

1st International Conference on Frontiers in Academic

Research

https://www.icfarconf.com/ February 18-21, 2023, Konya, Turkey

544

A Review of Hashing Algorithms in Cryptocurrency

Erkan ÜNSAL*, Humar KAHRAMANLI ÖRNEK2 and Şakir TAŞDEMİR3

1Computer Engineering/Institute of Sciences, Selçuk University, Turkey
2Computer Engineering/Institute of Sciences, Selçuk University, Turkey
3Computer Engineering/Institute of Sciences, Selçuk University, Turkey

*erkanunsal@engineer.com Email of the corresponding author

Abstract – In this study, it is aimed to make a detailed examination of the hashing algorithms utilized in

cryptocurrencies. In this direction, basic information about hashing which forms the basis of hashing

algorithms used in cryptocurrencies and plays an important role in many fields such as cryptology and

blockchain, its purpose, structure, working style and usage areas are given. Additionally, to present hashing

more clearly, the example of modulo operation, which is one of the easy to understand hashing functions,

is visualized with the table and the resulting collision situation is schematized. By mentioning the hash

table used with hashing to store and retrieve data items or records, the first step of the study is completed.

Since the hashing algorithms used in cryptocurrencies are cryptographic, in the continuation of our study,

after examining the features that should have by understanding the purpose and structure of cryptographic

hashing algorithms more clearly, it is determined how an ideal cryptographic hashing algorithm should be.

Subsequently, as the most important part of the study, cryptographic hashing algorithms SHA256, Ethash,

Scrypt, Equihash, RandomX, X11, Lyra2Z and Lyra2REv2, which are designed to be utilized only by a

certain cryptocurrency or play a fundamental role in the formation of several cryptocurrencies, are

discussed one by one. The study was concluded by examining the creators of these algorithms, for what

purposes they were created, their features, structures, working methods and areas of use. The specified aim

was achieved by sharing the results obtained at the end of the study.

Keywords – Hash, Hashing, Algorithm, Cryptographic, Cryptocurrency

I. INTRODUCTION

In this study, it is aimed to examine in detail the

hashing, which has an important role in many fields

such as cryptology, blockchain and cryptocurrency,

and the hash table used with hashing to store and

retrieve data items or records, the cryptographic

hashing algorithms and their properties that can

fulfill the special requirements for cryptographic

applications, as well as the ones used in

cryptocurrencies from these algorithms.

In chapter 2, hashing and hash table, in chapter 3,

cryptographic hashing algorithms, their features and

cryptographic hashing algorithms used in

cryptocurrencies are discussed in detail. The results

are provided in the last section.

II. HASHING

Any function that is used to control the integrity

of the data and that matches fixed size values as a

result of a special algorithmic processing of all its

bits from the first sector to the last sector of the

random size data to which it belongs is called

hashing [1]. The root of the word hash is the same

as the Arabic word hashish. And inspired by the

deformation it has caused on humans, it has taken

this name because of the deformation caused on the

information entering the hashing function [2].

mailto:*erkanunsal@engineer.com

545

The hash function generates a fixed-length hash

value regardless of the data it hashes. It works

unidirectionally, that is, it is not possible to reach the

source data from the hash value. Even small data

changes produce very different hash information,

and this feature is called the avalanche effect [3].

The values returned by a hashing function are

called hash values, hash codes, or simply hashes.

Values are often used to index a fixed-size table

called a hash table. Using a hashing function to

index a hash table is called hashing or scatter storage

addressing. The hashing function and associated

hash tables are used in data storage and retrieval

applications to access data with a small and nearly

constant access time [4]. It is generally used in the

database for operations such as quickly finding a

data searched in a table or speeding up data

comparison processes, detecting the same or similar

records in a large file, finding similar sequences in

a DNA sequence [5].

The modulo operation is an easy to

understand hashing function. Accordingly, mod 10

results of numbers 1, 2, 5, 6, 7, 10, 23, 34, 48, 59,

61, 72, 85, 96, 107, 210, 323, 434, 548, 659, 761,

872, 999 are listed and grouped in Table 1.

Table 1. Hashing

Bunch

(Bouquet)
Numbers

0 10 210

1 1 61 761

2 2 72 872

3 23 323

4 34 434

5 5 85

6 6 96

7 7 107

8 48 548

9 59 659 999

As shown in Table 1, the numbers are all hashed

into a single digit number. Certainly, there are

multiple numbers hashed up to the same number.

This situation is called collision.

Considering the example, the collision situation is

schematized in Figure 1. In case of collision, data

belonging to the same key start to branch as a linked

list from the key they collide. To exemplify, when 2

different data come to key 2, these data will build a

linked list from key 2 onwards.

Fig. 1 Collision

A good hashing function should be really fast to

compute, and it should minimize output value

collision.

A. Hash Table

The hashing function is used with hash tables to

store and retrieve data items or data records. It also

returns the key associated with each data or record

into a hash code used to index the hash table. When

adding an item to the table, the hash code may index

an empty field, in which case the item is added to

the table there. If the hash code is indexing a full

field, some kind of collision resolution is required:

the new item can be skipped, replaced by the old

item, or added to the table in another location by a

specified procedure. This procedure depends on the

structure of the hash table.

Hash tables are also used to implement associative

arrays and dynamic sets [6].

III. CRYPTOGRAPHIC HASHING ALGORITHMS

546

Cryptographic hashing algorithms are a set of

operations that convert any length of input data into

a fixed-length output. It is a hashing algorithm that

can fulfill specific requirements for a cryptographic

application [7].

A. Features of Cryptographic Hashing Algorithms

The output of cryptographic hashing algorithms

must have certain properties. These properties are

called pre-image resistance, second pre-image

resistance, and collision resistance, respectively [8].

The pre-image resistance specifies that the

hashing algorithm should be a one-way algorithm.

That is, it should not be possible for an attacker to

determine the original data from a given hash value.

The second pre-image resistance should be difficult

for any message given to the attacker to find another

message that is different from the given message

and has the same hash. Collision resistance means

that each message has 12 unique hash values and

that it is difficult for an attacker to find two

messages with the same hash value. It is implied

with the phrase "hard" or "hard to find" that the

computer needs a long time to perform this

operation and requires a large amount of memory

[9]. To exemplify, calculating a message via its hash

value requires many years and a very large amount

of memory for a computer with today's technology

standards. Therefore, the calculation made is

considered to be inapplicable. As the computing

power of computers has grown over the decades,

some hashing algorithms that were previously

assumed to be secure (having all the features of pre-

image resistance, second pre-image resistance,

collision resistance) are now considered cracked

[10]. As the computational power increased and

crypto analysis of hashing algorithms was

performed, some hashing algorithms standards were

also revised as they were weak. It is desired to have

hashing algorithms that produce output safely and

quickly [11].

In practical cryptography applications, difficulty

is defined as the degree to which enemies attacking

the system cannot break the system as long as the

security of the system is important. According to the

definition, the need for security may vary depending

on the nature of the application [12]. It can be

assumed that the effort of the enemies is

proportional to the value that will be gained by

cracking the application. The effort required to

crack the system increases very quickly with the

length of the hash. Thus, by increasing the hash

length by a few tens of bits, it is possible to increase

the effort required to crack the system by the

thousands of times. This situation will make

cracking the system inefficient according to the

value to be obtained.

In theorical meaning, the difficulty is

mathematically defined. A security system that

cannot be cracked in asymptotic polynomial time

can be considered hard to break. Although such

definitions are important in terms of demonstrable

security, they may be far from practical. An

exponential time algorithm that is considered slow

in theory may run fast enough in practice to crack

the system. Similarly, a polynomial time algorithm

that is considered fast in theory may not be used

because it is too slow in practice [13].

An ideal cryptographic hashing algorithm should

provide these four properties: (1) It should be easy

to calculate the hash for any message. (2) It must be

difficult to compose the message to correspond to a

hash. (3) It should be difficult to change the message

in the way that the hash does not change. (4) It

should be hard to find two different messages with

the same hash.

B. Hashing Algorithms Utilized by

Cryptocurrencies

Some cryptographic hashing algorithms are

designed for use only by a particular cryptocurrency

or have played a fundamental role in the creation of

several cryptocurrencies.

1) SHA256

It is one of the algorithms created based on SHA2.

SHA2(Secure Hashing Algorithm 2) is a set of

cryptographic hashing algorithms designed by the

United States National Security Agency (NSA) and

first published in 2001.

The secret to the number 256 in this algorithm is

that the algorithm resizes your input to 256 bits with

64 characters no matter what size it is. It is collision-

proof [14].

An example of SHA256 is shown in Figure 2.

Fig. 2 SHA256

The SHA256 cryptographic hashing algorithm is

used in the infrastructure of Bitcoin, Bitcoin Cash,

547

Counterparty, LBRY, Mazacoin, Namecoin,

Peercoin and Titcoin cryptocurrencies.

SHA256 is one of the most reliable hashing

algorithms used today. It is used in many

cryptocurrency infrastructures that use the

blockchain structure. The security and accuracy of

the blocks in these blockchains is ensured by using

hashing algorithms that pay attention to all previous

blocks and convert data of different lengths into bit

strings of a certain length. Blocks that keep a list of

transactions created by nodes in the network also

contain the hash value of the previous block [15].

For each new block created, a ledger is kept at the

nodes on the distributed network. Blockchain

technology and distributed ledger technologies have

characteristics related to continuity, scalability,

energy consumption, security, privacy, and

protection of personal and sensitive data [16].

The integrity of Bitcoin transactions depends on

the collision resistance and the pre-image resistance

of the SHA256 hashing algorithm. Bitcoin mining is

entirely based on double SHA256 processing of a

specific type of input.

In the Bitcoin network, the block information

containing the current transactions between users,

the block number, the "nonce" value, and the hash

code of the previous block are combined and

converted into a hash code in accordance with the

SHA256 standard.

The hash code of 2,684 transfer transactions in

block 629.334 created in the Bitcoin network is

displayed in Figure 3.

Fig. 3 Hash Code

As it is seen, more than 2,600 process information

is converted to a hash output of only 64 characters.

Thus, instead of examining all the data for any

change in the block, it is possible to control only

with this hash data.

Blocks in the Bitcoin network contain the hash

codes of the previous block. Therefore, when the

data in the block is manipulated, the retrospective

change will be understood immediately, since the

hash code will also differ.

2) Ethash

The creators of this algorithm are Vitalik Buterin

and Thaddeus Dryja. Both developed this system

between 2013 and 2014. It is the algorithm that

renders many cryptocurrencies possible such as

Ethereum, Ethereum Classic, WBTC, Metaverse

ETP, Expanse, Musicoin, Ellaism, Elementrem,

WhaleCoin, DaxxCoin, Bowhead and Ethereum

Fog. This algorithm takes advantage of very

advanced computing techniques that increase the

level of security in the network [17]. Although its

full name is Ethash-Dagger-Hashimoto, it should be

noted that Dagger-Hashimoto is the mining

algorithm that served as the basis for the creation of

the current Ethash.

Dragger is an algorithm developed by the same

Ethereum creator, Buterin. At the beginning of its

development, the algorithm's build occupied about

1GB(gigabyte) in storage, but over the years its

storage has been expanded to 4GB or 5GB. The

structure of this algorithm allows the Hashimoto

mining process, which is another algorithm that

forms the basis of the Ethash algorithm. Hashimoto

is the second basic algorithm of Ethash, developed

by Thaddeus Dryja in order to perform hash mining

on the system it is applied to. The algorithm itself

increases RAM(Random-Access Memory)

consumption and thus limits ASICs(Application-

Specific Integrated Circuit). From the combination

of the two algorithms comes another unique

algorithm that offers the ability to design a new

mining system that is too complex for ASIC miners

to implement effectively. In fact, its structure is so

advanced that many developers are trying to

implement it as an alternative option to Scrypt. The

operation of Ethash is completely different from the

basic operation of Dragger-Hashimoto, the

algorithm on which it is based. However, there are

some key features that remain in place.

To arrive at current performance, Ethash

reviewed 23 versions of its algorithm. However,

there are some unchanging aspects such as the use

of SHA3-256(Keccak-256) and SHA3-512(Keccak-

512) algorithms.

When such a high number of updates are seen, it

can be thought that the developers are not satisfied

or the project is incomplete, but each update

corresponds to the solution of the problems that the

algorithm can present. Updates were made to

improve, secure and fix the algorithm, but above all

to increase the difficulty of implementation in

548

ASIC. In this way, an increasingly GPU(Graphics

Processing Unit)-friendly algorithm was created.

3) Scrypt

It is a password-based key derivation function

created by Colin Percival for the Tarsnap online

backup service [18]. This algorithm is specifically

designed to require large amounts of memory,

making it expensive to carry out large-scale custom

hardware attacks. It is inspired by SHA256 and is

simpler and faster than SHA256. It needs memory.

The need for memory is a compelling factor for

performing large-scale custom hardware attacks. A

simplified version of the Scrypt algorithm,

implemented by an anonymous programmer with

the ArtForz username, was used as a proof-of-work

scheme, first at Tenebrix and then by a number of

cryptocurrencies, including Fairbrix and Litecoin. It

is also the hashing algorithm used in the

infrastructure of many cryptocurrencies such as

Auroracoin, Bitconnect, Coinye and Dogecoin.

Scrypt's large memory requirements are provided

by a large vector of bit strings generated as part of

the algorithm. After the vector is created, its

elements are accessed in pseudo-random order and

combined to produce the derived key. The entire

vector of a simple application needs to be kept in

RAM, so it can be accessed as needed.

Since the elements of the vector are generated

algorithmically, each element can be generated as

required at once, therefore, each element can be

generated as required on the fly, in a way which will

significantly reduce memory requirements.

However, generating each element is intended to be

computationally expensive, and the elements are

expected to be accessed many times throughout the

execution of the algorithm. In this way, the speed

must be renounced in a significant to a considerable

extent in order to avoid large memory requirements.

Such a time-memory swap is usually available in

computer algorithms: speed can be increased at the

cost of using more memory, or memory

requirements can be reduced at the cost of

performing more operations and lengthening the

required process. The idea behind the Scrypt is to

intentionally make this swap costly in both

directions. Thus, an attacker can use an application

that does not require a lot of resources but runs very

slowly, or they can use an application that runs

faster to be in parallel but has a huge memory

requirement and is therefore more expensive.

4) Equihash

It is a memory-hard proof-of-work algorithm

introduced by the University of Luxembourg's

Interdisciplinary Center for Security, Reliability and

Trust (SnT) at the 2016 Symposium on Network and

Distributed Systems Security. The main goal of its

developers was to get rid of ASICs in the network,

as they threaten centralization due to high

computing power density. Along with the Ethash

algorithm, Equihash was the pioneer of the GPU

mining community. The algorithm is based on the

generalization of the birthday problem that finds

colliding hash values. It has serious time-space

swaps but admits vulnerability to unpredictable

parallel optimizations [19].

In an attempt to worsen the cost-performance

swaps of designing custom ASIC applications, it is

designed in such a way that parallel applications are

congested by memory bandwidth. The ASIC

resistor in Equihash is based on the assumption that

commercially sold hardware already has fairly high

memory bandwidth, so improvements by custom

hardware may not be worth the development cost.

It is the hashing algorithm used in the

infrastructure of many cryptocurrencies such as

Bitcoin Gold, ZCash, Bitcoin Private, Komodo,

ZenCash, ZClassic, BitcoinZ, Hush, Zero, Bitgem,

Zelcash.

5) RandomX

RandomX is a proof-of-work algorithm optimized

for general purpose GPUs and CPUs(Central

Processing Unit). Its main feature is random code

execution along with several techniques. This

combination will be fully appreciated by developers

because it will minimize the efficiency advantage of

dedicated hardware.

RandomX uses a virtual machine that executes

programs on a special instruction set. These

programs can be instantly assembled to the CPU's

native machine code. As a result, the outputs of the

executed programs are combined into a 256-bit

result using the Blake2b cryptographic hashing

algorithm.

RandomX can operate in two main modes that

differ in memory requirements. Fast mode(2181

MB(Megabyte)) and light mode(268 MB) require

shared memory. Both modes can be used

interchangeably as they provide the same results in

the end. Quick mode is suitable for mining.

549

 It is an algorithm utilized in the

infrastructure of many cryptocurrencies such as

Monero, Quantum Resistant Ledger, Dynasity Coin,

Dero, LOKI, WOWNERO and ITALOCOIN.

6) X11

The X11 algorithm was developed in 2014 by

Evan Duffield, the main developer of the Darkcoin

cryptocurrency (later Dash). Initially, he was tasked

with creating an algorithm that would protect

cryptocurrencies from the private mining devices of

ASICs, which are considered the killers of

decentralization.

The X11 algorithm uses multiple rounds

consisting of 11 different hashing algorithms,

making it one of the safest and more sophisticated

cryptographic hashing algorithms used by modern

cryptocurrencies. It was intended to make ASICs

much more difficult to create, thus giving the

currency ample time to evolve before the

centralization of mining became a threat. This

approach has been successful to a large extent. To

do this, Evan Duffield combined 11 different

hashing algorithms (Blake, BMW, Groestl, JH,

Keccak, Skein, Luffa, Cubehash, Shavite, Simd,

Echo) into a single algorithm [20].

X11 is one of the most energy efficient algorithms

currently in existence. Because graphics cards don't

need to use a lot of processing power, the algorithm

can reduce heat by 30% for GPU miners. It provides

faster hashing for CPUs as well as providing cooler

GPUs.

It is an algorithm used by many cryptocurrencies

such as Dash, Hatch, Pura, SmartCoin,

CannabisCoin, Influxcoin, StartCoin, Onix,

Sibcoin, Cream, ArcticCoin, Polis, Quebecoin.

7) Lyra2Z and Lyra2REv2

Lyra2 is a password hashing scheme that can also

work as a key derivation function (KDF). Lyra2Z

and Lyra2REv2 were designed based on Lyra2 [21].

Lyra2Z is a chain algorithm that uses Blake256

for the first round and Lyra2 for the last round. It is

the algorithm utilized in the infrastructure of many

cryptocurrencies such as Zcoin, GINcoin, Zoin,

Criptoreal, Taler.

Lyra2REv2 is a proof-of-work algorithm written

for Vertcoin. It is a chain-based algorithm with

various hashing algorithms (Blake, Keccak,

Cubehash, Lyra2, Skein and BMW). It is the

algorithm used in the infrastructure of many

cryptocurrencies such as MonaCoin, Rupee, Straks,

Verge, Shield and Galactrum.

IV. CONCLUSION

In the study, which started with the aim of making

a detailed examination of the hashing algorithms

used in cryptocurrency, all the information obtained

about hashing, which is the basis of the hashing

algorithms used in cryptocurrency, was presented in

a specific way. In addition, modulo operation,

which is one of the easy-to-understand hashing

functions, is exemplified and the resulting collision

situation is schematized. The use of the hash table

used with hashing has also been adopted. Since the

hashing algorithms used in cryptocurrencies are

cryptographic, after analyzing the purpose and

structure of these algorithms more clearly and

examining the features they should have, it was also

determined how an ideal cryptographic hashing

algorithm should be. As a result, the basics of the

hashing algorithms used in the cryptocurrency that

is examined one by one have been fully

comprehended. Then, as the most substantial part of

the study, the study was concluded by determining

the advantages and disadvantages of these

algorithms by examining the cryptographic hashing

algorithms SHA256, Ethash, Scrypt, Equihash,

RandomX, X11, Lyra2Z and Lyra2REv2, which are

designed to be used only by a certain cryptocurrency

or play a fundamental role in the creation of several

cryptocurrencies, their developers, for what

purposes they were created, their features,

structures, working methods and areas of use. By

sharing all the results and information obtained, the

planned goal was achieved.

REFERENCES

[1] H. H. Okuyucu, “Hash Fonksiyonlarının Adli Bilişimde

Uygulamaları ve C++ İle Şifreleme Algoritması

Tasarımı”, PhD Thesis, Karabük University, Karabük,

Turkey, 2020.

[2] Ş. E. Şeker. (2008) Özetleme Fonksiyonları (Hash

Function) page on Bilgisayar Kavramları. [Online].

Available:

https://bilgisayarkavramlari.com/2008/05/26/ozetleme-

fonksiyonlari-hash-function/

[3] E. Yavuz, H. Avunduk, “Tedarik Zinciri Yönetiminde

Blok Zincir Teknolojisinin Kullanımı”, Izmir Democracy

University Social Sciences Journal, vol. 4.1, pp. 33-56,

2021.

[4] R. Sedgewick, Algorithms in Java, Parts 1-4, Addison-

Wesley Professional, 2002.

https://bilgisayarkavramlari.com/2008/05/26/ozetleme-fonksiyonlari-hash-function/
https://bilgisayarkavramlari.com/2008/05/26/ozetleme-fonksiyonlari-hash-function/

550

[5] D. E. Knuth, The art of computer programming, vol. 3:

Searching and sorting. Reading MA: Addison-Wisley,

1973.

[6] J. Stokes, “Understanding CPU caching and

performance”, Technical report, Ars Technica, LLC,

2002.

[7] A. J. Menezes, P. C. Van Oorschot and S. A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 2018.

[8] A. Usta and S. Doğantekin, Blockchain 101, MediaCat

Kitapları, İstanbul, 2017.

[9] M. Kınacı, “Blok Zinciri Teknolojisi ve Akıllı

Sözleşmelerin Yaygınlaşmasının Önündeki Engeller”,

master's thesis, Bahçeşehir Üniversitesi, Istanbul,

Turkey, 2019.

[10] C. R. Dougherty, "Vulnerability Note VU# 836068 MD5

vulnerable to collision attacks", Vulnerability notes

database, CERT Carnegie Mellon University Software

Engineering Institute (2008), 2019.

[11] M. Ciampa, CompTIA Security+ 2008 in depth. Course

Technology Press, 2008.

[12] G. Leurent, T. Peyrin, “SHA-1 is a shambles: First

chosen-prefix collision on SHA-1 and application to the

PGP web of trust”, in Proceedings of the 29th USENIX

Conference on Security Symposium, 2020, p. 1839-1856.

[13] F. Mendel, N, Pramstaller, C. Rechberger, M. Kontak

and J. Szmidt, “Cryptanalysis of the GOST Hash

Function”, Advances in Cryptology–CRYPTO 2008: 28th

Annual International Cryptology Conference, Santa

Barbara, CA, USA, Proceedings 28, Springer Berlin

Heidelberg, 2008, p. 162-178.

[14] E. Balcısoy, “Yüksek Performanslı Bitcoin Madenciliği

İçin SHA256 Özet Algoritmasının Eniyilenmesi”,

master’s thesis, TOBB Economy and Technology

University, Ankara, Turkey, 2017.

[15] M. Nofer, P. Gomber, O. Hinz and D. Schiereck,

“Blockchain”, Business and Information Systems

Engineering, vol. 59, pp. 183-187, 2017.

[16] O. Özaltın, M. Ersoy, "Kamu Yönetiminde Blokzincir

Kullanımı: D5 Örneği", Nevşehir Hacı Bektaş Veli

Üniversitesi SBE Dergisi, vol. 10.2, pp. 746-763, 2020.

[17] O. Esuruoso, High Speed FPGA Implementation of

Cryptographic Hash Function, University of Windsor,

Canada, 2011.

[18] The scrypt password-based key derivation function, C.

Percival and S. Josefsson, 2016.

[19] A. Biryukov and D. Khovratovich, “Equihash:

Asymmetric proof-of-work based on the generalized

birthday problem.” Ledger, vol 2, pp. 1-30, 2017.

[20] D. LEE, L. Low, “Inclusive fintech: blockchain,

cryptocurrency and ICO”, World Scientific, 2018.

[21] M. Van Beirendonck, et al. “A Lyra2 FPGA core for

Lyra2REv2-based cryptocurrencies”, 2019 IEEE

International Symposium on Circuits and Systems

(ISCAS), IEEE, 2019, p. 1-5.

