

All Sciences Proceedings http://as-proceeding.com/

2nd International Conference on Engineering, Natural and Social Sciences

April 4-6, 2023 : Konya, Turkey

© 2023 Published by All Sciences Proceedings

Bohr Radius For A Certain Subclass Of Harmonic Functions Defined By A New Family

Abdullah DURMUŞ*, Sibel YALÇIN 2 and Hasan BAYRAM 3

 st (a.drmus99@gmail.com Email of the corresponding author

Abstract – In this article, we obtain Bohr radius for the subclass

 $\mathcal{R}^n_{\mathcal{H}}(\alpha,\gamma,\beta) = \{f = h + \bar{g}: \operatorname{Re}[h'(z) + \alpha z h''(z) + \gamma z^2 h'''(z) - \beta] > |g'(z) + \alpha z g''(z) + \gamma z^2 g'''(z)|\},$ where $h(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$, $g(z) = \sum_{k=n+1}^{\infty} b_k z^k$ are analytic in the open unit disk, and $\alpha \ge \gamma \ge 0$, $0 \le \beta < 1$ and $n \ge 1$.

Keywords - Bohr Radius, Harmonic Functions, Univalent Functions

I. INTRODUCTION

Let \mathcal{H} be the class of complex-valued harmonic functions f in $U = \{z \in \mathbb{C} : |z| < 1\}$, normalized so that f(0) = 0, $f_z(0) = 1$. Also, let $\mathcal{H}_0 = \{f \in \mathcal{H} : f_{\bar{z}}(0) = 0\}$. Such an $f \in \mathcal{H}_0$ has the decomposition $f = h + \bar{g}$, where h and g are analytic in U and has the following representation:

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z)$$

$$= \sum_{k=2}^{\infty} b_k z^k. \tag{1}$$

A harmonic function f is locally univalent and sense-preserving in U if and only if $J_f(z) = |f_z(z)|^2 - |f_{\bar{z}}(z)|^2$ is positive in U. Set

$$\mathcal{H}_0^n = \{ f = h + \bar{g} \in \mathcal{H} : h'(0) - 1 = g'(0) \\ = h''(0) = \dots = h^{(n)}(0) = g^{(n)}(0) \\ = 0 \},$$

where $n \ge 2$. When n = 1, we have $\mathcal{H}_0^1 \equiv \mathcal{H}_0$. Thus, each $f = h + \bar{g} \in \mathcal{H}_0^n$ has the form

$$h(z) = z + \sum_{k=n+1}^{\infty} a_k z^k,$$

and

$$g(z) = \sum_{k=n+1}^{\infty} b_k z^k.$$
 (2)

See [2,4]. In [7], Ponnusamy et. al. introduced a class $P_{\mathcal{H}}^0 := \{ f \in \mathcal{H}_0 : Re[h'(z)] > |g'(z)| \}$ for $z \in U$ and they proved that functions in $P_{\mathcal{H}}^0$ are univalent in U.

In [6], Nagpal and Ravichandran studied a class $W_{\mathcal{H}}^0$ of functions $f \in \mathcal{H}_0$ satisfying the condition Re[h'(z) + zh''(z)] > |g'(z) + zg''(z)| for $z \in U$.

Ghosh and Vasudevarao [5] investigated the class $W_{\mathcal{H}}^0(\alpha)$ of functions $f \in \mathcal{H}_0$ satisfying the condition $Re[h'(z) + \alpha z h''(z)] > |g'(z) + \alpha z g''(z)|$ for $0 \le \alpha$, and $z \in U$.

Yaşar and Yalçın defined $\mathcal{R}^0_{\mathcal{H}}(\alpha, \gamma)$ class functions $f = h + \bar{g} \in \mathcal{H}_0$ and satisfy

Re[
$$h'(z) + \alpha z h''(z) + \gamma z^2 h'''(z)$$
]
> $|g'(z) + \alpha z g''(z) + \gamma z^2 g'''(z)|$ (3)

where $\alpha \ge \gamma \ge 0$ (See [8]).

Denote by $\mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$, the class of functions $f = h + \bar{g} \in \mathcal{H}^0$ and satisfy

$$Re[h'(z) + \alpha z h''(z) + \gamma z^2 h'''(z) - \beta]$$

$$> |g'(z) + \alpha z g''(z)$$

$$+ \gamma z^2 g'''(z)| \qquad (3)$$

¹Department of Mathematics/Faculty of Arts and Sciences, Bursa Uludağ University, Turkey

² Department of Mathematics/Faculty of Arts and Sciences, Bursa Uludağ University, Turkey

³ Department of Mathematics/Faculty of Arts and Sciences, Bursa Uludağ University, Turkey

where $\alpha \geq \gamma \geq 0$, $0 \leq \beta < 1$ and $n \geq 1$ (See [3]). The class $\mathcal{R}^1_{\mathcal{H}}(\alpha, \gamma, \beta) = \mathcal{R}_{\mathcal{H}}(\alpha, \gamma, \beta)$ generalizes several previously studied classes of harmonic mappings. For examples, $\mathcal{R}_{\mathcal{H}}(0,0,0) = \mathcal{P}^0_{\mathcal{H}}$ [9], $\mathcal{R}_{\mathcal{H}}(1,0,0) = \mathcal{W}^0_{\mathcal{H}}$ [10], $\mathcal{R}_{\mathcal{H}}(\alpha,0,0) = \mathcal{W}^0_{\mathcal{H}}(\alpha)$ [5], $\mathcal{R}_{\mathcal{H}}(0,0,\beta) = \mathcal{P}^0_{\mathcal{H}}(\beta)$ [7] and $\mathcal{R}_{\mathcal{H}}(\alpha,\gamma,0) = \mathcal{R}^0_{\mathcal{H}}(\alpha,\gamma)$ [8]. We denote $\mathcal{R}^n_{\mathcal{H}}(\alpha,\gamma,0) = \mathcal{R}^n_{\mathcal{H}}(\alpha,\gamma,\beta)$ and $\mathcal{R}^1_{\mathcal{H}}(\alpha,\gamma,\beta) = \mathcal{R}_{\mathcal{H}}(\alpha,\gamma,\beta)$.

Definition 1. Let $f = h + \bar{g} \in \mathcal{H}^0$ be a harmonic function h and g are given by (1). Then the Bohr Phenomenon is to find the constant $0 < \rho_* \le 1$ such that the inequality

$$\rho + \sum_{k=2}^{\infty} (|a_k| + |b_k|) \rho^k \le d\left(f(0), \partial(f(U))\right)$$

holds for all $|z| = \rho \le \rho_*$, where $d(f(0), \partial(f(U)))$ denotes the Euclidean distance between f(0) and the boundary of f(U). The largest such ρ_* is called the Bohr radius.

The idea of Bohr radius, originated from the work of Bohr (see [1]) on the inequality $\sum_{k=2}^{\infty} |a_k| \rho^k \leq 1$ $(\rho \leq 1/3)$ for an analytic function with the power series $\sum_{k=0}^{\infty} a_k z^k$, which is known as Bohr's Theorem. Finding the Bohr radius for such inequalities with diverse possibilities has become a popular topic.

II. BOHR RADIUS FOR THE CLASS $\mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$

Lemma 1. [3] Suppose $f \in \mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$. Then for $n \ge 1$ and $k \ge n + 1$,

$$|a_k| + |b_k| \le \frac{2(1-\beta)}{k[1+(k-1)\alpha+(k^2-3k+2)\gamma]}$$

Lemma 2. [3] Suppose $f \in R^n_{\mathcal{H}}(\alpha, \gamma, \beta)$. Then

$$|z| + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)(-1)^{k-1}|z|^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)} \le |f(z)|.$$

Theorem 1. $f \in \mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$. Then

$$|z| + \sum_{k=n+1}^{\infty} (|a_k| + |b_k|)|z|^k \le d\left(f(0), \partial\left(f(U)\right)\right)$$

for $|z| < \rho_*$, where ρ_* is the unique positive root in (0,1) of

$$\rho + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)\rho^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}$$

$$= 1 - \sum_{k=n+1}^{\infty} \frac{2(1-\beta)(-1)^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}.$$

The radius ρ_* is the Bohr radius fort he class $\mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$.

Proof. From Lemma 2, it follows that the distance between origin and the boundary of f(U) satisfies

$$d\left(f(0), \partial(f(U))\right) \ge 1 - \sum_{k=n+1}^{\infty} \frac{2(1-\beta)(-1)^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}.$$
 (3)

Let consider the continuous function

 $\Phi(\rho)$

$$= \rho + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)\rho^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}$$
$$-1 + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)(-1)^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}.$$

Now

$$\Phi'(\rho) = 1 + 2(1 - \beta) \sum_{k=n+1}^{\infty} \frac{\rho^{k-1}}{1 + (k-1)\alpha + (k-1)(k-2)\gamma}$$

for all $\rho \in (0,1)$, which implies that Φ is a strictly increasing continuous function. Note that $\Phi(0) < 0$ and

$$\Phi(1) = 2(1 - \beta) \sum_{k=n+1}^{\infty} \frac{1}{k(1 + (k-1)\alpha + (k-1)(k-2)\gamma)} + 2 \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k(1 + (k-1)\alpha + (k-1)(k-2)\gamma)} > 0.$$

Thus by Intermediate Value Theorem for continuous function, we let ρ_* be the unique root of $\Phi(\rho) = 0$ in (0,1). Now using Lemma 1 and the inequality (3), we have

$$|z| + \sum_{k=n+1}^{\infty} (|a_k| + |b_k|)|z|^k$$

$$\leq \rho + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)\rho^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}$$

$$\leq \rho_* + \sum_{k=n+1}^{\infty} \frac{2(1-\beta)\rho_*^{k}}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)}$$

$$= 1 - \sum_{k=n+1}^{\infty} \frac{2(1-\beta)(-1)^k}{k(1+(k-1)\alpha+(k-1)(k-2)\gamma)} \le d\left(f(0), \partial(f(U))\right),$$

which hold for $\rho \leq \rho_*$. Now consider the analytic function

$$f(z) = z + 2(1 - \beta) \sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k(1 + (k-1)\alpha + (k-1)(k-2)\gamma)} z^k.$$

Then clearly $f \in \mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$ and at $|z| = \rho_*$, we get

$$|z| + \sum_{k=n+1}^{\infty} (|a_k| + |b_k|)|z|^k$$
$$= d\left(f(0), \partial(f(U))\right).$$

Hence the radius ρ_* is the Bohr radius for the class $\mathcal{R}^n_{\mathcal{H}}(\alpha, \gamma, \beta)$.

Now using Theorem 1, we can obtain Bohr radius for the classes $\mathcal{R}^0_{\mathcal{H}}(0,0,0) \equiv P^0_{\mathcal{H}}$, $\mathcal{R}^0_{\mathcal{H}}(\alpha,0,0) \equiv W^0_{\mathcal{H}}(\alpha)$, $\mathcal{R}^0_{\mathcal{H}}(0,0,\beta) \equiv \mathcal{P}^0_{\mathcal{H}}(\beta)$ and $\mathcal{R}_{\mathcal{H}}(\alpha,\gamma,0) = \mathcal{R}^0_{\mathcal{H}}(\alpha,\gamma)$ Here we mention the following:

Corollary 1. $f \in P_{\mathcal{H}}^0$. Then

$$|z| + \sum_{k=2}^{\infty} (|a_k| + |b_k|)|z|^k \le d\left(f(0), \partial\left(f(U)\right)\right)$$

for $|z| \le \rho_*$, where ρ_* is the unique positive root in (0,1) of

$$\rho + 2\sum_{k=2}^{\infty} \frac{\rho^k}{k} = 1 - 2\sum_{k=2}^{\infty} \frac{(-1)^k}{k}.$$

Corollary 2. $f \in W_{\mathcal{H}}^0(\alpha)$. Then

$$|z| + \sum_{k=2}^{\infty} (|a_k| + |b_k|)|z|^k \le d\left(f(0), \partial\left(f(U)\right)\right)$$

for $|z| \le \rho_*$, where ρ_* is the unique positive root in (0,1) of

$$\rho + 2\sum_{k=2}^{\infty} \frac{\rho^k}{\alpha k^2 + (1-\alpha)k}$$
$$= 1 - 2\sum_{k=2}^{\infty} \frac{(-1)^k}{\alpha k^2 + (1-\alpha)k}.$$

Corollary 3. $f \in \mathcal{P}^0_{\mathcal{H}}(\beta)$. Then

$$|z| + \sum_{k=2}^{\infty} (|a_k| + |b_k|)|z|^k \le d\left(f(0), \partial\left(f(U)\right)\right)$$

for $|z| \le \rho_*$, where ρ_* is the unique positive root in (0,1) of

$$\rho + 2(1 - \beta) \sum_{k=2}^{\infty} \frac{\rho^k}{k} = 1 - 2(1 - \beta) \sum_{k=2}^{\infty} \frac{(-1)^k}{k}.$$

Corollary 4. $f \in R^0_{\mathcal{H}}(\alpha, \gamma)$. Then

$$|z| + \sum_{k=2}^{\infty} (|a_k| + |b_k|)|z|^k \le d\left(f(0), \partial\left(f(U)\right)\right)$$

for $|z| < \rho_*$, where ρ_* is the unique positive root in (0,1) of

$$\rho + \sum_{k=2}^{\infty} \frac{2\rho^k}{\gamma k^3 + (\alpha - 3\gamma)k^2 + (1 - \alpha + 2\gamma)k}$$

$$= 1 - \sum_{k=2}^{\infty} \frac{2(-1)^k}{\gamma k^3 + (\alpha - 3\gamma)k^2 + (1 - \lambda + 2\gamma)k}$$

The radius ρ_* is the Bohr radius fort he class $R_{\mathcal{H}}^0(\alpha, \gamma)$.

REFERENCES

- [1] Bohr H.,: A theorem concerning power series. Proc London Math Soc 13:1 5, 1914.
- [2] Clunie, J., Sheil-Small, T.:Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9, 3-25, 1984.
- [3] Gochhayat, P., Mahata, S.: Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings. Vietnam Journal of Mathematics https://doi.org/10.1007/s10013-022-00583-2.
- [4] Duren, P.: Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.
- [5] Ghosh, N., Vasudevarao, A., The radii of fully starlikeness and fully convexity of a harmonic operator, Monatsh Math., 188, 653-666, 2019.
- [6] Nagpal S., Ravichandran, V., Construction of subclasses of univalent harmonic mappings, J. Korean Math. Soc., 53, 567–592, 2014.
- [7] Ponnusamy S, Yamamoto H, Yanagihara H. Variability regions for certain families of harmonic univalent mappings. Complex Variables and Elliptic Equations 58(1), 23-34, 2013.
- [8] Yaşar, E., Yalçın, S.: Close o convexity of a class of harmonic mappings defined by a third order differential inequality. Turkish Journal of Mathematics. 45, 2, 2021.
- [9] Li, L., Ponnusamy, S.: Injective section of univalent harmonic mappings. Nonlinear Anal. 89, 276–283 2013.
- [10] Nagpal, S., Ravichandran, V.: Construction of subclasses of univalent harmonic mappings. J. Korean Math. Soc. **51**, 567–592, 2014.