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Abstract — Smart materials capable of modifying their physical properties in response to stresses (variation
in temperature, electric or magnetic field, mechanical stress, etc.), the material reacts to a stimulus detected
outside and adapts its response. Actuators in particular provide a mechanical action or change their
appearance (deformation, color change, etc.) to indicate a change in the environment or to provoke a
corrective action. Piezoelectric materials belong to this category of material.
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I. INTRODUCTION

Piezoelectricity attracts the attention of many
researchers [1-2]. Han and Pan [3] presented exact
solution for the functionally graded multilayer
rectangular magneto-piezoelectric plate. Also, and
by using the local methods, Sladek et al [4] solved
the problems of buckling of the magneto-
piezoelectric plate resting on elastic foundation
under a stationary load harmonic.

In this chapter, we are interested in the analysis
of buckling of magneto-piezoelectric nano-plates
resting on elastic foundation by the non-local
elasticity theory of Mindlin. Electric and magnetic
fields can be ignored in the plane and the equations
motion of the magneto-piezoelectric nano-plates are
established by applying the variationals principle.
The numerical results show effects of electric
potentiality, magnetic  potentiality, Winkler
foundation coefficient and Pasternak foundation
coefficient on the buckling load.

II. THEORY AND FORMULATION

A.Non-local theory of magneto-piezoelectric plates

The nonlocal elasticity theory suppose that the
state of stress at a point in the body depends not only
on state of stress at that point, but as well on the state

at all points in the body, The general form of
constitutive relation in the nonlocal elasticity type
representation involves, over the whole body, an
integral which contains a nonlocal function
describing the influence of scale effect on the
constraint. The nonlocal constitutive equations of an
elastic and homogeneous solid are given by Eringen

[5].

o' (x) =[x = x|, z) ojdV (x) @
With:
o', o; 1 The non-local stress tensor and the local

ij !
stress tensor; respectively.

a(x—%|,z) : The non-local module.

[x=%| : The Euclidean distance.

r=g,a/L

Or:

L : External characteristic length of the nanoplate.
e, : Appropriate constant for each material.

a: Internal characteristic length of material.
Therefore, eoa: constant parameter obtained with

structural mechanics through molecular and
experimental studies. For the magneto-piezoelectric
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solid, the nonlocal constitutive equation is the
equations:

D" (x)= ja.(]x —x|zPldv(x) (2

B (x)= I“QX ~xlzBldv(x) (3

With:

D', D;: Components of non-local and local

electrical displacement; respectively.
Bi’j",Bi'j: Components of local and nonlocal
magnetic induction, respectively.

By the assumptions give out by Eringen [5-6], the

non-local elasticity equations simplified to the
following differentials equations:

- (e,a)v2)oy

—(e,a =0}
(- (e,af V2D = D! (4-6)
(- (e,a)v?)B! =B
B. MINDLIN PLATE THEORY
For Mindlin's plate theory [7-8], the

displacement field can be expressed as:
u (% y,2) = 2i,(X,Y)
Uy(X, Y, Z) = Z'(//y (X1 y)
u,(X,y,2) = w.(x,y)

(7-9)

The strain field obtained in the form:

gxxzzal//x
OX
0
£, =1 Yy
oy
oW
V=2tV (10-14)
y ay y
_ow
7/ZX aX l//X
0
7/xy_Z %_'_ v/y
oy OX

[11. MODELING THE PROBLEM

Figure .1 represents a magneto-piezoelectric
nano-plate of length. width and thickness resting on
an elastic foundation of the Winkler-Pasternak type.
A Cartesian system is used to describe the nano-
plate which is subjected to bi-axial compressive
load, electrical potentiality and magnetic
potentiality.

— -
X

—=4—— Fondation Winkler

Fondation Pasternak

vy(x p,2)

+0,(xy.2)

Figure.1 Magneto-piezoelectric nano-plate

A. NON-LOCAL CONSTITUTIVE RELATIONS FOR THE
MAGNETO-PIEZOELECTRIC NANO-PLATE

For magneto-piezoelectric isotropic solids, the
constitutive relations can be formulated as follows:

Oy Ol Gy C 0 0 0lfey| [0 0 ey 00 fy
o, oyl 6, €, 0 0 O0fle,| [0 0 ey||E | (00 fy
0 =68 Vo, 1=10 0 ¢y 0 0Ny, t-10 &, OWE, 110 f, 0
Oy u 0 0 0 ¢y Offra| |& 0 O||E,| [fs 0O
oy oy 10 0 0 0 cllry| (000 000

Ex

D, D,] (000 e 0]lg,| [h, 0 0]fE,
D, t-(6,a)’'V*{D, =10 0 &, 0 0y, t+/0 h, OE,
D, D,| ey & 0 0 0|7,| [0 0 hyllE,

With:

Cij» The elastic, piezoelectric and

dielectric constants.

e; and h;:

H,and E, : magnetic and electric field strengths.

f;.0; et u;:The piezo-magnetic, electromagnetic
and magnetic coefficients; respectively.

{E:—V¢

18-19
v (18-19)
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With :

¢ and ¢ : Gradients of electric and magnetic
potentialities

A.EQUATIONS OF MOTION

The deformation energy of the magneto-
piezoelectric nano-plate can be given by the
following relation:

U :;”y/(oxxgxx +0,6,+0

Q

+0,75 10,7, ~DEx -D,E, -D,E,

Vv 7 Vv xy}/ ¥y

~BH,-BH, -BH,Joa (20)
the stress-displacement relations written as:
MM, M= hf{axx,a o, j2dz
-h/2
h/2
{Qxx'ny}: k I{sz’ayz }dZ (21_22)

-h/2

With k , the shear correction coefficient; we take
k=7x%/12

By replacing the equations (10-14) and (15-17)
in the equation (20) we arrive at the following
equation:

N VAV ZOR Y 2 21 w w
U= I[ "o +M, — Py +M (6y+8xj+Q( +~X]+Qw(wy+@/j]dxdy

f”“h'fz[ Z@Jrs a(pdedz

Virtual strain energy expressed in the following

OWJ]
3)/

w:ii[mxxa(a‘”] M o[aay j+M 6[%+—]+Q 5(

SRR EE

The elastic surrounding environment external
virtual work can be written as:

(23)

] +Qy0] [q/y

(24)

ow =1 [a,8md02 (25)
2(2
With q,being a force related to Pasternak

foundation and the transverse load which expressed
in the form:

o’w ow
q, = K, =K, Vw+(N,, +N,, + Nxa)y+(NYm AN N,

With:
Kgand K, : Pasternak and Winkler elastic
foundation coefficients; respectively.

(26)

Now, we use the following variational principle:

SU —SW =0. 27)

By replacing the equations (24) - (25) in (27), by
integrating by parts, we obtain the governing
equations:

M X +8M X

ooy
M, M,

7_Q =0
ox oy
0Q, d 2
Q“+&+KW,W—K9.V2W+(NW+Nxe+N )a—+(N N 4N )a
ox oy ax? 0

_Qxx =0

=0 (28-3)

N,.,N,., N

With:  N,.,,N,.,N,,, Ny.and N, The
mechanical, electrical and magnetic forces for the

directions x et y.

ym?

Nxm =P

N xe — e3lV0
Nxa = f31Qo
N ym = AP

N ve — e31\/0
Nya = f31Q0

By substituting the equations (111.16) - (111.17) in the
equations (111.31) - (111.32), the following two
algebraic equations easily obtained:

oy, ¢
P __h33_2
ox oy Ca

0
Wy g Wy

3}/ U7 P Hyp—% 62

Thus, by adopting Cramer's rule, we can have:

(33-38)

o'y _

33
oz*
(39-40)
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52¢ _ Hgs€q — Uss Ty
oz’ Ny ttys — 9323 (41— 42)
62@ _ hys fay — 035
oz° Ny ttys — ge?s
With :
0
A=V Yy (43)
OX oy

By derivation of equations (41-42), we arrive at:

8(15 :Uss 31— U3 f31 ZA+¢O(X y)

sz hhse%ﬂ33 933 (44— 45)

0@ _ Nyg T = Usa€s ZA+(p0(X y)

oz hyg iy — 933

So:

H33€31 — Q33 f31 2 h? Vo Vo

¢= A[z —— |+ ——Z+—
2(h33ﬂ33 - 9323) 4 h 2

— h33 f3‘1 - gssez?,l A(Zz _h_zj +& 7 +&

2Ny 455 — O3 4 h 2

The magnetic and electric boundary conditions
are:

g(h12)=v, ; ¢(-h/2)=
And
p(h/2)=Q, , p(~h/2)=0

From equations (21-22), the following relations
can be obtained:

= h® oy, 5 h® oy
( )M =Ch— W +Cp, —
12 12 oy
3 39
(1 2V2)Myy ~12h 5§llx Ezzh_ d
12 oXx 12 oy
0
- (e,af vZ M, =cqq [oyy vy
12 oy OX

oW
=c,kh —
b 44 [l//x + GX)
oW
byy = C44kh[l//y +E]

=

Or:

195

E311 = (Cn + e31M1 + f31M 2)
612 = (012 +931|\/|1 + f31M2) (53-55)
E322 = (sz + e31M1 + f31M 2)
With:
M€ — Qs f
M, = ;3 31 33231
3bs3 — U3
M , = h33 f3l — 933531 (56 _ 57)
Nyattss — Oss

By replacing the equations (111.48) - (111.52) by
the equations (28-30), we can obtain:

ow
_CMk[V/x +&j:0

611h2 82l//x+512h2 aZWy_'_Csahz 62% +62V/y
122 ar 12 oy 12 | oyt oxoy

b’ (V) v ) ol B, el Yy Ky + 2o (58-60)
12 | ox? 6x8y 12 axy 12 Uy
6 2
T, L) P ﬂﬁl 12 V7 K, WK, Vs (N, N, N, )
OX 6x o ' oX

46; AZ}NYBF}

We introduce the following non-dimensional term:

Y X _ h L k G
W=— : X=-— y:x S=— n=— 6=— i = L
L L b L b 5 Cy
2 2
‘- K,L* - K, L o ONGL -
" he 9 hd T g
11 11 11
Equations (58-60) written in the following non-
dimensional form:
hél/2 M% CEG[ zaV Ul _0449(’// +6*VY]:0
R A&y | Ky o
G %Jr 57“/ ﬂﬂ ciiﬂ,gug(,/,yww] 0
12 ax@ &y 12 b
oy, owm) v, oW\ - (W L0W| - - - \OW
CMQ{EJr(B)(?]HMH(UEuqzﬁ}kWW_kg[axjwzﬁ]Jr(Nm+N“+N“)6x? (62-64)

57 ) & Twy

o
+(NW+NXE+N BW 0% (N N+, avﬁﬁﬂzg =0
& Ty

B. NAVIER SOLUTION OF A SIMPLYS SUPPORTED
MAGNETO-PIEZOELECTRIC NANO-PLATE

(48-52)

For a simply supported magneto-piezoelectric
nano-plate, the following boundary conditions:



W=0 v, -0, M_=0 , x=0L L, :—a26644—ﬂ29172§44+kw+kg(a2+ﬁ2n2)—az(ﬁxm+Nxe+Nxa)—ﬁ2n2(ﬂym+ﬂye+ﬂya)
L, =—a’ - Af°n
W=0 , y,=0 , M, =0 , x=0b (65— 66) _
” - Buckling load:
To solve the buckling problem, we assume the det [A]
following solution: - L (LMLZZ _ sz)
W, = Xpo-C08(aX ) sin(5y) The expression of the critical buckling load is
W, =Y,.sin(aX).cos(5y) (67 —69) given in the dimensionless form:
W =W, .sin(aX).cos(4Y)
5 _PU
in which cr h3c11
@=mz IV.CONCLUSION
and

The behavior of square magneto-piezoelectric
B=nz nano-plates resting on an elastic medium was
obtained using first-order equations of the shear

With: deformation theory. Magnetic and Electric fields are
m and n : The numbers of the modes. ignored in the plane of the nano-plate. From
_ _ _ Maxwell's equation and electromagnetic boundary
We therefore obtain the following solution: conditions, the variation of magnetic and electric
otentialities along the thickness direction is
Ly L Ly |[Xm] [0 o J

L, L L Y +=40 70 ' . .
LZl L22 L23 Wm” 0 (70) These equations can be useful for the design and
st T2 s T mn analysis of intelligent structures built from piezo-

electric materials.
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