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Abstract — In this article, we obtain Bohr radius for the subclass

Ry (a,y,B) ={f = h+ g:Re[h'(2) + azh'' (2) + yz?h"'(z) — B] > |g'(2) + azg" (z) + yz*g'"' (2)|},
where h(z) = z + Yp 01 axz®, g(2) = Y, 41 brz® are analytic in the open unit disk, and @ =y > 0,

0<pB<1landn=>1.
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I. INTRODUCTION

Let H be the class of complex-valued harmonic
functions f in U ={z € C: |z| < 1}, normalized
so that f(0) =0, f,(0)=1. Also, let H, =
{f e : f;(0) =0}. Such an f € H, has the
decomposition f =h+ g, where h and g are
analytic in U and has the following representation:

h(z) =z + z apz®, g(2)

k=2 o
- z bez*. 1)
k=2

A harmonic function f is locally univalent and
sense-preserving in U if and only if J:(z) =
|f,(2)]? — | fz(2)|? is positive in U. Set
Hy={f=h+geH:h(0)—1=g'(0)

=h"(0) = - = h™(0) = g™(0)
= 0},

where n > 2. When n = 1, we have Hy = H,.

Thus, each f = h + g € H{' has the form

h(z) =z + z a,zk,
k=n+1
and
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gz = i b.z¥.

(2)
k=n+1

See [2,4]. In [7], Ponnusamy et. al. introduced a
class PJ == {f € Hy : Re[h' (2)] > |g'(2)|} for
z € U and they proved that functions in Py are
univalentin U.

In [6], Nagpal and Ravichandran studied a class
W3 of functions f € H, satisfying the condition
Re[h'(z) + zh''(2)] > |g'(2) + zg"' (2)| for z € U.

Ghosh and Vasudevarao [5] investigated the class
W2 (a) of functions f € 3, satisfying the condition

Re[h'(z) + azh'' (2)] > |g'(z) + azg' (2)| for
0<aandzel.

Yasar and Yalgin defined R2%(a,y) class
functions f = h + g € H, and satisfy

Re[h'(2) + azh" (z) + yz?h""(2)]
> 19'(2) + azg"(z)
+yz*g"(2) 3)

where @ >y > 0 (See [8]).

Denote by R%:(a,y, ), the class of functions f =
h+ g € #° and satisfy
Re[h'(z) + azh" (z) + yz?h'"' (z) — B]

> 19'(2) + azg"(z)

+vyz2g""(2)] (3)
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wherea >y > 0,0 < < landn = 1(See[3]).

The class Ri (a,v,B) = Ry (a,y, B) generalizes
several previously studied classes of harmonic
mappings. For examples, R;(0,0,0) = Py [9],
Ry (1,0,0) = Wi [10], Ry (a, 0,0) = Wii(a) [5],
Ry (0,0,) =Px(B) [7] and Ry(a,y,0) =
R (a,y) [8]. We denote RY.(a,y,0) = R%(a,y)
and Ry (a,y, B) = Ry (@, v, B).

Definition 1. Let f = h + g € H° be a harmonic
function h and g are given by (1). Then the Bohr
Phenomenon is to find the constant 0 < p, < 1 such
that the inequality

p+ Z(lakl + b p* < d (f(O),O(f(U)))
k=2

holds  for all lz| = p < p., where
d (f(O),a(f(U))) denotes the Euclidean distance

between f(0) and the boundary of f(U). The largest
such p, is called the Bohr radius.

The idea of Bohr radius, originated from the work
of Bohr (see [1]) on the inequality Y7, |ax|p* < 1
(p < 1/3) for an analytic function with the power
series Y5, axz®, which is known as Bohr’s
Theorem. Finding the Bohr radius for such
inequalities with diverse possibilities has become a
popular topic.

Il. BOHR RADIUS FOR THE CLASS R} (a, v, B)

Lemma 1. [3] Suppose f € R%(a,y,B). Then
forn>=1landk>n+1,
2(1-p)
[1+ (k—Da+ (k2 =3k +2)y]

b,| <
lag| + | kl—k

Lemma 2. [3] Suppose f € Ri:(a,y, ). Then

0 2(1 —ﬁ)(_l)k_llzlk
|z| + kzzn_ﬂk(l + (k—Da + (k=1 (k- 2)]/)

< |f@)I.
Theorem 1. f € R} (a,y, ). Then

21+ Y (ael + beDlzl* < d (£, 0(F (1))
k=n+1
for |z| < p., where p, is the unique positive root
in (0,1) of

52

N 2(1 - B)p*
p+kzzn+1k(1+(k—1)a+(k—1)(k—2)y)
C 2(1— B)(—DF

- 1_kzzn+1k(1+(k—1)a+(k—1)(k—2)y)'

The radius p, is the Bohr radius fort he class
Ry (a,y, B).

Proof. From Lemma 2, it follows that the distance
between origin and the boundary of f(U) satisfies

d(f(0),0(f())) 2

C 2(1 - B)(-1)¥
1 —kka(l T k= Dat k=Dk=2p
Let consider the continuous function
®(p) _
B 2(1 - B)p*
=f +k=2n+1k(1 Fk—Dat k=Dk=2)7)
C 2(1 - B)(-1)*
-1 +k=2n+1k(1 Fk—Dat k=Dk=2)7)
Now
P'(p) =1+
® pk—l
2(1_ﬁ)k;11+(k— Da+ (k— Dk —2)y
>0

forall p € (0,1), which implies that @ is a strictly
increasing continuous function. Note that ®(0) < 0
and
o(1) =
1

21-p) an_,_lk(l +k—-—Da+ (k—1)(k—2)y)

C (—1)k
+2 k;dk(l +(k—-—1VDa+ (k—-—1)(k-2)y)
> 0.

Thus by Intermediate Value Theorem for
continuous function, we let p, be the unique root of
®(p) =0 in (0,1). Now using Lemma 1 and the
inequality (3), we have

21+ D (al + IbeDlzl*

k=n+1
(o]

<p+ Z
k=n+1k(1 + (k

2(1 - B)p*
—Da+ (k—1)(k—2)y)




2(1 = B)p.*
—Da+ (k- Dk -2)y)

<
=Pt Z k(1 + (k
k=n+1

—1_ z
k=n+1k(1 + (k

< d (£(0),0(fW))),
which hold for p < p,. Now consider the analytic
function

2(1-p(=DF
—Da + (k= D(k —2)y)

f(2) =
(=D*!
z+20=4) Z kO + = Da+ (- Dk - o
Then clearlyf € R} (a,y,B) and at |z| = p., we
get
21+ D (al + IbeDlzl*
k=n+1
=d (£(0),0(F(V))).
Hence the radius p., is the Bohr radius for the class

Ry (@, v, B).
Now using Theorem 1, we can obtain Bohr radius

for the classes RY:(0,0,0) = Py, R2(a,0,0)
Wy (@), R3:(0,0,8) = P7(B) and Ry (a,y,0)
RY(a,y) Here we mention the following:

Corollary 1. f € Py, Then

2 + Z(lakl +IbeDlzl* < d (£0),0(FW)))

for |z| < P+, Where p, is the unique positive root

Corollary 2. f € Wi (a). Then

2] + Z(lakl + IbDlzl* < d (£0),0(F)))

for |z| < px, Where p, is the unique positive root
in (0,1) of
it k

p
2
Pt Zak2+(1—a)k
k=2
(—1)*

- 1_2;ak2+(1—a)k'
Corollary 3. f € P5(B). Then
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2+ Z(lakl + DIzl < d (£0),0()))

for |z| < Px, Where p, is the unique positive root
in (0,1) of
- (—D*
R

Xk
p+2(1—,8)2%=1—2(1—,3)z
k= k=2

=2
Corollary 4. f € R%(a,y). Then

2+ Z(lakl +1beDlzl* < d (£0),0(F(W)))

for |z| < px, Where p, is the unique positive root
in (0,1) of

- 20"
P & vk3+ (@=39)k?+ (1 —a+2y)k
2(-1)"

S .
& vk3+ (@ —=3y)k?+ (1 -1+ 2y)k
The radius p, is the Bohr radius fort he class
Ry (a,y).
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