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Abstract – In this work, a trigonometric refined beam theory for the bending analysis of carbon nanotube-

reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature 

of this model is that, in aaddition to including the shear deformation effect, it deals with only 3 unknowns 

as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon 

nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of 

reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. 

To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the 

effects of different parameters of the beam on the bending, buckling responses of CNTRC beam are 

discussed. 
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I. INTRODUCTION 

 

Recently, Carbon nanotubes (CNTs) become a new 

class of fiber reinforcement in polymer matrix 

composites due to their superior mechanical, 

electrical, and thermal properties [1] and have taken 

a considerable research interests in the materials 

engineering community. Compared with the 

classical carbon fiber-reinforced polymer 

composites, carbon nanotube-reinforced composites 

(CNTRCs) have the potential of improving 

increased strength and stiffness. The polymer 

composites reinforced by aligned CNT arrays were 

investigated in the first time by [2]. From then, 

many researchers [3] studied the material 

characteristics of CNTRCs. [4] studied the bending, 

buckling and vibration behaviors of carbon 

nanotube-reinforced composite (CNTRC) beams 

where several higher-order shear deformation 

theories are presented and discussed in details. 

Recently, the stability of FG sandwich plate was 

studied by [5] using a higher order refined 

computational models. In literature survey, we can 

found also some studies dealing about beams resting 

on elastic foundations such as [6]. 

In the present work, the bending of the CNTRC 

beams is investigated using a trigonometric refined 

beam theory.   The simply supported CNTRC beams 

are supported by the Pasternak elastic foundation, 

including a shear layer and Winkler spring. Novel 

analytical solutions of deflections, stresses, are 

developed and discussed in details. Several aspects 

http://as-proceeding.com/
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of spring parameters, thickness ratios, CNT volume 

fractions, types of CNT distribution, etc., which 

have considerable impact on the analytical solutions 

are also studied. 

II. . FUNCTIONALLY GRADED CARBON NANOTUBE-

REINFORCED COMPOSITES BEAMS  

THE CNTRC BEAM UNDER THE PRESENT STUDY IS 

MADE FROM A MIXTURE OF THE SWCNTS AND 

ISOTROPIC POLYMER MATRIX. FIGURE 1A SHOWS 

A CNTRC BEAM, HAVING LENGTH ( L ) AND 

THICKNESS ( h ), SUPPORTED BY THE PASTERNAK 

ELASTIC FOUNDATION. FOUR DIFFERENT 

PATTERNS OF REINFORCEMENT OVER THE CROSS 

SECTIONS ARE CONSIDERED IN THIS STUDY AS IS 

INDICATED IN FIG. 1B.  

 

 
Fig. 1: Geometry of a CNTRC beam on elastic foundation (a) 

and cross sections of different patterns of reinforcement (b). 

 

The material properties of CNTRC beams can be 

computed utilizing the rule of mixture which gives 

the effective Young’s modulus and shear modulus 

of CNTRC beams as [7]. 
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where cntE11 ; cntE22  and cntG12  are the Young’s modulus 

and shear modulus of SWCNT, respectively and pE  

and pG  are the corresponding material properties of 

the polymer matrix. Also, cntV  and pV  are the 

volume fractions for carbon nanotube and the 

polymer matrix, respectively, with the relation of 

1=+ pcnt VV . To introduce the size-dependent 

material properties of SWCNT, the CNT efficiency 

parameters, i (i = 1, 2, 3), are considered. They can 

be obtained from matching the elastic moduli of 

CNTRCs estimated by the MD simulation with the 

numerical results determined by the rule of mixture 

[8]. By employing the same rule, Poisson’s ratio (

) and mass density (  ) of the CNTRC beams are 

expressed as: 

 

p

p

cnt

cnt VV  += ,  
p

p

cnt

cnt VV  +=            (2a) 

 

Where cnt , p  and cnt , p  are the Poisson’s 

ratios and densities of the CNT and polymer matrix 

respectively.  

III. THEORY AND FORMULATIONS 

III.1. KINEMATICS AND CONSTITUTIVE 

EQUATIONS 

The displacement field of the present theory, based 

on [9]. beam theory, can be obtained as: 
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Where 0u  is the axial displacement, bw  and sw  are 

the bending and shear components of transverse 

displacement along the mid-plane of the beam. In 

this work, the shape function )(zf  is chosen based 

on a trigonometric function as [10]: 
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By assuming that the material of CNTRC beam 

obeys Hooke’s law, the stresses in the beam 

become: 
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III.2. EQUATIONS OF MOTION 

Hamilton’s principle is employed herein to 

determine the equations of motion: 
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where U   is the virtual variation of the strain 

energy; V   is the virtual variation of the potential 

energy; and K   is the virtual variation of the 

kinetic energy.  

The variation of the strain energy of the beam can 

be stated as 
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where N , bM , sM  and Q  are the stress resultants 

defined as 
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The variation of the potential energy by the 

transverse load q , the axial compressive force 0xN  

and the density of reaction force of foundation ef  

can be written : 
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where wK  and sK  are the Winkler and shearing 

layer spring constants which can be determined 

from 2

110 / LAK ww =  and 110AK ss =  in which w  

and s  are the corresponding spring constant 

factors. It is also defined that 110A  is the extension 

stiffness or the value of 11A  of a homogeneous beam 

made of pure matrix material. 

The variation of the kinetic energy can be expressed 

as 

 

(6) 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; 

)(z  is the mass density; and ( 0I , 1I , 1J , 2I , 2J , 

2K ) are the mass inertias defined as 
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Substituting the expressions for U  , V  , and K   

from Eqs. (10), (12), and (14) into Eq.(9) and 

integrating by parts versus both space and time 

variables, and collecting the coefficients of 0u  , 

bw  , and sw  , the following equations of motion 

of the CNTRC beam are obtained 
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By substituting Eq. (7) into Eq. (8) and the 

subsequent results into Eq. (11), the constitutive 

equations for the stress resultants are obtained as 
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where 11A , 11B , etc., are the beam stiffness, defined 

by 
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Equations (16) can be expressed in terms of 

displacements ( sb wwu ,,0 ) by using Eqs. (17) and 

(16) as follows:  
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III.3. ANALYTICAL SOLUTION 

The Navier solution method is employed to obtain 

the analytical solutions for a simply supported 
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CNTRC beam. The solution is assumed to be of the 

form 
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where mU , bmW , and smW  are arbitrary parameters 

to be determined,   is the eigenfrequency 

associated with m th eigenmode, and Lm / = . 

The transverse load q  is also expanded in Fourier 

series as 
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The coefficients mQ  are given below for some 

typical loads. For the case of a sinusoidally 

distributed load, we have 

1=m  and 01 qQ =  

and for the case of uniform distributed load, we have 
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Substituting the expansions of 0u , bw , sw , and q  

from Eqs. (20) and (21) into the equations of motion 

Eq. (19), the analytical solutions can be obtained 

from the following equations 
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IV. NUMERICAL RESULTS AND DISCUSSION 

In this section, numerical results of bending, 

behaviors of CNTRC beams are presented and 

discussed. The effective material characteristics of 

CNTRC beams at ambient temperature employed 

throughout this work are given as follows. Poly 

methyl methacrylate (PMMA) is utilized as the 

matrix and its material properties are: 3.0=p ; 

=p 1190 kg/m3 and =pE 2.5 GPa. For 

reinforcement material, the armchair (10, 10) 

SWCNTs is chosen with the following properties: 

19.0=cnt ; =cnt 1400 kg/m3; =cntE11 600 GPa; 

=cntE22  10 GPa and =cntG12  17.2 GPa. 

For convenience, the following 

nondimensionalizations are employed: 

• For bending analysis: w
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Where 110A  and 00I  are 11A 00I  and 0I I0 of beam 

made of pure matrix material, respectively. 

 

IV.1. BENDING ANALYSIS OF CNTRC BEAMS 

For bending analysis of UD beams with and without 

elastic foundations, the present method agree well 

with the bending results of Wattanasakulpong and 

Ungbhakorn (2013) using third shear deformation 

(24) 
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theory as shown in Table 1. It can be observed that 

the beams supported by elastic foundation have 

lower displacements and stresses compared to those 

of the beams without elastic foundation. Moreover, 

increasing amount of CNTs makes the CNTRC 

beams stiffer. 

Figures 2 and 3 present respectively the effect of 

both Winkler modulus parameter and the Pasternak 

shear modulus on the deflection of different types of 

CNTRC beams under uniform load. It is observed 

that as the Winkler and the Pasternak shear 

parameters increase the transverse displacement 

decreases. This decreasing trend is attributed to the 

stiffness of the elastic medium. Indeed, it is found 

from Eq. (24) that the foundation parameters appear 

in the stiffness matrix [S] and at last increase the 

total stiffness of the CNTRC beam. It can be also 

observed that the strongest beam is the X-Beam with 

the smallest deflection, and followed by the UD-, V-

and O-Beams, respectively. 
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Fig. 2: Effect of Winkler modulus parameter on the 

dimensionless transverse displacements of CNTRC beams 

under uniform load ( 10/ =hL ; 0=s ; 12.0* =cntV ). 
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Fig. 3: Effect of Pasternak shear modulus parameter on the 

dimensionless transverse displacements of CNTRC beams 

under uniform load ( 10/ =hL ; 4.0=w ; 12.0* =cntV ). 

 

V. CONCLUSION 

In this work, a trigonometric refined beam theory is 

used to investigate the bending of nanocomposite 

beams reinforced by single-walled carbon 

nanotubes resting on Pasternak elastic foundation. 

The equations of motion have been obtained using 

the Hamilton’s principle. The accuracy of the 

present theoretical method is numerically checked 

by comparison with some available results. From 

the numerical results, it is found that the X-Beam is 

the strongest among different types of CNTRC 

beams in supporting the flexure and buckling loads, 

while the O-Beam is the weakest. 
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