
 

1st International Conference on Frontiers in Academic 

Research  

https://www.icfarconf.com/ February 18-21, 2023, Konya, Turkey 
 

205 

 

 

Machine Learning Implementation on Wind Speed Prediction  

Akin ILHAN*  

1 Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit 

University, 06010, Ankara, Turkey, ORCID ID: 0000-0003-3590-5291 

 

*(ailhan@ybu.edu.tr) Email of the corresponding author 

 

 

Abstract – In this study, the measured hub-height wind speed of a wind turbine is forecasted using 

machine learning. Accordingly, the wind speed data has been obtained from an installed wind turbine of a 

wind power plant that is located in the Republic of Kosovo. A cumulative of 2,000 wind speed data has 

been used in historical time-series predictions performed by long-short term memory, adaptive neuro-

fuzzy inference system with fuzzy c-means (FCM), subtractive clustering (SC), and grid partitioning 

(GP). The results of 102 computed models have indicated that the best wind speed predictions have been 

obtained during the utilization of the ANFIS-SC algorithm. The accuracy of the predictions has been 

evaluated considering the mean absolute error (MAE), root mean square error (RMSE), as well as the 

correlation coefficient (R). In this context, it was determined that the SC tool of the ANFIS resulted the 

wind speed predictions with the superior statistical error outcomes corresponding to 0.2562 MAE, 0.3047 

RMSE, and 0.9990 R. 
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I. INTRODUCTION 

The power generation from renewable 

energy sources in all over the World is increasing 

recently due to the increase of global warming as 

well as the increase on the release of the 

greenhouse gases, and depletion of fossil fuels. 

Therefore, power plants operating with renewable 

sources have a significant spreading potential when 

compared according to the traditional fossil fuel 

power plants. Many countries of the World have 

this trend, and accordingly many countries in the 

World have at least one renewable type of power 

plant [1]. Among whole types of renewable power 

sources, wind technology is considered to be one 

of the most significant and extensive method of 

energy production. Fig. 1 presents World’s 

cumulative installed wind power indicated 

according to the total onshore and offshore wind 

power plants. As demonstrated in this figure, the 

analysis is provided considering the year ranges 

between 2001 and 2021 [2].  

 

Fig. 1 Cumulative installations of wind power of the World 
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II. MATERIALS AND METHOD 

A. Long-short term methods  

An artificial recurrent neural network (RNN) is 

used in the deep learning architecture known as 

long short-term memory (LSTM). Unlike typical 

feedforward neural networks, LSTM has feedback 

connections. Both complete data sequences and 

lone data points can be handled by it [3-5]. For 

instance, the LSTM technique can be advantageous 

for tasks like connected, unsegmented handwriting 

identification, speech recognition, anomaly 

detection in network traffic, and IDSs (intrusion 

detection systems). 

B.  Adaptive Neuro Fuzzy Inference System 

(ANFIS) 

The ANFIS architecture uses both ANN and 

fuzzy system (FS). The two systems work 

independently to achieve their own goals. The 

ANN can be used to increase the FS's adaptability 

to changing environmental conditions or to 

improve its parameters by reducing the difference 

between its output and a given specification. To 

improve precision and the output of the entire 

system, the output of an ANN is used to correct the 

output of an FS [6-10]. 

B1.Subtractive Clustering (SC) 

Algorithm 

In this method, each data point is regarded as a 

prospective cluster center, and the potential of each 

data point is assessed by evaluating the density of 

data points surrounding the cluster center. Based 

on its placement in respect to other data points, this 

technique uses an adaptive process and assumes 

that any data point may be a cluster center [11]. 

B2. Fuzzy C-Means (FCM) Algorithm 

The FCM approach identifies each data point's 

membership in relation to each cluster center based 

on the distance between the cluster center and the 

data point. Data is more likely to belong to a 

cluster center if it is located close to that center. 

Each data point's membership should add up to 

exactly one [10]. 

B3. Grid Partitioning (GP) Algorithm 

The input data space is divided into rectangular 

grids by the GP algorithm. There is no physical or 

data density distribution behind the grid's creation. 

Based on system input-output data, the fuzzy rules 

are built using each grid segment, leading to rapid 

learning and shorter computation times [11]. 

C. Statistical Error Analysis 

The mean absolute error (MAE), root mean 

square error (RMSE), and correlation coefficient 

(R) have all been used in this study as measures of 

statistical error. The better the outcomes, the closer 

the RMSE and MAE values are to 0. Besides, R 

values that are closer to 1, however, imply that the 

anticipated outcomes are more accurate and more 

correlated with the real values. The governing 

equations for MAE, RMSE, and R have been 

indicated in Eqs. (1), (2), and (3), respectively [1].  

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑝(𝑖) − 𝑜(𝑖)|𝑁
𝑖=1            (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑝(𝑖) − 𝑜(𝑖)]2𝑁
𝑖=1            (2)  

 

𝑅 = (∑ [𝑝(𝑖) − �̅�][𝑜(𝑖) − �̅�]𝑁
𝑖=1 )/

(√∑ [𝑝(𝑖) − �̅�]2𝑁
𝑖=1 √∑ [𝑜(𝑖) − �̅�]2𝑁

𝑖=1 )          (3) 

 

The abbreviations of i, N, o(i), p(i), �̅�, �̅�  

respectively, in the equations (1), (2), and (3) 

above, indicate the order of the data, the 

cumulative amount of the members of the 

considered data set, the real or field test data at a 

specific order, the machine predicted data at a 

specific order, the average of the real field test 

data, and finally average of the forecasted data [1].  

III. RESULTS 

This study was prepared using a total of 2,000 

instantaneous wind speed data. While 80% of these 

total wind speed data was used to train machine 

learning that is corresponding to 1,600 wind speed 

data; the remaining 20% of the cumulative, were 

used to test the success of the simulations which is 

equal to 400 wind speed data. Accordingly, the 

computations are performed considering four 

algorithms of ANFIS-FCM, ANFIS-SC, ANFIS-

GP as well as LSTM. 

Considering the LSTM type of modelling, hidden 

layer for this algorithm is considered in between 

5 ≤ 𝐻𝐿 ≤ 300. Besides, the max. epoch number 

for the iterations has been adjusted to 300. On the 

other hand, in the FCM modelling of ANFIS, the 

number of the historical data required in training of 

the algorithm has been calibrated to stay in 

between 3 ≤ 𝐻𝐷 ≤ 10, considering an increment 

of the ∆𝐷 = 1, in this range of interval. The 

number of the membership functions, on the other 

hand, has been arranged in between 2 ≤ 𝑀𝐹𝑠 ≤
10, with the increment in the computations of 
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∆𝑀𝐹𝑠 = 2. In SC algorithm of the ANFIS, the 

historical data required for training is adjusted in 

between the same range as in the case of FCM. The 

influence radius required in this algorithm is 

adjusted in the range of 0.2 ≤ 𝐼𝑅 ≤ 0.9. Finally, in 

GP of ANFIS, while the HD is considered in 

between 3 ≤ 𝐻𝐷 ≤ 4, the number of MFs has been 

studied in between 2 ≤ 𝑀𝐹𝑠 ≤ 4.  

Among the considered algorithms, a total of 9 

models have been investigated in LSTM 

modelling, a cumulative of 40 models have been 

examined in FCM tool of ANFIS, 48 models in 

total have been studied in SC approach, and finally, 

5 models have been researched in GP algorithm. In 

this context, a total of 102 models have been 

formed and the statistical accuracy results 

depending on MAE, RMSE, and R have been 

revealed. Accordingly, the results of LSTM 

modelling have been shown in Table 1. On the 

other hand, the outcomes of ANFIS-FCM have 

been given in Table 2. Finally, the statistical 

accuracy results of SC and GP algorithms have 

been presented in Tables 3 and 4, respectively. The 

setting parameters of these algorithms have been 

also demonstrated in these tables.      
 

Table 1. The results of LSTM computations 

Hidden 

layer 

Max. 

Epoch 
MAE RMSE R 

5 300 0.3170 0.3866 0.9967 

10 300 0.3322 0.4159 0.9960 

25 300 0.4180 0.5630 0.9894 

50 300 0.6364 0.8347 0.9735 

75 300 0.4989 0.6365 0.9853 

100 300 0.5829 0.7707 0.9785 

125 300 0.7981 1.1981 0.9398 

150 300 1.4633 1.9753 0.8272 

300 300 1.6805 2.3523 0.7658 

 

Table 2. The results of FCM computations 

Historical  

data 
MFs MAE RMSE R 

3 2 0.2789 0.3406 0.9977 

3 4 0.2972 0.3648 0.9969 

3 6 0.2995 0.3730 0.9961 

3 8 0.3353 0.4356 0.9939 

3 10 0.3275 0.4354 0.9936 

4 2 0.2888 0.3476 0.9976 

4 4 0.3031 0.3758 0.9962 

4 6 0.3236 0.4076 0.9950 

4 8 0.3400 0.4720 0.9919 

4 10 0.3605 0.4838 0.9917 

5 2 0.2926 0.3558 0.9973 

5 4 0.3337 0.4203 0.9953 

5 6 0.3583 0.4522 0.9935 

5 8 0.3789 0.4867 0.9916 

5 10 0.4098 0.5419 0.9882 

6 2 0.2987 0.3679 0.9971 

6 4 0.3279 0.4208 0.9951 

6 6 0.3794 0.4529 0.9939 

6 8 0.4145 0.5240 0.9908 

6 10 0.4181 0.5265 0.9901 

7 2 0.3045 0.3764 0.9970 

7 4 0.3240 0.4109 0.9955 

7 6 0.4110 0.5030 0.9913 

7 8 0.4671 0.4671 0.9912 

7 10 0.4383 0.5641 0.9888 

8 2 0.3121 0.3832 0.9968 

8 4 0.3478 0.4357 0.9946 

8 6 0.3907 0.4762 0.9929 

8 8 0.4005 0.4863 0.9926 

8 10 0.4421 0.5599 0.9884 

9 2 0.3095 0.3836 0.9967 

9 4 0.3481 0.4307 0.9949 

9 6 0.4243 0.5226 0.9912 

9 8 0.4223 0.5194 0.9914 

9 10 0.5043 0.6549 0.9847 

10 2 0.3015 0.3629 0.9970 

10 4 0.3401 0.4196 0.9951 

10 6 0.4307 0.5240 0.9910 

10 8 0.4817 0.5883 0.9882 

10 10 0.4986 0.6272 0.9862 

 

Table 3. The results of SC computations 

Historical  

data 
IR MAE RMSE R 

3 0.20 0.2697 0.3593 0.9967 

3 0.30 0.2647 0.3309 0.9975 

3 0.40 0.2865 0.3886 0.9966 

3 0.60 0.2664 0.3254 0.9982 
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3 0.80 0.2663 0.3209 0.9986 

3 0.90 0.2562 0.3047 0.9990 

4 0.20 0.3389 0.4214 0.9943 

4 0.30 0.3077 0.3789 0.9964 

4 0.40 0.2932 0.3613 0.9969 

4 0.60 0.3009 0.3824 0.9971 

4 0.80 0.2819 0.3372 0.9981 

4 0.90 0.2640 0.3132 0.9987 

5 0.20 0.4208 0.5507 0.9884 

5 0.30 0.3582 0.4488 0.9945 

5 0.40 0.3545 0.4383 0.9949 

5 0.60 0.3144 0.3954 0.9965 

5 0.80 0.2933 0.3576 0.9977 

5 0.90 0.2910 0.3543 0.9979 

6 0.20 0.4430 0.5669 0.9878 

6 0.30 0.3707 0.4585 0.9941 

6 0.40 0.3350 0.4228 0.9952 

6 0.60 0.2985 0.3631 0.9973 

6 0.80 0.2946 0.3590 0.9975 

6 0.90 0.2911 0.3541 0.9977 

7 0.20 0.3307 0.4241 0.9958 

7 0.30 0.3575 0.4378 0.9945 

7 0.40 0.3244 0.4126 0.9957 

7 0.60 0.3033 0.3736 0.9971 

7 0.80 0.2946 0.3599 0.9976 

7 0.90 0.2935 0.3578 0.9977 

8 0.20 0.4290 0.5709 0.9886 

8 0.30 0.3790 0.4675 0.9927 

8 0.40 0.3826 0.4536 0.9952 

8 0.60 0.3064 0.3750 0.9971 

8 0.80 0.3318 0.4089 0.9965 

8 0.90 0.2962 0.3585 0.9976 

9 0.20 0.5181 0.6726 0.9843 

9 0.30 0.4436 0.5441 0.9906 

9 0.40 0.4194 0.5042 0.9933 

9 0.60 0.3453 0.4156 0.9959 

9 0.80 0.3041 0.3708 0.9971 

9 0.90 0.2930 0.3526 0.9976 

10 0.20 0.5931 0.7939 0.9744 

10 0.30 0.4851 0.6128 0.9872 

10 0.40 0.3811 0.4673 0.9935 

10 0.60 0.3370 0.4132 0.9957 

10 0.80 0.3036 0.3721 0.9969 

10 0.90 0.2944 0.3566 0.9974 

 

Table 4. The results of GP computations 

Historical  

data 
MFs MAE RMSE R 

3 2 0.2643 0.3537 0.9973 

3 3 0.3619 1.0333 0.9565 

3 4 0.2643 0.3537 0.9973 

4 2 0.3110 0.4285 0.9942 

4 3 0.4624 1.4843 0.9186 

 

In the predictions, the real data is discretised into 

two parts as demonstrated in Fig. 2. The blue part 

given alone and shown on the left indicates the 

data utilized for training of the algorithm. Whereas, 

the dashed red part coincident with the continuous 

blue on the right shows the predicted data obtained 

in the test part of the computations. 

Approximately, 80% and 20% of the total data are 

discretised respectively for training and testing of 

four algorithms. In the training stage, the computer 

develops the proper learning algorithm to obtain 

predictions presented in the right dashed red 

section coincident with the continuous blue part. In 

short, the real data function is exhibited with 

continuous blue colour, whereas the prediction data 

function is given with dashed red colour.     

 

 
Fig. 2 The data pair of the real observed and predicted 

values of ANFIS-SC obtained at 3 HD and 0.90 IR 
 

The best result of all 102 computations is 

obtained with SC of ANFIS at 3 HD and 0.9 IR. 

On the other hand, the best result of LSTM, FCM, 

SC, and GP are indicated with bold colour 

respectively in Tables 1, 2, 3, and 4. And, these 

best results are given in Table 5. Besides, the 

statistical accuracy results of the best result of the 

best outcomes of four algorithms, i.e., the result 

obtained at 3 HD and 0.90 IR of SC is exhibited 

with bold colour in Table 5. In this model, the 
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computation generated 0.2562 m/s MAE, 0.3047 

m/s RMSE, and 0.9990 R.  

 
Table 5. Statistical accuracy results of the best results 

Model MAE RMSE R 

ANFIS-FCM 0.2789 0.3406 0.9977 

ANFIS-GP 0.2643 0.3537 0.9973 

ANFIS-SC 0.2562 0.3047 0.9990 

LSTM 0.3170 0.3866 0.9967 

 

Similarly, the second best result that is obtained 

by FCM of ANFIS at 3 HD and 2 MFs which is 

given in Table 2 is shown in Fig. 3. Both Figs. 2 

and 3 indicate the high accuracy and success that 

are obtained in predictions by SC and FCM tools 

of ANFIS.   

 

 
Fig. 3 The predictions obtained by FCM at 3 HD and 2 MFs 
 

Figs. 4 and 5 give the correlation coefficient (R2) 

results respectively for SC and FCM tools of 

ANFIS. In these figures, while the x axis stands for 

the real data cloud, whereas the y axis corresponds 

to prediction data cloud. Similarly, the correlation 

coefficient results for both algorithms show the 

wind speed predictions are enough compatible and 

coincident with their real counterparts. For SC and 

FCM algorithms, as shown in these figures, 0.9979 

R2 and 0.9982 R2 are respectively obtained.       

 

 
Fig. 4. The correlation results of SC of ANFIS 

 
Fig. 5. The correlation results of FCM of ANFIS 

IV. DISCUSSION 

Today, physical data estimation has gained a lot 

of importance. For instance, wind speed estimation 

is among the most important of these physical data 

predictions. It is possible with machine learning to 

predict the future wind speed situation with only 

the historical time series wind data at hand, without 

the further need of any technical detailed 

knowledge or field experimentation. Thus, in this 

way, it is likely to get an idea about the future state 

of the wind speed parameter, which is the most 

important parameter that is greatly influencing the 

wind output power of the wind turbine. 

V. CONCLUSION 

In this study, the computations performed with 

the designed 102 models have indicated that the 

predictions have been generally performed with 

low margins of statistical errors. Especially, the 

computations performed using SC and FCM tools 

of ANFIS have indicated both tools can be safely 

applied in predictions of highly fluctuating wind 

speed data.  
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