frac{1}{2}\left[\|X\|_{B e r}^{2}\|Y\|_{B e r}^{2}+\operatorname{ber}^{2}(Y X)\right]$ for $\varepsilon=2$ in (2.2),
(vii)

$$
\operatorname{ber}^{2 \varepsilon}(Z) \leq \frac{1}{2}\left(\frac{1}{2}\left\|X^{2 \varepsilon}+Y^{2 \varepsilon}\right\|_{b e r}+\right.
$$ $\left.\operatorname{ber}^{\varepsilon}(Y X)\right)$ for $\varepsilon \geq 1$ and $\rho=\sigma=2$ in (2.3).

(viii) $\operatorname{ber}^{4}(Z) \leq \frac{1}{2}\left(\left\|\frac{1}{\rho} X^{2 \rho}+\frac{1}{\sigma} Y^{2 \sigma}\right\|_{\text {ber }}+\right.$
$\left.\operatorname{ber}^{2}(Y X)\right)$ for $\varepsilon=2$ and $\rho, \sigma>1 \operatorname{in}(2.3)$.
(ix) $\quad \operatorname{ber}^{4}(Z) \leq \frac{1}{2}\left(\frac{1}{2}\left\|X^{4}+Y^{4}\right\|_{\text {ber }}+\operatorname{ber}^{2}(Y X)\right)$ for $\rho=\sigma=\varepsilon=2$ in (2.3).

Assume that $\left[\begin{array}{cc}A A^{*} & A B \\ B^{*} A^{*} & B^{*} B\end{array}\right] \in \mathbb{B}(\mathcal{H} \oplus \mathcal{H})$. Putting $X=\left|A^{*}\right|^{2}, Y=|B|^{2}$ and $Z=B^{*} A^{*}$ in Theorem 1, we obtain the following theorem.

Theorem 2. Let $A, B \in \mathbb{B}(\mathcal{H})$ and $\rho, \sigma>1$ with $\frac{1}{\rho}+\frac{1}{\sigma}=1$. Then
(i) If $\varepsilon>0$ and $\rho \varepsilon, \sigma \varepsilon \geq 1$, then

$$
\begin{equation*}
\operatorname{ber}^{2 \varepsilon}(A B) \leq\left\|\frac{1}{\rho}\left|A^{*}\right|^{2 \rho \varepsilon}+\frac{1}{\sigma}|B|^{2 \sigma \varepsilon}\right\|_{b e r} \tag{2.5}
\end{equation*}
$$

(ii) If $\varepsilon \geq 1$, then

$$
\begin{align*}
\operatorname{ber}^{2 \varepsilon}(A B) \leq & \frac{1}{2}\left[\|A\|_{B e}^{2 \varepsilon}\|B\|_{B e r}^{2 \varepsilon}\right. \tag{2.6}\\
& \left.+\operatorname{ber}^{\varepsilon}\left(|B|^{2}\left|A^{*}\right|^{2}\right)\right]
\end{align*}
$$

(iii) If $\varepsilon \geq 1$ and $\rho \varepsilon, \sigma \varepsilon \geq 2$, then

$$
\begin{align*}
\operatorname{ber}^{2 \varepsilon}(A B) \leq & \frac{1}{2}\left(\| \frac{1}{\rho}\left|A^{*}\right|^{2 \rho \varepsilon}\right. \\
& +\frac{1}{\sigma}|B|^{2 \sigma \varepsilon} \|_{b e r} \tag{2.7}\\
& \left.+\operatorname{ber}^{\varepsilon}\left(|B|^{2}\left|A^{*}\right|^{2}\right)\right)
\end{align*}
$$

With special choices ρ, σ and ε in Theorem 2, we get the following result.

Corollary
2. (i) $\operatorname{ber}^{2 \varepsilon}(A B) \leq \frac{1}{2}| |\left|A^{*}\right|^{4 \varepsilon}+$ $|B|^{4 \varepsilon} \|_{\text {ber }}$ for $\varepsilon \geq \frac{1}{2}$ and $\rho=\sigma=2$ in (2.5),
(ii) $\operatorname{ber}(A B) \leq \frac{1}{2}\left\|\left|A^{*}\right|^{2}+|B|^{2}\right\|_{\text {ber }}$ for $\varepsilon=\frac{1}{2}$ in (2.5),
(iii) $\operatorname{ber}^{2}(A B) \leq \frac{1}{2}\left\|\left|A^{*}\right|^{4}+|B|^{4}\right\|_{\text {ber }}$ for $\varepsilon=1$ in
(2.5) (see [5]),
(iv) $\operatorname{ber}^{2}(A B) \leq\left\|\frac{1}{\rho}\left|A^{*}\right|^{2 \rho}+\frac{1}{\sigma}|B|^{2 \sigma}\right\|_{\text {ber }}$ for $\varepsilon=$ 1 and $\rho, \sigma>1$ in (2.5),
(v) $\operatorname{ber}^{4}(A B) \leq \frac{1}{2}\left[\|A\|_{B e r}^{4}\|B\|_{B e r}^{4}+\right.$
ber $\left.^{2}\left(|B|^{2}\left|A^{*}\right|^{2}\right)\right]$ for $\varepsilon=2$ in (2.6),
(vi) $\operatorname{ber}^{2 \varepsilon}(A B) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|A^{*}\right|^{4 \varepsilon}+|B|^{4 \varepsilon}\right\|_{b e r}+\right.$ $\operatorname{ber}^{\varepsilon}\left(|B|^{2}\left|A^{*}\right|^{2}\right)$ for $\varepsilon \geq 1$ and $\rho=\sigma=2$ in (2.7),
(vii) $\quad \operatorname{ber}^{4}(A B) \leq \frac{1}{2}\left(\left\|\frac{1}{\rho}\left|A^{*}\right|^{4 \rho}+\frac{1}{\sigma}|B|^{4 \sigma}\right\|_{\text {ber }}+\right.$ $\left.\operatorname{ber}^{2}\left(|B|^{2}\left|A^{*}\right|^{2}\right)\right)$ for $\varepsilon=2$ and $\rho, \sigma>1$ in (2.7),
(viii)

$$
\operatorname{ber}^{4}(A B) \leq \frac{1}{2}\left(\frac{1}{2}\left\|\left|A^{*}\right|^{8}+\frac{1}{\sigma}|B|^{8}\right\|_{b e r}+\right.
$$ $\operatorname{ber}^{2}\left(|B|^{2}\left|A^{*}\right|^{2}\right)$ for $\rho=\sigma=\varepsilon=2$ in (2.7).

Now, we will prove the following theorem.
Theorem 3. Let $X, Y, Z \in \mathbb{B}(\mathcal{H})$ with $X, Y \geq 0$ and the operator matrix

$$
\left[\begin{array}{cc}
X & Z^{*} \\
Z & Y
\end{array}\right] \in \mathbb{B}(\mathcal{H} \oplus \mathcal{H})
$$

be positive. Then we have
$\operatorname{ber}^{2}(Z) \leq \|(1-\gamma) X^{\varepsilon}$

$$
\begin{equation*}
+\gamma Y^{\varepsilon}\left\|_{b e r}^{\frac{1}{\varepsilon}}\right\| X\left\|_{b e r}^{\gamma}\right\| Y \|_{b e r}^{1-\gamma} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{ber}^{2}(Z) \leq\left\|(1-\gamma) X^{\varepsilon}+\gamma Y^{\varepsilon}\right\|_{b e r}^{\frac{1}{\varepsilon}} \| \gamma X^{\varepsilon} \\
+(1-\gamma) Y^{\varepsilon} \|_{b e r}^{\frac{1}{\varepsilon}} \tag{2.9}
\end{gather*}
$$

for $\gamma \in[0,1]$ and $\varepsilon \geq 1$.
Proof. Let $\varsigma \in \Upsilon$ be an arbitary. From the inequalities given by [16, Lemma 1, p. 2] and the McCarthy inequality for $\varepsilon \geq 1$, we get

$$
\begin{aligned}
& \left|\left\langle Z \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2} \leq\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle \\
& =\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle^{1-\gamma}\left\langle Y \Im_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle^{\gamma}\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle^{\gamma}\left\langle Y \Im_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle^{1-\gamma} \\
& \leq\left[(1-\gamma)\left\langle X \mathfrak{I}_{C}, \mathfrak{I}_{\zeta}\right\rangle\right. \\
& \left.+\gamma\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\right]\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\zeta}\right\rangle^{\gamma}\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right)^{1-\gamma} \\
& \text { and } \\
& (1-\gamma)\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{\varepsilon}+\gamma\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{\varepsilon} \\
& \leq(1-\gamma)\left\langle X^{\varepsilon} \mathfrak{I}_{\zeta}, \mathfrak{J}_{\varsigma}\right\rangle+\gamma\left\langle Y^{\varepsilon} \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle \\
& =\left\langle\left[(1-\gamma) X^{\varepsilon}+\gamma Y^{\varepsilon}\right] \Im_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle
\end{aligned}
$$

For $\varepsilon \geq 1$, by using the convexity, we reach that

$$
\begin{aligned}
& \left|\left\langle Z \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2 \varepsilon} \\
& \leq\left[(1-\gamma)\left\langle X \Im_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right. \\
& \left.+\gamma\left\langle Y \Im_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right]^{\varepsilon}\left\langle X \mathfrak{J}_{\varsigma}, \mathfrak{J}_{\zeta}\right\rangle^{\varepsilon X}\left\langle Y \Im_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle^{\varepsilon(1-\gamma)} \\
& \leq\left[(1-\gamma)\left\langle X \mathfrak{I}_{C}, \mathfrak{J}_{\zeta}\right\rangle^{\varepsilon}\right. \\
& \left.+\gamma\left\langle Y \Im_{\zeta}, \mathfrak{J}_{\varsigma}\right)^{\varepsilon}\right]\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{\varepsilon X}\left\langle Y \Im_{\zeta}, \mathfrak{J}_{\zeta}\right)^{\varepsilon(1-\gamma)} \\
& \leq\left\langle\left[(1-\gamma) X^{\varepsilon}\right.\right. \\
& \left.\left.+\gamma Y^{\varepsilon}\right] \Im_{\zeta}, \mathfrak{J}_{\varsigma}\right\rangle\left\langle X \Im_{\zeta}, \Im_{\zeta}\right)^{\varepsilon X}\left\langle Y \Im_{\zeta}, \Im_{\zeta}\right\rangle^{\varepsilon(1-\gamma)}
\end{aligned}
$$

and, so

$$
\begin{aligned}
& \text { ber }^{2 \varepsilon}(Z)=\sup _{\zeta \in Y}\left|\left\langle Z \Im_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right|^{2 \varepsilon} \\
& \leq \sup _{\varsigma \in \mathrm{Y}}\left\{\left\langle\left[(1-\gamma) X^{\varepsilon}\right.\right.\right. \\
& \left.\left.+\gamma Y^{\varepsilon}\right] \Im_{\zeta}, \widetilde{J}_{\zeta}\right\rangle\left\langle X \Im_{\zeta}, \widetilde{J}_{\zeta}\right\rangle^{\varepsilon X}\left\langle Y \Im_{\zeta}, \Im_{\zeta}{ }^{\varepsilon(1-\gamma)}\right\} \\
& =\left\|(1-\gamma) X^{\varepsilon}+\gamma Y^{\varepsilon}\right\|_{\text {ber }}\|X\|_{\text {ber }}^{\varepsilon X}\|Y\|_{\text {ber }}^{\varepsilon(1-\gamma)}
\end{aligned}
$$

as required the inequality (2.8). Using similar arguments above, we deduce that

$$
\begin{aligned}
& \left|\left\langle Z \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\right|^{2} \leq\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle \\
& =\left\langle X \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{1-\gamma}\left\langle Y \mathfrak{I}_{\zeta}, \mathfrak{I}_{\varsigma}\right\rangle^{\gamma}\left\langle X \mathfrak{I}_{G}, \mathfrak{J}_{\varsigma}\right\rangle^{\gamma}\left\langle Y \mathfrak{I}_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle^{1-\gamma} \\
& \leq\left[(1-\gamma)\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle+\gamma\left\langle Y \mathfrak{I}_{\zeta}, \mathfrak{I}_{\zeta}\right\rangle\right]\left[\gamma\left\langle X \mathfrak{I}_{\zeta}, \mathfrak{J}_{\zeta}\right\rangle\right. \\
& \left.+(1-\gamma)\left\langle Y \Im_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left\langle Z \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle\right|^{2 \varepsilon} & \leq\left\langle\left[(1-\gamma) X^{\varepsilon}+\gamma Y^{\varepsilon}\right] \Im_{\varsigma}, \mathfrak{I}_{\varsigma}\right\rangle\left\langle\left[\gamma X^{\varepsilon}\right.\right. \\
& \left.\left.+(1-\gamma) Y^{\varepsilon}\right] \mathfrak{I}_{\varsigma}, \mathfrak{J}_{\varsigma}\right\rangle
\end{aligned}
$$

Hence, by taking the supremum over $\varsigma \in \Upsilon$ in the above inequality, we reach that

$$
\begin{gathered}
\operatorname{ber}^{2}(Z) \leq\left\|(1-\gamma) X^{\varepsilon}+\gamma Y^{\varepsilon}\right\|_{b e r}^{\frac{1}{\varepsilon}} \| \gamma X^{\varepsilon} \\
+(1-\gamma) Y^{\varepsilon} \|_{b e r}^{\frac{1}{\varepsilon}}
\end{gathered}
$$

which proves the inequality (2.9).
From Theorem 3, then we have the following result.
Corollary 3. We have

$$
\begin{align*}
\operatorname{ber}^{2}(Z) \leq & \frac{1}{2^{\frac{1}{\varepsilon}}} \| X^{\varepsilon} \tag{2.10}\\
& \quad+\gamma Y^{\varepsilon}\left\|_{b e r}^{\frac{1}{\varepsilon}}\right\| X\left\|^{\frac{1}{2}}\right\| Y \|_{b e r}^{\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{ber}(Z) \leq \frac{1}{2^{\frac{1}{\varepsilon}}}\left\|X^{\varepsilon}+\gamma Y^{\varepsilon}\right\|_{b e r}^{\frac{1}{\varepsilon}} \tag{2.11}
\end{equation*}
$$

If we put $X=\left|A^{*}\right|^{2}, Y=|B|^{2}$ and $Z=B^{*} A^{*}$, in Theorem 3, then we have the following result.

Theorem 4. Let $A, B \in \mathbb{B}(\mathcal{H})$, then for $\gamma \in[0,1]$ and $\varepsilon \geq 1$,

$$
\begin{align*}
& \operatorname{ber}^{2}(A B) \\
& \leq \|(1-\gamma)\left|A^{*}\right|^{2 \varepsilon} \\
& +\gamma|B|^{2 \varepsilon}\left\|_{b e r}^{\frac{1}{\varepsilon}}\right\| A\left\|_{b e r}^{2 \gamma}\right\| B \|_{b e r}^{2(1-\gamma)} \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{ber}^{2}(A B) \leq & \|(1-\gamma)\left|A^{*}\right|^{2 \varepsilon} \\
& +\gamma|B|^{2 \varepsilon}\left\|_{b e r}^{\frac{1}{\varepsilon}}\right\| \gamma\left|A^{*}\right|^{2 \varepsilon} \tag{2.13}\\
& +(1-\gamma)|B|^{2 \varepsilon} \|_{b e r}^{\frac{1}{\varepsilon}}
\end{align*}
$$

In particular,
$\operatorname{ber}^{2}(A B)$

$$
\begin{equation*}
\leq \frac{1}{2^{\frac{1}{\varepsilon}}}\left\|\left|A^{*}\right|^{2 \varepsilon}+|B|^{2 \varepsilon}\right\|_{b e r}^{\frac{1}{\varepsilon}}\|A\|_{B e r}\|B\|_{B e r} \tag{2.14}
\end{equation*}
$$

and

$$
\operatorname{ber}(A B) \leq \frac{1}{2^{\frac{1}{\varepsilon}}}\left\|\left|A^{*}\right|^{2 \varepsilon}+|B|^{2 \varepsilon}\right\|_{\text {ber }}^{\frac{1}{\varepsilon}}
$$

References

[1] F. A. Berezin, "Covariant and contravariant symbols for operators", Math. USSR-Izvestiya, 6 (1972), 1117-1151.
[2] M. Bakherad, "Some Berezin number inequalities for operator matrices", Czechoslovak Mathematical Journal, 68(4) (2018), 997-1009.
[3] H. Başaran and V. Gü rdal, "Berezin radius and CauchySchwarz inequality", Montes Taurus J. Pure Appl. Math., 5(3) (2023), 16-22.
[4] M. Bakherad and M.T. Garayev, "Berezin number inequalities for operators", Concrete Operators, 6 (1) (2019), 33-43.
[5] P. Bunia, "Improved bounds for the numerical radius via polar decomposition of operators", Preprint, http://arxiv.org/abs/2303.03051v1
[6] M.L. Buzano, "Generalizzazione della diseguaglianza di Cauchy-Schwarz", Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405--409 (1974).
[7] I. Chalendar, E. Fricain, M. Gü rdal and M. Karaev, "Compactness and Berezin symbols", Acta Scientiarum Mathematicarum, 78 (2012), 315-329
[8] S.S. Dragomir, "Power inequalities for the numerical radius in terms of generalized Aluthge transform of operators in Hilbert spaces", RGMIA Res. Rep. Coll. 26 (2023), Art. 26, 14 pp.
[9] M. Garayev, F. Bouzeffour, M. Gü rdal and C.M. Yangö z, "Refinements of Kantorovich type, Schwarz and Berezin number inequalities", Extracta Mathematicae, 35(1) (2020), 1-20.
[10] M.T. Garayev, H. Guediri, M. Gü rdal and G.M. Alsahli, "On some problems for operators on the reproducing kernel Hilbert space", Linear and Multilinear Algebra, 69(11) (2021), 2059-2077.
[11] M. Gü rdal, "Power inequalities for the Berezin radius of operators", 1st International Conference on Engineering
and Applied Natural Sciences, May 10-23, Konya, Turkey, 2022.
[12] M. Gü rdal, H. Başaran and O.O. Satmaz, Interpolation inequalities via Berezin radius, Casp. J. Math. Sci., in press, (2023).
[13] M. B. Huban, H. Başaran and M. Gü rdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(2021), 1-12.
[14] M. B. Huban, H. Başaran and M. Gü rdal, Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci., 14(2022), 129-137.
[15] M. T. Karaev, "Berezin symbol and invertibility of operators on the functional Hilbert spaces", J. Funct. Anal., 238 (2006), 181-192.
[16] F. Kittaneh, "Notes on some inequalities for Hilbert space operators", Publ. Res. Inst. Math. Sci., 24(2) (1988), 283-293.
[17] B. Simon, "Trace Ideals and Their Applications", Cambridge University Press, Cambridge, 1979.

