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Abstract – Engineering problems ae generally contains real life systems that can measure with sensors or 

contains some factors which can be modelled as noise with probabilistic and statistical properties. In real 

life, Noise is inherent to engineering problems. As one of the toolsets for engineering problems, the 

optimization problems like multiobjective optimization problems can be under noise thread. For this reason, 

to handle the noise, multiobjective optimization algorithms should be improved and additional techniques 

should be defined/introduced. However, another problem arises at the obtained solution set from the 

optimization algorithm which is the performance measurement and therefore selecting the solution by 

decision maker. Since the obtained objective values contains measurement the position of the objectives on 

the objective space do not represent their true position. For this reason, it is not easy -not possible- for the 

decision maker to select the proper solution. Also using the conventional the performance measurements 

on this noisy data is not represent the exact or supportive information for the decision maker. For these 

reasons in this research a method which is based on curve fitting is proposed. In the proposed method by 

using the obtained solutions an average -fitted- function is obtained and it is sampled with respect to the 

position of the obtained solution, and then the shadows of obtained solutions are generated. This shadow 

set is used to measure the performance and used as indicator for the decision maker. 
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I. INTRODUCTION 

The Multiobjective optimization problems has 

more than one objective so that instead of a single 

solution a set of solutions are desired to be obtained 

from the Multiobjective optimization algorithms. 

The Multiobjective optimization algorithm is 

defined as 

 

min    𝐹(𝑥) = (𝑓1(𝑥) … 𝑓𝑀(𝑥)) (1)                                         

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ Ω    
 

where Ω is the decision space and the real valued 

objective functions are defined as F : Ω→RM [1]. 

The best solution set at the decision space is called 

Pareto set and their objective values is called Pareto 

Front (PF) [2]. The objectives of the Multiobjective 

optimization problems may be under the additive 

noise, hence their values are changed with this 

additive noise. The definition of the problem is 

changed as 

 

𝐹𝑛𝑜𝑖𝑠𝑦(𝑥) = 𝐹(𝑥) + 𝑟           (2) 

    = {𝑓1 + 𝑟1, 𝑓2 + 𝑟2, … , 𝑓𝑀 + 𝑟𝑀}   (3) 
 

where noise vector (r) is added to the each of the 

objective values. The performance of the 

Multiobjective optimization algorithms is measured 

with the pre-definite functions called metrics. A 

function can be a metric if it represents the 

difference between two different sets in a sensible 

manner. That means if the sets with are far away 

with each other should have different metric  

http://as-proceeding.com/
https://www.icensos.com/


 

264 
 

 
Figure 1. The datasets nose generated from a) ZDT1, b) ZDT2, c) ZDT3, and d) ZDT6 problems and 0.1 standard deviation 

and zero mean Gaussian noise is added to these datasets. Blue line corresponding to the Pareto Front, circle is the noiseless 

data and square for the noisy data. 

 

values with a solid comparison between each other. 

There are many metrics are proposed in literature. 

One set of metrics are depended on the Pareto front 

that means to measure the metric Pareto front must 

be known. These metrics can be divided into three 

groups. At first group of metrics the closeness of the 

obtained solution set on objective space to the 

Pareto front is calculated. The best known and 

frequently used metric is called inverted 

generational distance (IGD) [3]. The second group 

of metrics measures how the solution set distributed 

on the objective space. This set of metrics are also 

important because sometimes instead of best 

solution the number of different solutions are 

desired by the decision maker (DM). As an example, 

the spread metric can be givens which measured the 

average distance of the solutions on the objective 

space [4]. The last group is the metrics that gives 

and overall performance indicator. The well-known 

metric is the hypervolume metric [5]. Hypervolume 

metric as name indicates the hypervolume of the 

solution set and a given reference -or inverse- is 

calculated. This metric gives a value that represents 

both closeness and distribution of the solutions on 

objective space with respect to the Pareto front. 

These metrics are good for the indicator of the 

Multiobjective optimization algorithms 

performance. However, the question remains “Are 

these metrics can be reliable for noisy problems?” 

Since the objective values has noise on them, the 

dominance relations changes among the solutions in 

the generations. Also at the final solution set, it is 

not clear which solution can be chosen and the given 

metric value cannot be reliable since the noise gives 

un-accurate results. Unfortunate there  
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Table 1. After the Curve-fitting, obtained model Parameters. 

 Dataset-a Dataset-b Dataset-c Dataset-d 

Std.D P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

0.1 1.975 -1.18 1.365 0.9749 0.1841 1.111 1.039 -0.06521 0.2768 0.9434 0.234 0.6045 

0.15 0.9667 -0.4718 1.102 1.212 -0.812 2.093 0.6934 0.05426 0.2576 0.8889 0.2569 0.51 

0.20 0.9507 -0.2557 0.9002 1.181 -1.278 3.394 0.8646 0.06519 0.2249 0.9233 0.2093 0.6472 

0.25 0.9437 -0.4676 1.279 1.094 -0.4518 2.65 0.6558 -0.1967 0.4427 2.201 -754.3 44.93 

 

are not enough study related to the performance 

indicator and DM for noisy problems. This is 

indicated in [7] and [8] so that non-dominated 

solutions are falsely included in the final solution 

set, that causes undesired selection by DM and 

wrong metric value. Recently, in [6] Branke 

proposed two additional metrics for the noisy 

problems. At each of them instead of the noisy data 

the unnoisy data is used with respect to the distance 

to the Pareto front. Also, in [7] the percentage of the 

true solutions are taken as the metric. Similarly, in 

[9] a metric called hypervolume difference is used 

for noisy problems. 

In this research, a new method to evaluate the 

noisy benchmark problems is proposed. In this 

method by using the curve fitting toolset, the 

solution set is used to fit a function. Then the 

function is sampled by using the features of the 

obtained dataset. This feature is the distance and the 

distribution of the solution. This new set called 

shadow set. Each member of the shadow set is 

assigned one of the decision sets. Finally, by using 

this new called shadow set, the metric is calculated, 

and DM can select proper solution among this new 

set. 

This paper is organized as five sections. Section 2 

and Section 3 explains the proposed method and 

presents the discussion of the noise on the objective 

space and the metric. Section 4 given for the 

implementation section that gives the proposed 

benchmark problems and their possible solutions 

and comparisons. Finally, the conclusion section is 

given as the final section. 

II. NOISELESS OBJECTIVE FUNCTIONS ARE KNOWN 

In this section, the metrics and DM is discussed 

when both noisy and noiseless objective functions 

are known. These problems generally valid for 

benchmark problems. In real life problems the 

Pareto Front and especially the exact mathematical 

model may not be known. However, for linear 

programming case it is possible to model and known 

the problem where generally the solution is at the 

border of the search space.  

If all the noiseless objective functions are known, 

the noise easily neglectable and to calculate the 

performance metrics or to use some indicators at the 

optimization algorithm, it is possible to evaluate 

noiseless objective functions. For this case, the 

noise is not a problem to solve. How about not for 

all the functions but some function’s noiseless 

objective is known, or noiseless objectives are not 

known but all statistical properties are known. 

A. Some of the noiseless objective functions are 

known. 

If the objectives are represented as fi for the 

noiseless objective and fir for the noisy objective 

function, hence fir=fi+ri and ri is the noise. In this 

form of the objective functions i is the index of the 

objectives and i=1,2,…,m where there are m number 

of objective functions. Among these objectives 

some of the objectives’ noiseless and noisy 

functions may be known. In this case, by using the 

noiseless and noisy functions their values; it is 

possible to extract the statistical properties of the 

noise may be obtained. The error signal can be 

defined as ei = |fir - fi|. The known objective 

functions help to gain information about the noise. 

The fundamental property is the mean of the noise 

(signal e). If the mean of the noise signal is known 

easily this bias is subtracted from the noisy objective 

functions. 

B. Statistical Information are known or extracted. 

As discuss in the previous sub-section, when the 

noisy signal is known, or its statistical properties are 

known it is possible to approximate a noiseless 

objective value. For this purpose, different methods 

may be used to solve this problem with the aid of 

digital signal processing methods and machine 

learning methods. The neural network may be the 

first method that can be used to remove the noise 

from a signal. The network can learn the difference 

between noisy and noiseless data from the objective 

function known as discussed in the previous sub-

section. This network will be  
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Figure 2. The fitted Gaussian function and corresponding noisy data for standard deviation 0.25 

 

available to use in other objective values. Another 

example is the well-known Wiener filter. The 

Wiener filters are preferred for reducing additive 

noise when the noisy signal is available. This filter 

retrieves the signal s(n) when the noisy signal is 

defined as x(n) = s(n) + v(n) where v(n) is the noise. 

Wiener filter is nothing but an optimization 

algorithm. It is desired to get the optimal filter 

weights from linear minimum mean square error 

estimator. Unfortunately, there isn’t enough 

research in the literature to make research related to 

these topics however the theoretical background of 

these methods looks promising, also in [10] it is 

showed that Wiener filter can be applicable for 

Multiobjective noisy problems, and in [11] neural 

networks are applied for noise optimization. There 

is more research is needed to increase the 

knowledge related to this topic. 

III. NOISELESS OBJECTIVE FUNCTIONS ARE NOT 

KNOWN 

This section is the main contribution of this 

research so that when there is no information about 

the noiseless objective function and no statistical 

information exists for the objectives and noise. For 

this case “How can the performance measured with 

metrics?” is the main question of this research. 

C. No Information about Noise 

Generally, the noisy objectives are obtained from 

the noisy decision variables in real life engineering 

problems. Since the objectives are generally 

formulated with relatively complex mathematical 

expressions, it is not easy to extract the statistical 

information about the noise. Also, since noise exists 

in the environment it is not possible to get a 

noiseless objective. For this reason, it is not possible 

to get the information about noiseless objective. In 

this case measuring the performance and help the 

DM process is crucial. In this research a new method 

based on curve-fitting is proposed. The idea is to 

map the obtained noisy solution set to a temporary 

set named as shadow set. This set is generated from 

sampling of the fitting function. In this research the 

Gaussian model is preferred, and the model is given 

in Eq. 4. 

 

𝑦(𝑛) = 𝑝1exp (− (
𝑥(𝑛)−𝑝2

𝑝3
)

2

)  (4) 

 

The model has three parameters to be decided 

based on obtained solution set -in objective space. 

Levenberg-Marquart method is selected as the 

optimizer to the curve fitting process, and three 

parameters are decided by using this optimizer.  

After the parameters of the model given in Eq. 4 

obtain, the new function sampled to get the same 

amount of data with the obtained solution set. In this 

case there are two different method is proposed: 

Case 1: Equal division, Case 2: Division with 

respect to previous set. For Case 1, the function is 

samples so that there is same amount of data with 

the equal distance. At Case 2, the data is sampled by 

using the obtained data so that the point on Eq 4 with 

the minimum distance to Fr is calculated as became 

as the shadow set. 
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Figure 3. The sampled data with standard deviation 0.15 for metric calculation for Case 1 

 

 
Figure 4. The sampled data with standard deviation 0.2 for metric calculation for Case 2 

 

After the shadow set (s) is generated, the metric is 

calculated using this set instead of the obtained 

solution set. Also, DM can make the selection 

among shadow set (s). 

D. Decision Making and Metric. 

There are many metrics proposed by the 

researcher can be found in literature. However, 

among them the most frequently preferred method 

is the IGD metric that is defined in Eq. 5. 

 

𝑓𝑚 = √
1

𝑛
∑ 𝑑𝑝,𝑜

2
   (5) 

where fm is the metric function, 𝑑𝑝,𝑜 =

√∑ (𝑝(𝑘) − 𝑜(𝑘))2𝑀
𝑘=1 is the Euclidean distance 

between Pareto Front and the obtained solution set. 

The data p and o corresponding to samples set from 

Pareto Front and the obtained solution set/Shadow 

set. The metric is calculated after the new set -

shadow set- is generated. The DM process can be 

followed the metric calculation. 

IV. BENCHMARK DATA SET AND EXAMPLES 

The proposed method and its performance will be 

demonstrated on the problem set. However, it is not 

possible to find benchmark dataset for noisy 

optimization for metric design and other possible r 
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Table 2. The IGD metric values for all the instances with respect to the given benchmark dataset 

 Case 1 Case 2 

Std Dataset-a Dataset-b Dataset-c Dataset-d Dataset-a Dataset-b Dataset-c Dataset-d 

0.1 0.0951 0.2624 0.1138 0.0984 0.1188 0.2945 0.3013 0.0421 

0.15 0.1365 0.2267 0.0755 0.1087 0.1168 0.2593 0.3357 0.0500 

0.2 0.0992 0.2099 0.0887 0.0940 0.1256 0.2336 0.2593 0.0397 

0.25 0.1229 0.2721 0.1180 0.1420 0.1872 0.2954 0.3182 0.1611 

 Noisy Data Noiseless IGD Metric Values are: 

 Dataset-a Dataset-b Dataset-c Dataset-d Dataset-a = 0.0866 

Dataset-b = 0.3457 

Dataset-c = 0.2582 

Dataset-d = 0.0303 

0.1 0.0775 0.2552 0.1828 0.0401 

0.15 0.0794 0.1979 0.2493 0.0612 

0.2 0.0607 0.2261 0.1469 0.0564 

0.25 0.1475 0.2283 0.1695 0.0919 

 

 

research. Therefore, as the first step of the 

implementation the datasets are generated. Figure 1 

shows these datasets on the objective space. 

Four set of datasets are generated for this study. 

These datasets are graphically demonstrated in 

Figure 1 and the reader can download the 

benchmark codes and the data used to generate 

figures from (10.13140/RG.2.2.34190.84809). 

These datasets are generated from ZDT1,2,3 and 6 

benchmark problems. The main reason is their 

different Pareto Front shape, convex, concave, and 

discrete. These three different sets of Pareto shapes 

make harder and challenging to demonstrate the 

proposed method’s capabilities. In the figures, it is 

possible to visualize Pareto Front, true position of 

the obtained solutions and noisy solution set. In this 

research zero mean additive Gaussian noise is 

preferred with 0.1, 0.15, 0.2 and 0.25 standard 

deviations. In figure 1 only 0.1 is demonstrated. The 

datasets are named as Dataset-a, Dataset-b, Dataset-

c and Dataset-d as given in figure, respectively. 

Table 1 shows the parameter set of the Fitted 

Gaussian model for the given noisy datasets. In 

addition, in Figure 2, the fitted Gaussian function, 

noisy dataset and obtained solution set is graphically 

demonstrated for standard deviation 0.25. From 

Figure 2, it can be observed that the noisy data will 

not let the fitting curve to follow the Pareto front. 

Only for concave case (Fig 2b) it is possible to get a 

concave fit function. For discrete and convex case 

since the noise is relatively large with respect to the 

obtained solution a false plot observed. Even these 

results look undesired, it will be more apparent 

when the metric values are compared. In addition, 

the results also support the validation of the 

proposed benchmark datasets. 

Next, the obtained function will be samples to 

evaluate for metric calculation (IGD). Two different 

sampling is evaluated in this research. In Case 1: the 

function is divided into equal number of samples 

with the obtained solution with equal distance 

between each other. For Case 1, only the valid 

section of the fitted function is considered, that 

means if the Pareto Front is defined in [0,1] that the 

function samples only inside this range. In Case 2: 

the data is samples with respect to the obtained 

solution so that the other objective values are 

calculated from the value of the first objective. 

Figure 3 and figure 4 show the sampled data for 

Case 1 and Case 2, respectively. 

As the last step of this research the obtained -

shadow- data is applied to the IGD metric and IGD 

metric values are compared with noiseless obtained 

data, noisy obtained data, and shadow data on four 

different data set with four different noise and two 

different cases. Table 2 gives the metric values for 

all these test instances. 

Table 2 gives the numerical IGD metric results for 

noisy and noiseless dataset and two shadow datasets 

as Case 1 and Case 2. The noiseless IGD metric 

value represents the basis of the solutions. Under the 

noise, it is expected to get a closer IGD metric value 

with the noiseless metric values. If the noisy data is 

compared with the noiseless metric values for all 

different standard deviation values. For all noise 

with different standard deviation, as the standard 

deviation increases the difference between noiseless 

and noisy metric values increases which 

demonstrates the impact of the noise and on metric 

value.  

Next the proposed curve-fitting based data 

preparation method is applied to the problems as 
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model parameters reported in Table 1. It can be 

observed from the results for Case 1 and 2 that the 

impact of the noise statistical property -standard 

deviation- on the metric values decreased greatly. 

The metric values for all different standard 

deviation values are close each other. Then when the 

metric values are compared between Case 1 and 

Case 2 and noiseless metric values, it can be 

observed that the results in Case 2 is much like 

Noiseless metric values than Case 1 and Noisy Data. 

Hence, it is possible to suggest evaluating the 

proposed shadow dataset technique with respect to 

the curve-fitting can be applicable to evaluate the 

performance of the noisy problems and help the DM 

process. 

V. CONCLUSION 

The noise optimization problems are generally 

assuming to be noiseless and solve the problems. 

Even they work in experimental studies the real-life 

systems have noise in them. Therefore, some 

methods are needed to handle the noise. However, 

in real like problems the information related to the 

noise may be not accessible. Therefore, after the 

Multiobjective optimization algorithm -with or 

without noise reduction/handle mechanisms- 

produce a set of solutions with has under the noise 

influence. After the optimization algorithm 

completed the performance evaluation and DM 

process follows. However, since the obtained 

solution set contains noise the obtained metric 

values may lead the solutions and selection of the 

solution misleads the DM. For this reason, in this 

study a more robust metric calculation methodology 

is proposed with the ais of curve-fitting tools. The 

solutions suggested the statistical change on the 

noise data mostly cancelled by the proposed metho 

and the obtained metric value is much closer to the 

noiseless data. Therefore, it is suggested to use the 

preferred metric method and it is possible to 

proposed more improved method by following the 

methodology which is proposed in this research. 
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