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Abstract – The optimal design of a pile system was presented in this work as a multi-objective optimization 

problem that includes maximization for the pile capacity and its skin friction while minimization to the cost 

of material and excavations. The contradiction among maximum lifting forces due to specific soil 

conditions and minimum fabrication cost drives the pile design problem to be a nonlinear complex problem. 

The proposed methodology presents a robust procedure to solve this issue using metaheuristic algorithms. 

In the respective sections, Dynamic Differential Annealed Optimization, Genetic Algorithms, Particle 

Swarm Optimization, Simulated Annealing, Differential Evolution, Harmony Search, Artificial Bee Colony 

Algorithm, Firefly Algorithm, and Grey Wolf Optimizer were used to solve the optimal design of a pile 

system and the results shows that Dynamic Differential Annealed Optimization can be considered as the 

best solver for this geotechnical problem.   
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I. INTRODUCTION 

A pile foundation is a type of deep foundation 

used to transfer the loads from a structure to a 

deeper, more stable layer of soil or rock below the 

surface [1][2]. This is typically done when the soil 

[3]at the surface is not strong enough to support the 

weight of the structure [4]. Piles can be made of 

various materials such as concrete, steel, or timber, 

and they are typically driven into the ground using 

specialized equipment [5]. Piles can be installed in 

various ways, including bored piles and driven piles 

[6], A bored pile, also known as a drilled pile or 

cast-in-place pile, is created by drilling a hole [7] 

into the soil and then filling the hole with concrete 

or another material. The process involves the use of 

a drilling rig to create the hole, and it is typically 

used in softer soil [8] conditions or when the ground 

is too hard for driven piles [9]. A driven pile, on the 

other hand, is typically made of concrete or steel and 

is installed by driving it into the ground using a pile 

driver. is typically used in dense or hard soil 

conditions and is often more economical than bored 

piles. and also be used in a wide range of structures, 

including buildings, bridges, and other types of 

infrastructure [10] [11]. Designing pile foundations 

involves selecting the size, and spacing of the piles 

based on various factors such as the load capacity of 

the soil, the structural loads, and the available 

construction equipment. This process can be very 

complex and time-consuming, and traditional 

design methods may not always yield the best 

possible design [12]. So, optimization algorithms 

[13] can help engineers find the best possible design 

by exploring large solution spaces and quickly 

finding high-quality solutions. These algorithms can 

take into account a wide range of design parameters 

and constraints, and can use mathematical models to 

simulate and predict the performance of different 
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pile foundation designs under different conditions 

[14][15]. The definition of pile design optimization 

involves achieving a foundation with a satisfactory 

performance at the lowest possible cost. However, 

compared to the widespread use of optimization 

techniques in the field of structural engineering, 

optimizing pile foundations has been a relatively 

recent development due to three primary challenges. 

The first of these is the difficulty of accurately 

predicting the performance of pile foundations [16], 

given the uncertainty surrounding soil parameters, 

the complexity of pile-soil-raft interactions, and the 

imprecise constitutive laws of layered soil, despite 

numerous studies being available based on elastic-

plastic theory [17][18]. In the pursuit of optimizing 

pile design, certain researchers have introduced the 

principles and theories of structural optimization 

and implemented gradient-based methods that 

necessitate the fulfillment of differentiability and 

continuity requirements for constraints and 

objectives, respectively. In 2011, BELEVIČIUS, 

Rimantas et al. conducted an experimental 

comparison of various global optimization 

algorithms to determine their suitability for 

achieving optimal placement of piles in real 

grillages. The algorithms compared included 

random search, metaheuristics such as simulated 

annealing and genetic algorithms, and local 

optimization combined with random search. 

Ultimately, the researchers were able to attain their 

desired results through the application of simulated 

annealing and the nonlinear optimization algorithm 

NEWUOA, combined with a heuristic random 

search [19]. in 2013, Yazdani, H., Hatami, K., and 

Khosravi, E. investigated the use of the ant colony 

optimization (ACO) algorithm to optimize piled-raft 

foundations . To account for soil-pile interactions, 

the researchers employed the nonlinear p-y, t-z, and 

Q-z springs within the OpenSees platform to model 

the side and tip capacities of the piles [20]. In 2017, 

Singh, G., & Walia, B. S. trained two artificial 

neural networks (ANNs) to predict unit skin friction 

and unit end bearing capacity based on soil 

properties. The researchers also determined two 

correlation factors using four popular nature-

inspired optimization algorithms: particle swarm 

optimization (PSO), fire flies, cuckoo search, and 

bacterial foraging. Comparison of the results 

indicated that PSO was the most effective algorithm 

for these types of constrained problems [21]. In this 

work, Dynamic differential annealed optimization 

algorithm was used to find the optimal design 

variable of a pile for a certain soil parameters. This 

algorithm was compared with particle swarm 

optimization and artificial bee colony for validation 

purposes and the results show the efficiency of the 

dynamic differential annealed optimization on pile 

problems.   

II. PROBLEM DISCRETIZATION 

The properties of the soil layers significantly 

affect the optimal design of a pile or group of piles 

that can support a given superstructure. These 

properties are the source of some generated forces 

on the body of a pile that are shown in Figure 1 

 

 
Fig. 1 Forces distribution on a pile foundation 

 

This kind of problem has to be expressed as a 

multi-objective optimization engineering problem 

where the bearing capacity and skin friction should 

be maximized at the same time with the 

minimization of material cost and excavations. The 

design problem can be formulated as follows: 

Maximize: 
𝑓 = 𝐹(𝑋),                                        (1) 

Minimize:  

𝑔 = 𝐺(𝑋),            (2) 

where 𝐹 is the summation of bearing capacity and 

skin friction 

𝐹(𝑋) = ∑ 𝑆𝑖 + 𝐵𝑖
𝑛
𝑖=1   𝑖 = 1,2, … , 𝑛         (3) 

𝑖 is the index of a single pile among 𝑛 number of 

possible piles, 𝑆 is skin friction on a single pile, and 

𝐵 is the bearing capacity. 𝐺(𝑋) is the total weight of 
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the pile system including concrete and 

reinforcement steel and equations (1) and (2) have 

to be subjected to design constraints. Hata! 

Başvuru kaynağı bulunamadı. shows the design 

variables, and Hata! Başvuru kaynağı 

bulunamadı. reveals the design parameters of the 

soil and structure 

Table 1 Limitations on the design variables. 

Variable Notation Lower 

limit 

Upper 

limit 

Length  L (m) 1 30 

Diameter D (m) 0.2 2 

Number of piles  N  1 6 

Spacing  S (mm) 10 100 

Table 2 Design parameters 

Parameter  Notation  Units  Value  

Load  𝑃  KN 5000 

Lateral load  𝑃𝑙  KN 2000 

Soil Unit Weight ɣ 𝑘𝑁/𝑚3  20 

Soil Cohesion C kPa 50 

Soil Friction 

Angle 
∅  o 30 

Friction angle 𝛽  𝑟𝑎𝑑  Equation 

(7) 

Shape factor 𝑘𝑝   0.5 

Concrete 

Compressive 

Strength 

𝑓𝑐𝑘  MPa 25 

Reinforcement 

Steel Yield 

Strength 

𝑓𝑦𝑘  MPa 500 

Partial safety 

factor for 

concrete 

𝑓𝑠𝑐   1.5 

Partial safety 

factor for steel 
𝑓𝑠𝑠   1.15 

Design axial load 

on pile 
𝑁𝐸𝑑   𝑃 × 𝑓𝑠𝑐  

Elastic modulus 

of concrete 
𝐸𝑐𝑚   33000 ×

√𝑓𝑐𝑘  

Design yield 

strength of steel 
𝐸𝑠   𝑓𝑦𝑘

1.15
   

Reduction factor 

for concrete 

strength 

𝑟𝑐𝑐   1.0 

Reduction factor 

for concrete cover 
𝑟𝑐𝑡   1.0 

Reduction factor 

for steel yield 

strength 

𝑘1   0.3 

Reduction factor 

for steel strain 
𝑘2   0.8 

 

III. BEARING CAPACITY 

The bearing capacity of a pile is the maximum 

load that a pile can carry without excessive 

settlement or failure of the soil. It is the combined 

capacity of both the end-bearing capacity 

(resistance offered by the soil at the tip of the pile) 

and the skin friction capacity (resistance offered by 

the soil along the shaft of the pile). For end-bearing 

capacity 𝑞𝑏, is a simplified versions [22] of the 

ultimate bearing capacity equations for piles and can 

be calculated using the following formula:  

   

𝑞𝑏 = 𝐶 (𝑘𝑝 𝑑 + 4 tan (𝛽)) ×  (𝐿 +
𝑘𝑝 𝐶

ɣ
  tan (𝛽))    (4) 

where 𝐶 is the soil cohesion, 𝑘𝑝 is the shape 

factor, 𝑑 is the equivalent diameter of the pile, 

𝑔𝑎𝑚𝑚𝑎 is the soil unit weight, 𝛽 is the friction 

angle in radians, and 𝐿 is the length of the pile. For 

skin friction capacity, this paper calculates the 

ultimate bearing capacity using the following 

formula: 

 

𝑞𝑎 = ɣ  𝐿 
𝑑2

4
+

2 𝐶 𝑘𝑝 𝑑

ɣ
                    (5) 

  where ɣ, 𝑘𝑝, 𝑑, 𝐶, and 𝐿 have the same meaning as 

in the previous formula. The ultimate bearing 

capacity 𝑞𝑢𝑙𝑡 is then taken as the minimum of the 

two calculated values 

𝑞𝑢𝑙𝑡 = min (𝑞𝑏 , 𝑞𝑎)                               (6) 

 

the equivalent diameter of the pile, and friction 

angle can be estimated from the following two 

equations: 

 

𝛽 = 𝑎𝑡𝑎𝑛2(1, tan (∅)),                      (7) 

𝑑 =  𝐷 +  2 
𝑘𝑝 𝐶

ɣ
𝑡𝑎𝑛(𝛽),           (8) 

where ∅ should be converted to radian. The 

method used in this paper is a simplified static 

analysis approach that uses the soil unit weight, 

cohesion, and friction angle to calculate the ultimate 

bearing capacity of the pile. The minimum of the 

two values calculated by this code is taken as the 

ultimate bearing capacity, which is a conservative 

approach that ensures the pile can support the 

applied load without excessive deformation or 

failure. This approach is commonly used in 

geotechnical engineering practice to ensure the 
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safety and stability of foundations and other 

structures. 

IV. SKIN FRICTION  

Skin friction is the resistance developed along the 

surface of a pile or shaft that is in contact with the 

soil. When a pile or shaft is loaded, the soil around 

it tends to deform, and this deformation generates 

resistance between the soil and the pile. The 

resulting force is called skin friction. The skin 

friction is a function of the load, the type and 

properties of the soil, and the length of the pile or 

shaft. It is an important factor to consider in the 

design of pile foundations, as it contributes to the 

total capacity of the foundation. 

 

𝑆𝑓  =  ɣ 𝐿 (1 + 2 
𝑡𝑎𝑛(𝛽) 𝑘𝑝

𝑑
𝑑) ∗ 𝑡𝑎𝑛(𝛽)             (9) 

 

V. PILE DESIGN FOR AXIAL LOAD 

   The area of required steel in the pile can be 

calculated as 

𝐴𝑠 =  
𝜋

4
 𝐷2 ( 

 𝑁𝐸𝑑

1000 𝑟𝑐𝑐 𝑓𝑐𝑘 𝑘1 𝑘2 𝐸𝑠
 + √ (

 𝑁𝐸𝑑

1000 𝑟𝑐𝑐 𝑓𝑐𝑘 𝑘1 𝑘2 𝐸𝑠
)

2

+ 2
𝐿

𝐷.  𝑟𝑐𝑡)
) (10) 

The number of bars required for axial load is 

𝑛 =  𝑐𝑒𝑖𝑙 (
𝐴𝑠

(
𝑆

10
)

2)                                                  (11) 

Provided area of steel for axial load is 

𝐴𝑠𝑝𝑟𝑜𝑣  =  
𝜋.𝑛

4
(

𝑆

10
)

2
                        (12) 

   Where 𝑆 is the spacing between reinforcement 

bars while 𝑁 is the number of piles in the system. 

Design shear force on the pile 𝑉𝐸𝑑  is calculated 

using the formula 

𝑉𝐸𝑑 = 0.4 𝑁𝐸𝑑 ,                                                   (13) 

  where  𝑁𝐸𝑑 is the design axial load on the pile 

which is in turn estimated as a percentage of the 

applied load  𝑃. 

 𝑁𝐸𝑑 = 𝑃 𝑓𝑠𝑐                                       (14) 

  The area of steel required for shear resistance is 

𝐴𝑠𝑣. The shear resistance is the ability of a pile to 

resist forces acting perpendicular to the axis of the 

pile, such as wind or seismic forces. The shear 

resistance of a pile is provided by stirrups, which are 

typically placed vertically around the perimeter of 

the pile. In equation (15), 𝐴𝑠𝑣 is calculated as 

0.001𝐴𝑠𝑝𝑟𝑜𝑣, where 𝐴𝑠𝑝𝑟𝑜𝑣is the provided area of 

steel in the pile. The factor of 0.001 is a conversion 

factor used to convert the area of steel from square 

millimeters to square meters, as other variables in 

the code are in SI units. 

𝐴𝑠𝑣 = 0.001𝐴𝑠𝑝𝑟𝑜𝑣                                       (15) 

   Once 𝐴𝑠𝑣 is calculated, the shear resistance of the 

pile can be determined using the expression: 

𝑉𝑠𝑤 = 𝐴𝑠𝑣  
𝑓𝑦𝑘

𝑆

10

                                                    (16) 

Then,  

𝐴𝑠𝑡𝑚𝑖𝑛 =  0.5 𝑓𝑠𝑠 𝐴𝑠𝑝𝑟𝑜𝑣  (1 −
√1− 

𝑉𝐸𝑑
400 𝑟𝑐𝑐 𝑓𝑐𝑘  𝐷 𝐿

0.435 𝑓𝑠𝑠 𝐸𝑠 𝑑
)   (17) 

𝐴𝑠𝑡𝑚𝑖𝑛 is the minimum area of steel required for 

shear resistance in the pile. It is calculated using the 

formula specified in Eurocode 2, which is a 

European standard for the design of concrete 

structures. The formula takes into account the axial 

load and shear force on the pile, as well as the 

geometry and material properties of the pile, and the 

partial safety factors for concrete and steel. The 

purpose of calculating 𝐴𝑠𝑡𝑚𝑖𝑛 is to ensure that the 

pile is designed to resist shear forces that may occur 

during its service life. If the provided area of steel 

for shear resistance, 𝐴𝑠𝑣, is less than 𝐴𝑠𝑡𝑚𝑖𝑛, 

additional steel reinforcement will be required to 

meet the design requirements. 

VI. PILE DESIGN FOR LATERAL LOAD 

   The effective diameter of the pile for lateral 

loading is 

𝑑2  =  𝑑 −  
𝑆

50
                                       (18) 

 

Design lateral force on the pile should be: 

𝑃𝑙𝑎𝑡 =
𝑃𝑙

2
                                       (19) 

 

The area of steel required to resist the lateral load on 

the pile is calculated using the following equation 

𝐴𝑠𝑡 =   
𝑃𝑙𝑎𝑡  𝑑2

2 𝑓𝑠𝑠  𝐸𝑠 (1−
𝑑2
2

√𝑓𝑠𝑠  
𝐸𝑠

𝐸𝑐𝑚  𝑓𝑐𝑘
)
                       (20) 

 



 

85 
 

 

VII. CONSTRAINTS 

A. Shear capacity 

A constrain has to be added to ensure that the pile 

has the sufficient shear capacity to resist the design 

shear force such that 

𝑉𝑠𝑤 > 𝑉𝐸𝑑                         (21) 

B. Laterally stability 

For safe design, a constraint should be considered 

to ensure that the pile is laterally stable under the 

design lateral load. A large penalty value has to be 

added to the objective value if the shear resistance 

of the stirrups for lateral load 𝑉𝑠𝑤 𝐿𝑎𝑡 is less than the 

design lateral force 
𝑉𝑠𝑤 𝐿𝑎𝑡  >  𝑃𝑙𝑎𝑡            (22) 

where 𝑉𝑠𝑤 𝐿𝑎𝑡 can be estimated using the following 

equations  

𝑉𝑠𝑤 𝐿𝑎𝑡 =
AsprovLateral  fyk

s/10
                               (23) 

The provided area of steel  𝐴𝑠𝑝𝑟𝑜𝑣𝐿𝑎𝑡𝑒𝑟𝑎𝑙  is based 

on the number of bars required and the spacing of 

the bars 𝑆. 

𝐴𝑠𝑝𝑟𝑜𝑣𝐿𝑎𝑡𝑒𝑟𝑎𝑙 =  
𝑛𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝜋

4
(

𝑠

10
)

2

                                   (24) 

𝑛𝐿𝑎𝑡𝑒𝑟𝑎𝑙 =  𝑐𝑒𝑖𝑙 (
𝐴𝑠𝑡

0.25 𝜋 
(𝑑2−𝑑2

2)

100

)                                     (25) 

Equation (23) calculates the number of bars required 

to resist the lateral load by dividing the area of steel 

by the area of each bar. The ceil function is used to 

round up the result to the nearest integer value. 

C. Shear resistance 

The design criteria for 𝐴𝑠𝑡 and 𝐴𝑠𝑡𝑚𝑖𝑛 is that the 

actual area of steel provided 𝐴𝑠𝑡 should be greater 

than or equal to the minimum required steel area for 

shear reinforcement 𝐴𝑠𝑡𝑚𝑖𝑛. In other words, 𝐴𝑠𝑡  

has to be greater than or equal to 𝐴𝑠𝑡𝑚𝑖𝑛. If 𝐴𝑠𝑡 is 

less than 𝐴𝑠𝑡𝑚𝑖𝑛, it means that the provided shear 

reinforcement is not sufficient to resist the shear 

forces and the design needs to be revised. 

D. Minimum spacing and concrete cover 

Further constraints can be added to the design 

criteria including that the spacing between 

reinforcement bars should be less than the 

equivalent diameter 
𝜋𝑑 − 𝑆 ≤ 0                                                               (26) 

On the other hand. d has to be greater than the 

minimum concrete cover 𝐶_𝑚𝑖𝑛 which is taken 0.05 

mm in this work 
𝑑 − 𝐶𝑚𝑖𝑛 ≤ 0                                       (27) 

E. Equilibrium condition 

For pile design, it is important to ensure that the 

load capacity of the pile is greater than the sum of 

the applied loads and the weight of the pile. The 

bearing capacity of a pile is the maximum load that 

it can support without experiencing excessive 

settlement or failure. To ensure the pile can safely 

support the applied loads, the sum of the applied 

loads and the weight of the pile should be less than 

the bearing capacity. This ensures that the pile will 

not experience excessive settlement or failure, and 

will provide the required support for the structure or 

foundation. 

VIII. METAHEURISTICS FOR GEOTECHNICS 

  Metaheuristic algorithms [23] are a class of 

optimization algorithms that are designed to solve 

complex optimization problems that cannot be 

solved using traditional algorithms. They are 

inspired by natural processes [24] and use heuristics 

to guide the search for optimal solutions. Unlike 

traditional algorithms, metaheuristic algorithms do 

not guarantee that the optimal solution will be 

found, but instead try to find a good solution within 

a reasonable amount of time. They are often used in 

situations where the problem is too complex for 

traditional algorithms or where the search space is 

very large. Some popular metaheuristic algorithms 

include: 

Genetic Algorithms, Particle Swarm 

Optimization, Simulated Annealing, Ant Colony 

Optimization, Tabu Search, Differential Evolution, 

Harmony Search, Artificial Bee Colony Algorithm, 

Firefly Algorithm, and Grey Wolf Optimizer. These 

algorithms [25] are used in a wide range of 

applications, including engineering design, finance, 

logistics, scheduling, and data mining, among 

others. Metaheuristic algorithms are important 

because they can solve complex optimization 

problems that cannot be solved by traditional 

algorithms. In many real-world applications, the 

problems are too complex, too large, or too dynamic 

to be solved using exact mathematical methods. 
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Metaheuristics provide a powerful and flexible tool 

for solving such problems. Some of the key benefits 

of metaheuristic algorithms include: 

 They can find good solutions to complex 

problems in a reasonable amount of time, without 

the need for complete information about the 

problem. 

 They are flexible and can be adapted to different 

types of optimization problems and different 

problem domains. 

 They can handle non-linear and non-convex 

optimization problems, as well as problems with 

multiple objectives. 

 They can be used in situations where traditional 

algorithms are not feasible, such as when the 

search space is too large or the problem is too 

complex.  

 They can be used in combination with other 

optimization methods to improve the quality of 

the solution. 

Overall, metaheuristic algorithms provide an 

important tool for solving complex optimization 

problems in a wide range of applications, from 

engineering and logistics to finance and data 

analysis. They are increasingly being used in both 

research and industry and have shown promising 

results in many different fields. 

Metaheuristic algorithms can be applied to a 

variety of geotechnical problems, including slope 

stability analysis, foundation design, and ground 

improvement design. Here are some general steps to 

follow when applying metaheuristics to 

geotechnical problems: 

1) Define the optimization problem: First, you need 

to define the geotechnical problem you want to 

optimize. This could be, for example, minimizing 

the factor of safety of a slope stability problem or 

minimizing the settlement of a foundation under a 

certain load. 

2) Formulate the problem as an optimization 

problem: Once you have defined the geotechnical 

problem, you need to formulate it as an optimization 

problem with appropriate objective function(s) and 

constraints. This involves identifying the decision 

variables, the objective function(s), and any 

constraints that must be satisfied. 

3) Choose a metaheuristic algorithm: There are 

many metaheuristic algorithms that can be used for 

geotechnical problems, including Genetic 

Algorithms, Particle Swarm Optimization, 

Simulated Annealing, Ant Colony Optimization, 

and Differential Evolution. The choice of algorithm 

will depend on the problem and the characteristics 

of the solution space. 

4) Implement the algorithm: Once you have chosen 

the metaheuristic algorithm, you need to implement 

it in a computer program. There are many software 

packages available that implement metaheuristic 

algorithms, or you can write your own code. 

5) Test and validate the results: Finally, you need 

to test and validate the results of the metaheuristic 

algorithm. This involves comparing the optimized 

results with the original problem to ensure that the 

algorithm has found a good solution. Sensitivity 

analysis can also be used to test the robustness of the 

solution. 

The application of metaheuristics to geotechnical 

problems can be a powerful tool for solving 

complex optimization problems. However, it is 

important to carefully define the problem and 

choose an appropriate algorithm to ensure that the 

results are accurate and reliable. 

 

IX.  DYNAMIC DIFFERENTIAL ANNEALED 

OPTIMIZATION    

Dynamic Differential Annealed Optimization 

(DDAO) [26] is not a commonly used optimization 

algorithm in the field of geotechnical engineering. 

Differential Annealing (DA) is a variant of the 

Differential Evolution (DE) algorithm, which is 

often used for optimization problems with 

continuous variables and nonlinear constraints. 

However, Dynamic Differential Annealed 

Optimization is a relatively new algorithm that has 

not been widely studied or applied in geotechnical 

engineering. Therefore, in the case of planning to 

use Dynamic Differential Annealed Optimization 

for the optimal design of pile foundations, one 

should consider discussing its advantages and 

limitations compared to other optimization 

algorithms that are more commonly used in 

geotechnical engineering. You may also want to 
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clearly explain the rationale for using this algorithm 

and how it can be applied to the specific problem of 

optimal pile foundation design. Several 

optimization algorithms are commonly used in 

geotechnical engineering, including Genetic 

Algorithms (GA), Particle Swarm Optimization 

(PSO), Differential Evolution (DE), Simulated 

Annealing (SA), Harmony Search (HS), Artificial 

Bee Colony (ABC). These algorithms are well-

suited for solving optimization problems with 

continuous variables and nonlinear constraints, 

which are common in geotechnical engineering. 

They have been widely studied and applied to 

various geotechnical problems, such as slope 

stability analysis, pile foundation design, and earth 

dam design. The choice of optimization algorithm 

depends on several factors, including the specific 

problem being solved, the characteristics of the 

objective function and constraints, and the 

computational resources available. Therefore, it's a 

good practice to compare the performance of 

different algorithms and select the one that provides 

the best solution for the given problem. 

 

X. OPTIMAL DESIGN 

DDAO, PSO, and ABC were run to their capacity 

and the results are shown in Table 3 in terms of 

solution; pile diameter (D), length of the pile (L), 

number of piles (N), and spacing between 

reinforcement bars (S). The minimum cost multi-

objective function for each metaheuristic algorithm 

is the same for DDAO, PSO, and ABC, and that 

means that DDAO has the same performance as 

ABC and PSO. In other words, the present 

comparison reveals that DDAO can be used as a 

reliable solver for geotechnical problems. 

Geotechnical engineering involves the application 

of the principles of soil mechanics and rock 

mechanics to the design of foundations, retaining 

structures, and other geotechnical systems. 

Optimization algorithms can be used to solve a 

variety of geotechnical problems, including: 

 Foundation design: Optimization algorithms can 

be used to optimize the design of shallow and deep 

foundations to ensure that they can safely support 

the loads imposed by the structure. 

 Slope stability analysis: Optimization algorithms 

can be used to determine the minimum factor of 

safety for slopes under various loading conditions 

and to optimize slope stabilization measures. 

 Soil stabilization: Optimization algorithms can 

be used to determine the most cost-effective soil 

stabilization techniques for improving the 

strength and stability of weak or compressible 

soils. 

 Groundwater management: Optimization 

algorithms can be used to optimize the design of 

groundwater management systems, such as 

dewatering systems and drainage systems, to 

minimize construction costs and environmental 

impacts. 

 Pile design: Optimization algorithms can be used 

to optimize the design of pile foundations to 

ensure that they can safely support the loads 

imposed by the structure and minimize 

construction costs. 

 Retaining wall design: Optimization algorithms 

can be used to optimize the design of retaining 

walls to ensure that they can safely resist the 

lateral pressures imposed by the soil and 

minimize construction costs. 

Overall, optimization algorithms can help 

geotechnical engineers make informed decisions by 

identifying the best solutions that meet project 

objectives while minimizing costs and risks. Figure 

2 illustrates the convergence curve of the dynamic 

differential annealed optimization algorithm on the 

pile design problem. The curve shows the fast 

convergence, minimum possible standard deviation, 

and within less than 50 trials the algorithm reached 

the best solution. 

 

Table 3 Optimal solutions obtained from DDAO, PSO, and 

ABC 

Algorithm  𝑫  𝑳  𝑵 𝑺 Minimum 

cost  

DDAO 1 0.5 4 100 196.6441 

PSO 1 0.5 4 137.22 196.6441 

ABC 1 0.5 4 119.21 196.6441 

 

Fig. 2 Convergence curve of the DDAO 
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XI. CONCLUSION 

Optimal pile design under specific soil conditions 

was conducted in this work, and three metaheuristic 

algorithms were used to solve the problem; dynamic 

differential annealed optimization, particle swarm 

optimization, and artificial bee colony. The 

statistical results show that dynamic differential 

annealed optimization is competitive, powerful, and 

reliable on geotechnical engineering problems. This 

relatively new algorithm has never been seen before 

for geotechnical problems and this work 

recommends it for other applications like the design 

of retaining walls. 
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