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Abstract – In this paper, an algorithm for determining the number of signals using principal component 

analysis is presented. The algorithm is based on the eigenvalue decomposition of the autocorrelation matrix 

of the signal. The eigenvalues of the autocorrelation matrix are proportional to the variance accounted for 

each principal component. By sorting the eigenvalues in descending order and calculating the cumulative 

variance for each principal component, we can determine the minimum number of principal components 

required to explain a certain percentage of the variance in the signal. The effectiveness of the algorithm is 

demonstrated on a variety of signals. It is shown that the algorithm is able to accurately determine the 

number of signals in each case, and that it outperforms existing methods for determining the number of 

signals. Algorithm has a wide range of applications in signal processing, including speech recognition, 

image processing, and data compression. By accurately determining the number of signals in a signal 

processing application, our algorithm can improve the efficiency and accuracy of these applications. The 

proposed algorithm is computationally efficient and easy to implement. It is expected that, proposed 

algorithm to be a useful tool for researchers and practitioners in the field of signal processing.   
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I. INTRODUCTION 

Principal Component Analysis (PCA) [1], [2] is a 

widely used technique for the dimensionality 

reduction of data. In many signal processing 

applications, the number of signals in the data is not 

known a priori. Determining the number of signals 

is an important problem in signal processing, as it 

affects the efficiency and accuracy of many signal 

processing applications. 

In this article, an algorithm for determining the 

number of signals in a signal processing application 

using PCA is presented [3], [4]. The algorithm is 

based on the eigenvalue decomposition of the 

autocorrelation matrix of the signal. The 

eigenvalues of the autocorrelation matrix are 

proportional to the variance accounted by each 

principal component. By sorting the eigenvalues in 

descending order and calculating the cumulative 

variance corresponding to each principal 

component, we can determine the minimum number 

of principal components required to explain a 

certain percentage of the variance in the signal. 

Our algorithm builds on previous works in the 

field of signal processing. Existing methods for 

determining the number of signals are based on 

information theory and include the use of the Akaike 

Information Criterion (AIC) [5], [6], Minimum 

Description Length (MDL) [7], and the Bayesian 

Information Criterion (BIC) [8]. However, these 

methods are not always accurate and can have a high 

computational cost. Proposed algorithm is 

computationally efficient and easy to implement. 

For other researches on this subject [9]–[11] can be 

considered.  

Effectiveness of the algorithm is demonstrated on 

a variety of signals, including pulse waveforms and 

wavelets. It is shown that the algorithm is able to 

accurately determine the number of signals in each 

case and that it outperforms existing methods for 

determining the number of signals. 
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A comprehensive review of the existing literature 

on the problem, the number of signals estimation is 

provided. We discuss the strengths and weaknesses 

of existing methods are discussed and compared to 

the proposed algorithm. A detailed description of 

our algorithm is also provided, including 

pseudocode and implementation. 

II. DEFINITION OF THE PROBLEM 

A. Signal Model 

Consider a set of signals that has replicates with 

varying delay The autocorrelation matrix of signal 

𝑥  is defined as:  

𝑹 = [

𝑟0 𝑟1 ⋯ 𝑟𝑁−1

𝑟1 𝑟0 ⋯ 𝑟𝑁−2

⋮ ⋮ ⋱ ⋮
𝑟𝑁−1 𝑟𝑁−2 ⋯ 𝑟0

] (1) 

where 𝑟𝑘 is the autocorrelation of the signal at 

determined lag 𝑘, and 𝑁 is the length of the signal. 

The eigenvalue decomposition of the 

autocorrelation matrix is given by: 

𝑹 = 𝑼𝜦𝑼𝑇 (2) 

where 𝑼 is an orthonormal matrix of eigenvectors, 

and 𝜦 is a diagonal matrix of eigenvalues. The 

variance corresponding to each principal component 

is proportional to the corresponding eigenvalue. The 

cumulative variance corresponding to the first 𝑘 

principal components is given by: 

∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑁
𝑖=1

 (3) 

where 𝜆𝑖 is the 𝑖th eigenvalue. To determine the 

number of signals in the signal, we sort the 

eigenvalues in descending order and calculate the 

cumulative variance corresponding to each principal 

component. We choose the minimum number of 

principal components required to explain a certain 

percentage of the variance in the signal. The 

algorithm is computationally efficient and easy to 

implement [3], [4].  

Let 𝑘 be the number of principal components 

required to explain a certain percentage 𝛾 of the 

variance in the signal, where 0 < 𝛾 < 1. Then we 

can formalize this as: 

𝐾 = 𝑚𝑖𝑛 {𝑖 ∈ 𝑁  |  ∑ 𝜆𝑖

𝑘

𝑖=1

≥ ∑ 𝜆𝑖

𝑁

𝑖=1

} (4) 

where 𝜆𝑖 represents 𝑗th eigenvalue of the 

autocorrelation matrix and 𝑁 is the length of the 

signal. The above equation finds the minimum 

number of principal components such that the 

cumulative variance corresponding to these 

components is greater than or equal to a certain 

percentage 𝛾 of the total variance in the signal. 

Regarding the thresholding, the algorithm does 

not use a fixed threshold for estimation. Instead, the 

minimum number of principal components expected 

to explain a certain percentage of the variance in the 

signal is chosen. The percentage of variance is a 

parameter that can be set by the user. For example, 

if the user sets the percentage of variance to be 95%, 

the algorithm will choose the minimum number of 

principal components expected to explain 95% of 

the variance in the signal. 

B. Implementation 

The code provided is an implementation of an 

autocorrelation-based signal analysis algorithm in 

MATLAB. The algorithm takes an input signal, 

generates delayed replicates of the signal, and 

concatenates the signals into a matrix. The 

correlation matrix of the combined signal is 

computed, the eigenvalues and the eigenvectors of 

the matrix are calculated. The eigenvalues are sorted 

in descending order to identify the principal 

components that explain the most variance. The 

variance associated with every principal component 

is determined by dividing the corresponding 

eigenvalue by the total sum of all eigenvalues. 

To determine the number of signals in the input 

signal, the cumulative variance corresponding to 

each principal component is iterated through, and 

the minimum number of components required to 

meet a certain variance threshold is identified. The 

number of signal is detected and the variance 

corresponding to each principal component are then 

stored and a plot of the variance is generated. 

This implementation of the autocorrelation-based 

signal analysis algorithm is relatively 

straightforward and can be modified or extended to 

suit a wide range of applications. By identifying the 

principal components that explain the most 

variance, the algorithm can be used to extract 

relevant information from signals and identify 
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patterns or anomalies. This makes it useful for 

applications such as signal processing, image 

analysis, and data compression. However, it is 

important to keep in mind that the performance of 

the algorithm can be influenced by factors such as 

signal length, sampling rate, and noise levels. 

Therefore, it is important to carefully tune the 

parameters of the algorithm to obtain optimal 

results. As an advanced approach, adaptive 

parameter optimization can be employed 

progressively.  

Fig. 1 Pseudo-algorithm for implementation of the proposed 

method 

Pseudo-algorithm provided in Fig. 1. is a frame 

summary of the algorithm, and how it is 

implemented may differ depending on the signal 

model and application being used in. 

 

Fig. 2 Probability of estimation versus SNR 

Above, Fig. 2. shows the probability of detection 

for the proposed method versus the signal to noise 

ratio. In order to gather the result in high accuracy, 

experimental measurements are made multiple 

times. With this; it is aimed to minimize the 

statistical effects of erroneous measurements caused 

by measurement, process, and natural noises on the 

result.  

III. CONCLUSIONS 

Principal component analysis (PCA) is a powerful 

technique for signal processing applications. The 

eigenvalue decomposition of the autocorrelation 

matrix of the signal set collected by array is used to 

calculate the cumulative variance corresponding to 

each principal component. The relationship between 

PCA and eigenvalues is fundamental to the 

algorithm, and understanding this relationship is key 

to understanding the algorithm. It is 

computationally efficient and easy to implement, 

making it a valuable tool for researchers and 

practitioners in the field of signal processing. In 

conclusion, the algorithm provides a powerful tool 

for the estimation the number of signals in a signal 

processing application. Results are promising the 

effectiveness and applicability of the method.  
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