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Abstract – Engineering problems generally based on collecting and processing of the data taken from 

real-life problems. Even the data represents the real-word data quantitative and qualitative properties, the 

data contains noise -measurement noise or disturbance-. To get an accurate solution for this noisy 

optimization problem some additional techniques are formed inside the optimization algorithm to handle 

the noise. For this reason, in this research staircase-like dynamic re-sampling method is proposed. This 

technique is based on increase the amount of re-calculation of the objective functions as the generations 

goes on. The impact of this technique on the benchmark problems are empirically demonstrated by using 

four different optimization algorithms and proposed dynamic re-sampling method is compared with the 

static re-sampling method. The results show that the impact of the proposed algorithm increases as the 

problem becomes more complex and harder to solve with respect to the computational resources.   
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I. INTRODUCTION 

 

Real word engineering problems generally 

contains control, design or planning of the 

processes which are formulated as optimization 

problems so that the best possible solution or 

solution set generated for the decision maker to 

select the most suitable solution among the set. 

These or similar engineering problems are 

generated by using the model of the corresponding 

process, and these models generated from the 

measurements which are taken from the 

observation of the systems. Since the 

measurements and systems contains measurement 

noise and disturbance, the objective of the 

optimization problem contains noise. For these 

reasons the attempts to solve these problems are 

called noisy optimization problems. 

 

Unlike single objective optimization problems, in 

multiobjective optimization problem the noise may 

be added to all objectives or some of the 

objectives. Hence, noisy multiobjective 

optimization problems consider as a separate case. 

Traditional gradient-based/derivative-based 

optimization techniques could not be very suitable 

for noisy problems due to the inherent 

discontinuity of the noisy objectives [1]. 

In [10] variable noise is defined to the CEC 2009 

benchmark set. The noise variance is depended on 

the objective space position of the solution 

candidate [10]. It is showed that noiseless 

objectives can be accurately estimated by using 

relatively large number of computational sources. 

Also, small noise values help to correct the noisy 

problem. As dynamic re-sampling proposal in [11] 

density plus technique was proposed. By using the 

crowding principle (noise is normal distribution 
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with 0.20 standard deviation). The3re are many 

possible proposals for dynamic re-sampling which 

are find and discussed in [12,13]. Two types of 

noise are proposed in [14] and [15] as 

proportionate noise (1+ηM) and multiplicative 

noise with the additive noise which is used in this 

research and in [10,11,12,13]. 

In nosy optimization problems the objective 

functions are contaminated where due to the noisy 

sensor data at the engineering problem are added to 

the objective function [1]. Since in many problems, 

it is not possible to get the noise-statistical 

properties, it is difficult the get the solutions [1]. 

The noisy multiobjective optimization is defined as 

 
𝐹𝑛𝑜𝑖𝑠𝑦 = {𝑓1 + 𝜂1, 𝑓2 + 𝜂2, … , 𝑓𝑀 + 𝜂𝑀}                      (1)                                         

where additive noise (h) is applied to each 

objective value. In this research the noise is 

modelled as Normal distribution with zero mean 

and 0.15 standard deviation. This random number 

changes for each function evaluations.  

This paper is organized as four section begins 

with the introduction. Then optimization 

algorithms benchmark problems and proposed 

technique is explained in section 2. In section 3 

implementation results are given as empirical study 

and finally the conclusion of this research 

presented. 

II. METHODS 

In this section first the optimization algorithms 

are explained briefly so that the reader can be look 

at their references for more detailed. Then 

benchmark problems are given as mathematical 

formulations and their properties will explain. Next 

the proposed re-sampling method is given. 

A. Optimization Algorithms 

Four multiobjective optimization algorithms are 

selected (evolutionary algorithms -genetic 

operator-base) to solve the problem and the 

development environment for the proposed 

technique. These algorithms MOEA/DDYTS [2], 

NSGA-II [5], NSGA-III [6], and MOEA/D [7] are 

selected as the optimizer of this research since the 

performance of the algorithm on BT benchmark 

problem may not reported yet. The algorithms and 

proposed technique were imported in the PlatEmo 

platform [3,4]. 

  

B. Adaptive operator selection based MOEA/D 

(MOEA/DDYTS [2]) 

Adaptive operator selection based MOEA/D is a 

variant of the MOEAD algorithm such that a new 

mechanism is design to adaptively choose the 

appropriate operator for balancing exploration and 

exploitation by using dynamic Thompson sampling 

according to the latest search dynamic. As the 

crossover (recombination) operator pool 

differential evolution formulations are discussed. 

Two parameters of the beta distribution are used to 

decide the operator by changing the values of these 

two parameters.  

C. Nondominated Sorting Genetic Algorithm II 

(NSGA-II [5]) 

Nondominated sorting Genetic Algorithm 

(NSGA-II) is an evolutionary algorithm so that it 

contains crossover mutation and selection 

operators. The important part of the NSGA-II 

algorithm is the operator called nondominated 

sorting. After the offspring is generated and by 

using the mutation operator they are changed. After 

that the two populations are sorted and based on 

the sorting operator rand value is assigned to the 

members. The lower ranked members survived to 

the next generator. For the remaining members by 

using the operator called crowding distance, are 

added to the surviving member list.  

D. Nondominated Sorting Genetic Algorithm 

(NSGA-III [6]) 

NSGA-III is an improved version of the NSGA-

II (actually R-NSGA-II algorithm) algorithm 

especially for the many objective optimization 

problems since as the number of objectives 

increased in number the desired computational 

resources for the sorting operator is became huge. 

The reference points are generated at the beginning 

of the algorithm. After recombination (crossover) 

and mutation operators helps to generate offspring. 

Next all population is classified into different ranks 

like NSGA-II. In the algorithm for each reference 

point a solution is expected therefore a traditional 

selection operator is not needed for NSGA-III 

algorithm. Beginning with the lowest rank, each 

member in the rank normalized and associated with 

the reference point with respect to the distance to 

the reference vector. The shortest distance member 

for each reference point is survived to the next 

generator. 
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Table 1. The IGD metric values for BT Benchmark problem (noiseless) 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1 2 30 

1.5192e+0  

(7.90e-1) - 

6.1466e-3  

(1.11e-3) + 

1.1687e-2  

(2.73e-3) + 

7.9691e-2  

(4.87e-2) 

BT2 2 30 

2.6390e-1  

(1.98e-2) - 

5.6744e-2  

(1.18e-2) + 

1.0935e-1  

(2.24e-2) - 

8.9486e-2  

(1.54e-2) 

BT3 2 30 

1.0491e+0  

(4.09e-1) - 

5.4295e-3  

(2.52e-4) + 

1.5641e-2  

(3.73e-3) + 

3.7424e-2  

(2.12e-2) 

BT4 2 30 

4.4631e-1  

(2.67e-1) - 

1.0114e-2  

(1.54e-3) + 

1.9218e-2  

(2.66e-3) + 

2.8172e-2  

(9.09e-3) 

BT5 2 30 

1.5751e+0  

(2.21e-1) - 

8.6810e-3  

(1.06e-2) + 

1.2506e-2  

(1.06e-2) + 

2.3559e-1  

(8.22e-2) 

BT6 2 30 

6.0239e-1  

(2.24e-6) - 

2.9216e-1  

(5.38e-2) = 

3.1322e-1  

(1.82e-2) + 

3.3142e-1  

(1.11e-2) 

BT7 2 30 

1.5207e-1  

(9.65e-2) + 

1.7788e-1  

(1.08e-1) + 

1.8235e-1  

(5.00e-2) + 

3.3118e-1  

(1.45e-1) 

BT8 2 30 

2.6308e-1  

(1.77e-1) = 

3.1091e-1  

(2.73e-2) + 

3.1519e-1  

(2.03e-2) + 

3.8512e-1  

(8.75e-2) 

+/-/= 1/6/1 7/0/1 7/1/0   

 
Table 2. The IGD metric values for BT Benchmark noisy problem solving with proposed Case 1 technique. 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1N4 2 30 

3.6021e+0  

(3.26e-1) + 

3.3096e+0  

(1.10e-1) + 

3.0792e+0  

(3.79e-1) + 

4.0564e+0  

(1.80e-1) 

BT2N4 2 30 

1.2554e+0  

(2.03e-1) = 

8.3323e-1  

(9.62e-2) + 

6.9088e-1  

(5.85e-2) + 

1.6987e+0  

(5.12e-1) 

BT3N4 2 30 

3.0221e+0  

(3.37e-1) + 

1.9461e+0  

(8.68e-1) + 

9.2588e-1  

(3.30e-1) + 

4.1118e+0  

(3.16e-1) 

BT4N4 2 30 

3.2578e+0  

(4.35e-1) + 

1.6620e+0  

(6.23e-1) + 

8.6780e-1  

(5.74e-1) + 

3.6743e+0  

(3.67e-1) 

BT5N4 2 30 

3.5499e+0  

(8.28e-2) + 

3.3097e+0  

(8.28e-2) + 

3.2343e+0  

(1.37e-1) + 

3.8778e+0  

(1.79e-1) 

BT6N4 2 30 

9.5050e-1  

(4.41e-2) - 

4.3728e-1  

(2.01e-1) = 

4.5412e-1  

(1.68e-1) = 

7.7371e-1  

(7.04e-1) 

BT7N4 2 30 

4.9791e-1  

(1.19e-1) - 

3.5830e-1  

(9.88e-2) = 

3.5343e-1  

(1.15e-1) = 

3.6130e-1  

(1.55e-1) 

BT8N4 2 30 

9.9738e-1  

(1.09e-1) + 

4.9603e-1  

(2.23e-1) + 

4.2368e-1  

(1.76e-1) + 

3.4423e+0  

(7.88e-1) 

+/-/= 5/2/1 6/0/2 6/0/2   

 

E. A multiobjective evolutionary algorithm based 

on decomposition (MOEA/D [7]) 

A multiobjective evolutionary algorithm based 

on decomposition (MOEA/D) is a multiobjective 

evaluation algorithm that is depended on 

decomposition as the selection operator. Like other 

evolutionary algorithms, MOEAD begins with the 

crossover operator and SBX is selected as this 

operator. The offspring is generated. Then by using 

the polynomial mutation the members of the 

population alter. As the most important and 

distinguish property of the MOEAD, the3 best 

members are selected by using the decomposition 

operator. The decomposition is the aggregation  

 

operation to fragment the multiobjective 

optimization problem into single objective many 

optimization problems by using the weight vector. 

Randomly selected members in the neighborhood 

compares by using the decomposition and best 

members survives to the next generator. 

F. Noisy Benchmark Problems 

Benchmark problems are a set of mathematical 

problems and their solutions are known. These 

problems are proposed to text and evaluate the 

performance of the proposed algorithms and it 

makes easy to compare algorithms even they are 

presented different research. For these reasons the 

benchmark problem complexity must be closer to  
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Table 3. The IGD metric values for BT Benchmark noisy problem solving with proposed Case 2 technique. 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1N8 2 30 

3.4576e+0  

(2.79e-1) + 

3.1980e+0  

(4.51e-1) + 

2.7597e+0  

(7.92e-1) + 

4.0897e+0  

(1.86e-1) 

BT2N8 2 30 

1.0530e+0  

(7.93e-2) = 

7.7472e-1  

(2.35e-1) + 

6.2429e-1  

(1.09e-1) + 

1.6192e+0  

(7.87e-1) 

BT3N8 2 30 

3.0491e+0  

(4.26e-1) + 

9.5499e-1  

(7.96e-1) + 

6.5458e-1  

(4.77e-1) + 

3.6647e+0  

(7.69e-1) 

BT4N8 2 30 

2.7330e+0  

(4.35e-1) + 

8.7299e-1  

(6.20e-1) + 

3.0786e-1  

(1.78e-1) + 

3.6030e+0  

(9.67e-1) 

BT5N8 2 30 

3.5272e+0  

(1.74e-1) + 

3.1689e+0  

(3.19e-1) + 

2.8744e+0  

(3.83e-1) + 

4.0553e+0  

(2.44e-1) 

BT6N8 2 30 

8.1099e-1  

(2.23e-1) - 

2.8618e-1  

(8.93e-2) = 

2.8511e-1  

(7.05e-2) = 

5.1583e-1  

(5.87e-1) 

BT7N8 2 30 

4.4447e-1  

(1.36e-1) - 

2.6483e-1  

(1.40e-1) = 

3.6992e-1  

(1.53e-1) = 

3.0744e-1  

(1.34e-1) 

BT8N8 2 30 

9.6535e-1  

(3.64e-2) + 

6.0795e-1  

(8.92e-1) + 

4.6539e-1  

(3.86e-1) + 

2.2651e+0  

(7.09e-1) 

+/-/= 5/2/1 6/0/2 6/0/2   

 
Table 4. The IGD metric values for BT Benchmark noisy problem-solving with 5x105 function evaluations 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1N 2 30 

3.2138e+0  

(4.20e-2) - 

2.8378e+0  

(1.22e-1) - 

2.6890e+0  

(2.27e-1) - 

6.7222e-1  

(1.77e-1) 

BT2N 2 30 

9.4747e-1  

(1.10e-1) = 

3.8105e-1  

(1.18e-1) + 

3.5062e-1  

(9.08e-2) + 

1.0247e+0  

(1.38e-1) 

BT3N 2 30 

3.0561e+0  

(2.87e-1) + 

1.7737e+0  

(4.53e-1) + 

9.6840e-1  

(4.54e-1) + 

3.7816e+0  

(1.32e-1) 

BT4N 2 30 

3.2086e+0  

(1.40e-1) = 

1.4732e+0  

(3.99e-1) + 

9.9270e-1  

(3.93e-1) + 

3.3383e+0  

(3.78e-1) 

BT5N 2 30 

3.2090e+0  

(7.50e-2) + 

2.7762e+0  

(2.99e-1) + 

2.5803e+0  

(2.86e-1) + 

3.6614e+0  

(1.06e-1) 

BT6N 2 30 

9.0893e-1  

(2.55e-1) - 

6.5331e-1  

(1.16e-1) - 

7.1734e-1  

(1.53e-1) - 

3.8280e-1  

(1.94e-1) 

BT7N 2 30 

7.0744e-1  

(1.71e-1) - 

6.3077e-1  

(9.97e-2) - 

6.0303e-1  

(1.18e-1) = 

4.9322e-1  

(9.83e-2) 

BT8N 2 30 

9.6516e-1  

(2.31e-1) + 

6.8341e-1  

(3.94e-1) + 

6.0293e-1  

(4.04e-1) + 

2.5292e+0  

(8.64e-1) 

+/-/= 3/3/2 5/3/0 5/2/1   

 

the real-life engineering problems. To make 

benchmark problems relatively complex one 

method is to add bias to the existing problems. In 

[9], two types of biases are added, and 

corresponding benchmark problems are called as 

BT problems. AS discussed, and defined in [9], 

these benchmark problems are good testing 

environment for bi-objective -multiobjective- 

problems. In this research eight BT problems 

(BT1-BT8) are used. Since these benchmark 

problems are not noisy, the random number 

generator is added to the problems as given in Eq. 

1. As the noise normal -Gaussian- distribution with 

zero mean and 0.15 standard deviation is added to 

make all objective functions noisy. 

G. Proposed Dynamic Re-sampling Technique 

Re-sampling method is a method which is based 

on calculating functions more than one and taking 

the average of their value. By this way the noise in 

the data can be reduced. The static re-sampling 

method is based on calculating the objective at 

every generation. However, from the previous 

results it is indicated and proved that at the early 

stage of the convergency of the optimization 

algorithm the error due to the noisy data can be 

neglectable and has a slightly impact on the 

performance of the algorithm. Therefore, in this 

research a new technique named as Staircase 

Dynamic Re-sampling method is proposed.  
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Table 5. The IGD metric values for BT Benchmark noisy problem-solving with 8.75x105 function evaluations 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1N 2 30 

3.1895e+0  

(4.84e-2) - 

2.8502e+0  

(2.54e-1) - 

2.5780e+0  

(3.80e-1) - 

6.7222e-1  

(1.77e-1) 

BT2N 2 30 

8.5682e-1  

(9.87e-2) + 

3.3956e-1  

(7.15e-2) + 

2.0822e-1  

(6.39e-2) + 

1.0247e+0  

(1.38e-1) 

BT3N 2 30 

2.9562e+0  

(2.17e-1) + 

1.0031e+0  

(4.63e-1) + 

6.3742e-1  

(3.40e-1) + 

3.7816e+0  

(1.32e-1) 

BT4N 2 30 

3.0840e+0  

(1.83e-1) = 

1.3424e+0  

(5.08e-1) + 

7.8418e-1  

(3.56e-1) + 

3.3383e+0  

(3.78e-1) 

BT5N 2 30 

3.1505e+0  

(1.03e-1) + 

2.6361e+0  

(1.65e-1) + 

2.5582e+0  

(2.58e-1) + 

3.6614e+0  

(1.06e-1) 

BT6N 2 30 

8.2742e-1  

(2.64e-1) - 

7.2956e-1  

(9.30e-2) - 

8.6126e-1  

(1.05e-1) - 

3.8630e-1  

(1.02e-1) 

BT7N 2 30 

7.1696e-1  

(1.57e-1) = 

7.1148e-1  

(1.89e-1) = 

7.2411e-1  

(1.37e-1) = 

6.6102e-1  

(1.97e-1) 

BT8N 2 30 

1.0398e+0  

(8.83e-2) + 

4.7828e-1  

(2.38e-1) + 

4.6624e-1  

(2.32e-1) + 

2.4534e+0  

(5.67e-1) 

+/-/= 4/2/2 5/2/1 5/2/1   

 
Table 6.The IGD metric values for BT Benchmark noisy problem-solving with static re-sampling with Sample Size=4 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1NS3 2 30 

3.5613e+0  

(5.44e-2) + 

2.8757e+0  

(2.89e-1) + 

2.4393e+0  

(5.16e-1) + 

3.7010e+0  

(1.03e-1) 

BT2NS3 2 30 

1.1514e+0  

(6.69e-2) - 

5.1386e-1  

(6.82e-2) + 

4.1883e-1  

(5.78e-2) + 

9.6348e-1  

(1.25e-1) 

BT3NS3 2 30 

3.0817e+0  

(3.02e-1) + 

9.9743e-1  

(5.02e-1) + 

9.0012e-1  

(4.92e-1) + 

3.5068e+0  

(4.60e-1) 

BT4NS3 2 30 

3.0343e+0  

(1.62e-1) = 

1.0823e+0  

(3.40e-1) + 

6.6251e-1  

(1.52e-1) + 

2.9299e+0  

(3.98e-1) 

BT5NS3 2 30 

3.4822e+0  

(1.36e-1) + 

2.7616e+0  

(3.02e-1) + 

2.3440e+0  

(3.32e-1) + 

3.7644e+0  

(1.43e-1) 

BT6NS3 2 30 

5.5515e-1  

(1.80e-1) - 

4.0141e-1  

(1.43e-1) = 

4.4856e-1  

(5.67e-2) - 

3.0607e-1  

(7.65e-2) 

BT7NS3 2 30 

3.6202e-1  

(8.62e-2) = 

3.1151e-1  

(1.02e-1) + 

3.0357e-1  

(1.57e-1) + 

4.5526e-1  

(1.40e-1) 

BT8NS3 2 30 

7.5368e-1  

(2.90e-2) + 

4.3747e-1  

(2.99e-1) + 

3.5964e-1  

(1.36e-1) + 

2.9824e+0  

(7.41e-1) 

+/-/= 4/2/2 7/0/1 7/1/0   

 

The idea is based on increase the sampling size 

as the generation increase. Figure 1 and Figure 2 

show this idea. 

Function 
Evaluation 

(FE)
FEmax3FEmax/4FEmax/2FEmax/41

Sample 
Size

s[4]

s[3]

s[2]

s[1]

 
 Figure 1. Proposed Staircase Dynamic Re-sampling 

method – Case 1 

Function 
Evaluation 

(FE)

FEmax7FEmax/8FEmax/21

Sample 
Size

s[4]

s[3]

s[2]

s[1]

s[5]

s[6]

s[7]

s[8]

6FEmax/85FEmax/83FEmax/82FEmax/8FEmax/8

 Figure 2. Proposed Staircase Dynamic Re-sampling method 

– Case 2 
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Table 7.The IGD metric values for BT Benchmark noisy problem-solving with static re-sampling with Sample Size=8 

Problem M D MOEADDYTS NSGAII NSGAIII MOEAD 

BT1NS7 2 30 

3.4173e+0  

(1.81e-1) = 

2.2015e+0  

(3.18e-1) + 

1.8832e+0  

(3.30e-1) + 

3.5239e+0  

(3.29e-1) 

BT2NS7 2 30 

1.0811e+0  

(4.95e-2) - 

4.4977e-1  

(6.55e-2) + 

3.6000e-1  

(5.97e-2) + 

8.3908e-1  

(9.33e-2) 

BT3NS7 2 30 

2.8932e+0  

(2.59e-1) = 

4.0697e-1  

(2.66e-1) + 

1.9671e-1  

(1.47e-1) + 

2.5594e+0  

(5.81e-1) 

BT4NS7 2 30 

2.7903e+0  

(3.15e-1) - 

4.9656e-1  

(2.91e-1) + 

3.8188e-1  

(2.11e-1) + 

2.3066e+0  

(2.24e-1) 

BT5NS7 2 30 

3.3998e+0  

(1.49e-1) = 

2.1172e+0  

(3.61e-1) + 

1.8702e+0  

(3.84e-1) + 

3.5730e+0  

(2.08e-1) 

BT6NS7 2 30 

6.1112e-1  

(1.10e-1) - 

2.7198e-1  

(6.75e-2) = 

3.1449e-1  

(1.01e-1) = 

2.8583e-1  

(4.70e-2) 

BT7NS7 2 30 

2.8032e-1  

(9.63e-2) + 

2.6102e-1  

(9.56e-2) + 

2.7300e-1  

(1.33e-1) + 

4.0511e-1  

(1.29e-1) 

BT8NS7 2 30 

6.6061e-1  

(7.54e-3) + 

4.3668e-1  

(3.64e-1) + 

2.9335e-1  

(4.64e-2) + 

2.2606e+0  

(6.20e-1) 

+/-/= 2/3/3 7/0/1 7/0/1   

 

Figure 1 and 2 gives the two different cases 

considered in this paper. In Figure 1 (Case 1) The 

maximum number of function evaluation is divided 

into four stages. Each state several samplings is 

calculated (s={0,1,2,3}). Similarly Figure 2 gives 

for Case 2 for eight different stages 

(s={0,1,2,3,4,5,6,7}). By this way the aim is to 

reduce the number of additional function 

evaluation to get rid of the noise. 

 

III. IMPLEMENTATION 

The aim of this research is to empirically 

demonstrate the performance of the proposed 

technique by implementing is to solve eight 

benchmark problems on four different optimization 

algorithms. The framework for this research begins 

with the comparing the four algorithms on two 

objective BT problems (noiseless). First, the 

algorithms are compared, and the results are 

reported in Table 1 for BT benchmark problems. 

In Table 1, the performance of the algorithms on 

BT benchmark problems are demonstrated by 

using the IGD metric (for maximum function 

evaluation (FEmax)= 2x105). The results are 

clearly showed that the NSGAII algorithm presents 

the best results among all other algorithm since the 

other algorithms are generally developed and tested 

on many-objective optimization problems. After 

that NSGA-III gives promising results among all 

four algorithms. Next, the proposed staircase 

technique is applied to the noisy benchmark 

problems, Table 2 and Table 3 gives the results. 

In this research two different cases are 

considered (case 1 and case 2) and the obtained 

results for Case 1 and Case 2 given in Table 2 and 

Table 3, respectively. In the given technique the 

repeated function calculations are increase in 

number to 5x105 and 8.75x105 for Case 1 and 

Case 2, respectively for the same iteration given in 

Table 1.  

Comparing Table 2 and Table 3: These two 

tables are gives for two different cases. For both of 

them, NSGAIII gives the best results for both 

tables. Case 2 (Table 3) gives the better results than 

Case 1. However, in Case 2 more functions are 

evaluated to get a better result which is an expected 

outcome. For this reason, instead of comparing 

Case 1 and Case 2 it is better to compare dynamic 

re-sampling method with static methods. Before 

that, the algorithms without using re-sampling 

methods with given maximum function evaluations 

are applied to compare the results. Table 4 and 

Table 5 gives the results for 5x105 function 

evaluations and 8.75x105 function evaluations. The 

aim is to answer the question “Do we need re-

sampling method?” 

Comparing Table2 (Case 1) and Table 4: İt is not 

possible to mention about one of them is better 

from the other. Since the benchmark problem 

sorted from relatively easy problem to the hardest, 

almost upper top of the problems in Table 4 is 

better than Table 2 which means that instead of 

using re-sampling method and allocate 

computational resources, evolutionary algorithms 

give better results. However, as the problem 
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be3came harder than additional techniques are 

needed. Similar conclusion can be obtained for 

Case 2 when comparing Table3 (Case 2) and Table 

5. 

Next, it is better to compare with static re-

sampling method. These two cases are the dynamic 

resampling method for decreasing the number of 

function evaluations when compared to the static 

re-sampling method. For this reason, the static re-

sampling is implemented for the given maximum 

number of function evaluations. Table 6 and Table 

7 are given for this purpose. 

Finally static re-sampling method is implemented 

with the same number of function evaluations. 

Table 6 and Table 7 compared the difference of the 

static methods with different sample size. As the 

sample size is increased with the same 

implementation number the performance of the 

algorithm is clearly improved for all of the 

benchmark problems. As the final comparison of 

this research, if the static resampling method is 

compared with the proposed method under the 

same conditions, it is empirically showed that the 

proposed method gives better results. From this 

result not only the computational resources but also 

techniques to improve the performance is needed 

to get a better performance 

 

IV. CONCLUSION 

Dynamic re-sampling method is an important and 

cost-efficient method that decreases the number of 

function evaluations and saves the computational 

resources. In this study a new technique called 

staircase dynamic re-sampling method to improve 

the performance of the algorithms. To demonstrate 

the impact of the proposed technique, it is 

compared with static re-sampling method and 

traditional optimization algorithm results. For these 

reasons four algorithms MOEADDYTS, NSGAII, 

NSGAIII, MOEAD are applied to the problems. 

The results indicate that for a relatively simple 

problems even they are noisy, no additional 

method or technique is needed for getting good 

results. However, as the problems became harder 

with a challenging objective space, the techniques 

are needed and their impact increases. In addition, 

the static re-sampling technique looks not efficient 

for solving noisy problem. As future study 

different -variable- noise will be defined as the 

noisy problem and investigate the effect of this 

problem set. 
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