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Abstract – This work concerning the vibration behavior analysis of Rotor. Using Finite Element Method 

p- version with trigonometric shape functions is used to redefine the equation of motion. The beam theory 

of Timoshenko using for modulization of the rotor system. Through Kinetic and strain energies of shaft, 

using Euler-Lagrange’s equation for determination of equation of motion. The transverse shear 

deformation, rotating inertia, and gyroscopic effects is incorporating. System of equation resolved by 

program of calculus developed in MATLAB software for obtention the natural frequencies and 

eigenvalues. FEM p- version convergence presented with three boundary conditions and three various 

materials. The validation of numerical method and our program devised in two parts, the first for natural 

frequencies we validate with result viable in literature, and the last part for associated eigenvalue we use 

three boundary conditions, Simply Supported (Pinned-Pinned), Clamped-pinned and Pinned-free validate 

with exact values. In the result we study four fist mode of natural frequency with the objective of show 

the influence of various boundary condition (we take a same precedent boundary conditions) for three 

materials Stainless Steel, Nickel and Zirconia, after that a result of the first mode of natural frequency in 

function of rotating speed and the critical rotating speed for model of shaft used (Campbell’s graph). 

Vibration Analysis, Rotor, FEM P- Version, Boundary Conditions, Campbell’s Graph 

I. INTRODUCTION  

The rotors structures are used in most modern 

technologies, such as in the aero propulsion 

systems, in helicopter drive applications, and in 

industrial machines, such as steam and gas 

turbines. So, they create mechanical damage with 

their vibrations. 

The importance of this structure and their 

problems, recommended us to study and analysis 

the vibration behavior. [1] in Mechanical 

Vibrations all concepts fully explained and the 

derivations presented in complete details. [2] 

studied the beam on the dynamic stability of a 

rotating cantilever beam subjected to base 

excitation; using the Euler beam theory and the 

assumed mode method. [3] analyzed the frequency 

response for a rotating cantilever beam, using the 

assumed mode method; the effects of rotating 

angular speed were studied through numerical 

study.[4] investigated the nonlinear dynamic 

responses of a rotating blade subjected to various 

rotating speeds and under high-temperature 

supersonic gas.  [5] examined the effect of type 

materials, on the natural frequencies of a simply 

supported model of shell, the governing equation 

was obtained using Rayleigh Ritz method. [6] 

studied the effect of boundary conditions and type 

materials on the natural frequencies of a spinning 

shaft using the p-version of the finite element 

method. 
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II. EQUATION OF MOTION 

A. Displacement 

The shaft modeled by first order shear 

deformation theory, considering as a Timoshenko 

beam, and the following kinematic assumptions are 

adopted: 
 

{

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈0(𝑥, 𝑡) + 𝑧𝛽𝑥(𝑥, 𝑡) − 𝑦𝛽𝑦(𝑥, 𝑡)

𝑉(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉0(𝑥, 𝑡) + 𝑧𝜙(𝑥, 𝑡)                       

𝑊(𝑥, 𝑦, 𝑧, 𝑡) = 𝑊0(𝑥, 𝑡) + 𝑦𝜙(𝑥, 𝑡)                    

      (1) 

 

Where:  {

𝑈0(𝑥, 𝑡) = 𝑈(𝑥, 0,0, 𝑡)

𝑉0(𝑥, 𝑡) = 𝑉(𝑥, 0,0, 𝑡)

𝑊0(𝑥, 𝑡)  = 𝑊(𝑥, 0,0, 𝑡)
 

 

With 𝜙 is the angular displacement, the 𝛽𝑥 and 

𝛽𝑦 are the rotation angles about y and z axis 

respectively. 
 

B. Stress tensor  

Cylindrical coordinate system of the stain 

components: 

{
 
 

 
 𝜀𝑥𝑥 =

𝜕𝑈0

𝜕𝑥
+ 𝑟𝑠𝑖𝑛 𝜃

𝜕𝛽𝑥

𝜕𝑥
− 𝑟𝑐𝑜𝑠 𝜃

𝜕𝛽𝑦

𝜕𝑥
                                                            

𝜀𝑟𝑟 = 𝜀𝜃𝜃 = 𝜀𝑟𝜃 = 0                                                                                        

𝜀𝑥𝜃 = 𝜀𝜃𝑥 =
1

2
(𝛽𝑦 𝑠𝑖𝑛 𝜃 + 𝛽𝑥 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃

𝜕𝑉0

𝜕𝑥
+ 𝑐𝑜𝑠 𝜃

𝜕𝑊0

𝜕𝑥
+ 𝑟

𝜕𝜙

𝜕𝑥
) 

𝜀𝑥𝑟 = 𝜀𝑟𝑥 =
1

2
(𝛽𝑥 𝑠𝑖𝑛 𝜃 − 𝛽𝑦 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃

𝜕𝑊0

𝜕𝑥
+ 𝑐𝑜𝑠 𝜃

𝑉0

𝜕𝑥
)                

(2) 

 

The stress-strain relation: 

{

𝜎𝑥𝑥 = 𝑄11𝜀𝑥𝑥                  
𝜏𝑥𝜃 = 𝜏𝜃𝑥 = 𝑘𝑠𝑄66𝛾𝑥𝜃
𝜏𝑥𝑟 = 𝜏𝑟𝑥 = 𝑘𝑠𝑄55𝛾𝑥𝑟

          (3) 

 

Where:   𝑄11 =
𝐸

1−𝜐2
 ;     𝑄55 = 𝑄66 =

𝐸

2(1+𝜈)
 

 

C. Strain and kinetic energies 

The following are the equations of Strain and 

kinetic energies used in our study: 
 

𝐸𝑑 =
1

2
𝐴11 ∫ (

𝜕𝑈0

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
+
1

2
𝐵11 [∫ (

𝜕𝛽𝑥

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
+ ∫ (

𝜕𝛽𝑥

𝜕𝑥
)
2𝐿

0
𝑑𝑥] +

1

2
𝑘𝑠𝐵66 ∫ (

𝜕𝜙

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
+
1

2
𝑘𝑠(𝐴55 + 𝐴66) [∫ (

𝜕𝑉0

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
+

∫ (
𝜕𝑊0

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
+ ∫ 𝛽𝑥

2 𝑑𝑥
𝐿

0
+ ∫ 𝛽𝑦

2 𝑑𝑥
𝐿

0
+ 2∫ 𝛽𝑥

𝜕𝑊0

𝜕𝑥
𝑑𝑥

𝐿

0
−

∫ 𝛽𝑦
𝜕𝑉0

𝜕𝑥

𝐿

0
𝑑𝑥]                                                                          (4) 

 

𝐸𝑐 =
1

2
∫ [𝐼𝑚(�̇�0

2 + �̇�0
2 + �̇�0

2) + 𝐼𝑑(�̇�𝑥
2 + �̇�𝑦

2) − 2Ω𝐼𝑝𝛽𝑥�̇�𝑦 +
𝐿

0

2Ω𝐼𝑝�̇� + 𝐼𝑝�̇�
2 + Ω2𝐼𝑝 +Ω

2𝐼𝑑(𝛽𝑥
2 + 𝛽𝑦

2)]𝑑𝑥                          (5) 

 

Where: 

𝐴11 = 2𝜋 ∫ 𝑄11(𝑟) 𝑟 𝑑𝑟
𝑅𝑜
𝑅𝑖

 ;  𝐴55 = 𝐴66 = 𝜋 ∫ 𝑄55(𝑟) 𝑟 𝑑𝑟
𝑅𝑜
𝑅𝑖

 

𝐵66 = 2𝜋 ∫ 𝑄66(𝑟) 𝑟
3 𝑑𝑟

𝑅𝑜
𝑅𝑖

 ;    𝐵11 = 𝜋 ∫ 𝑄11(𝑟) 𝑟
3 𝑑𝑟

𝑅𝑜
𝑅𝑖

  (6) 

 

𝐼𝑚 = 2𝜋 ∫ 𝜌(𝑟) 𝑟 𝑑𝑟
𝑅𝑜
𝑅𝑖

 ;  𝐼𝑑 = 𝜋 ∫ 𝜌(𝑟) 𝑟3 𝑑𝑟
𝑅𝑜
𝑅𝑖

 

𝐼𝑑 = 2𝜋 ∫ 𝜌(𝑟) 𝑟3 𝑑𝑟
𝑅𝑜
𝑅𝑖

  (7) 

 

D. Hierarchical Beam element formulation 

The spinning flexible shaft is discretized by 

hierarchical beam element (p- element) with two 

nodes 1 and 2 is shown in figure 5. The element’s 

nodal d.o.f. at each node are 𝑈0 , 𝑉0, 𝑊0 , 𝛽𝑥 , 𝛽𝑦 

and 𝜙 .  

The local and non-dimensional co-ordinates are 

related by:  

                        𝜉 = 𝑥 𝐿⁄            with (0 ≤ 𝜉 ≥ 1)   (8) 

 

 

 

 

 

 

 

 

We can rewrite the  𝑈0 , 𝑉0, 𝑊0 , 𝛽𝑥 , 𝛽𝑦 and 𝜙 as: 

{
 
 
 
 

 
 
 
 

𝑈0 = [𝑁𝑈]{𝑞𝑈} = ∑ 𝑥𝑚(𝑡). 𝑓𝑚(𝜉)
𝑝𝑈
𝑚=1

𝑉0 = [𝑁𝑉]{𝑞𝑉} = ∑ 𝑦𝑚(𝑡). 𝑓𝑚(𝜉)
𝑝𝑉
𝑚=1

𝑊0 = [𝑁𝑊]{𝑞𝑊} = ∑ 𝑧𝑚(𝑡). 𝑓𝑚(𝜉)
𝑝𝑊
𝑚=1

  𝛽𝑥 = [𝑁𝛽𝑥]{𝑞𝛽𝑥} = ∑ 𝛽𝑥𝑚(𝑡). 𝑓𝑚(𝜉)
𝑝𝛽𝑥
𝑚=1

    𝛽𝑦 = [𝑁𝛽𝑦] {𝑞𝛽𝑦} = ∑ 𝛽𝑦𝑚
(𝑡). 𝑓𝑚(𝜉)

𝑝𝛽𝑦
𝑚=1

𝜙 = [𝑁𝜙]{𝑞𝜙} = ∑ 𝜙𝑚(𝑡). 𝑓𝑚(𝜉)
𝑝𝜙
𝑚=1

                         (9

) 

 

 With [𝑁] is the matrix of shape:  

[𝑁𝑈,𝑉,𝑊,𝛽𝑥,𝛽𝑦,𝜙] = [𝑓1𝑓2…… 𝑓𝑝𝑈,𝑝𝑉,𝑝𝑊,𝑝𝛽𝑥 ,𝑝𝛽𝑦 ,𝑝𝜙]               (10) 

 

In this work 𝑞𝑈 = 𝑞𝑉 = 𝑞𝑊 = 𝑞𝛽𝑥 = 𝑞𝛽𝑦 = 𝑞𝜙 =

𝑝 (are the number of shape functions of 

displacements). 

The group of the shape functions used in this study 

(see [7]) is given by 
 

{

𝑓1 = 1 − 𝜉                                                               
𝑓2 = 𝜉                                                                       

𝑓𝑟+2 = sin(𝛿𝑟 𝜉),     𝛿𝑟 = 𝑟𝜋  ;  𝑟 = 1 , 2 , 3 , …
             (11) 

Fig 1. Beam element with two nodes. 
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After all that and the application of Euler-

Lagrange’s equations, we obtained the following 

motion’s equation of free vibration of spinning: 
 

[𝑀]{�̈�} + [𝐺]{�̇�} + [𝐾]{𝑞} = {0}           (12) 

 

III. RESULTS 

A. Convergence 

The convergence results are for three first bending 

mode for various boundary conditions, the 

mechanical properties: E=2e11 N/m2; 𝜈 =0,3; 𝜌 = 

7800 kg/m3 and the geometric parameters: D=0,05 

m; L=0,9 m. The shear correction factor: ks=6/7. as 

a function of the number of hierarchical terms p are 

shown in Figure 1. 

The results are converged where the number of 

shafts increased, p should be up to 7 for get a great 

result for third mode, but in of very small 

frequencies p=5 sufficient. 

B. Validation 

In the first validation (Table 1), the natural 

frequency ω for the 3 bending modes of a simply 

supported homogeneous 

shaft for the stationary case (Ω) and other with 

rotating speed Ω = 10^4 rad/s, is compared with 

those available in the literature to verify the present 

program. With same mechanical properties and 

geometric parameters used in convergence study. 

The shaft is modeled by one element of length L. 

The shaft is simply-supported at the ends, 

Compared with [6]. In this validation, p =10.  

The last (Table 2) with exact values of associated 

eigenvalue used the parameter of frequency, for 

fourth normal mode. Compared with [1]. In this 

validation, p =15.  

C. Results and interpretation 

In this study we conserve the same precedent 

geometric parameters for all trying and we varied 

the materials and the boundary conditions. Table 3 

shows the mechanical properties for materials used 

in this work. 

Table 1. The mechanical properties for Stainless Steel, Nickel 

and Zirconia. 

Material E[N/m2] 𝝂 𝝆[kg/m3] 

Stainless Steel (SS) 2.07788 e11 0.317756 8166 

Nickel (Ni) 2.05098 e11 0.31 8900 

Zirconia (Zi) 1.68063 e11 0.297996 5700 

 

D. The boundary conditions influence 

The graphs as under (Fig3) illustrate the fourth first 

natural frequency for various materials of shaft and 

different boundary conditions.

Table 2. The frequency ω for the 3 bending modes of a simply supported homogeneous shaft (D= 0.05 m, L= 0.9 m, E =2·1011 

N/m2, ν= 0.3, ρ= 7800 kg/m3, ks = 6/7). 

Rotating 

speed Ω 

[rad/s] 

0 10^4 

Bending 

Mode ω 

[Hz] 

Present 
Boukhelfa 

2014 
% 

Error 

Backward mode Forward mode 

Present 
Boukhelfa 

2014 

% 

Error 
Present 

Boukhelfa 

2014 

% 

Error 

1 128,1875 128,1837 0,003% 122,3503 122,3467 0,003% 134,2957 134,2918 0,003% 

2 507,0955 507,0806 0,003% 484,6671 484,6529 0,003% 530,4533 530,4377 0,003% 

3 1120,9267 1104,8937 1,451% 1073,6138 1073,5822 0,003% 1169,8442 1169,8098 0,003% 

 

 

0

5

10

15

20

5 6 7 8 9 1 0 1 1 1 2

ω1(S-S) ω2(S-S)
ω3(S-S) ω1(C-S)
ω2(C-S) ω3(C-S)
ω1(C-C) ω2(C-C)
ω3(C-C)

Fig 2. Convergence of the frequency ω for the 3 bending 

modes for different boundary conditions (S: simply 

supported; C: clamped) as a function of the number of 

hierarchical terms p 
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Table 3. The associated eigenvalue for fourth normal mode 

Boundary 

Conditions 

Simply Supported                 

(Pinned-Pinned) 
Clamped-pinned Pinned-free 

Normal 

mode 

FEM-p 

values 

Exact 

values 

% 

Error 

FEM-p 

values 

Exact 

values 

% 

Error 

FEM-p 

values 

Exact 

values 

% 

Error 

1 3,210058 3,141593 2,179% 4,013746 3,926991 2,209% 4,034264 3,926991 2,732% 

2 6,382146 6,283185 1,575% 7,167774 7,068583 1,403% 7,232795 7,068583 2,323% 

3 9,483184 9,424778 0,620% 10,232749 10,210176 0,221% 10,362474 10,210176 1,492% 

4 12,487160 12,566371 0,630% 13,196601 13,351769 1,162% 13,406167 13,351769 0,407% 

 

The Campbell’s graph. The graph follows (Fig 

4) shows the difference first backward and 

forward mode of frequencies as a function of 

rotating speed (Ω) between precedent materials 

and shows the critical speeds. 
 

 

Interpretation. The change between boundary 

condition Simply-supported and anther create 

difference but between Clamped -Pinned and 

Pinned-Free we haven’t difference. The critical 

speed for various situations of our model shaft  

in Table 4.
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 Fig 3. The fourth first natural frequency for various 

materials of shaft and different boundary conditions, a) 

Simply supported, b) Clamped-pinned, c) Pinned-free 

Fig 4. The Campbell’s graph for difference shaft materials, 

using Simply-supported boundary conditions. 
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Table 4. Critical speeds as a function with materials of shaft 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

The analysis of the free vibrations of the 

homogeneous spinning shafts using the p-version 

of the finite element method with trigonometric 

shape functions is presented in this work. The 

results obtained agree with those available in the 

literature. Several examples were treated to 

determine the influence of the various boundary 

condition and various materials of the spinning 

shafts. This work enabled us to arrive at the 

following conclusions: 

1. Number of function shaft influence to get 

best results. 

2. The differences between boundary 

conditions and the mechanical properties 

creates a difference in natural frequency 

3. The change of materials changes the 

critical speed of shaft, and vary the 

forward and backward frequencies. 

The objective of this works validated our 

calculation program for used in advanced 

studies, Fortunately the objective is reached. 
 

REFERENCES 

 

[1] S. S. Rao, Mechanical vibrations. Prentice Hall, 2011. 

[2] T. H. Tan, H. P. Lee, and G. S. B. Leng, “Dynamic 

stability of a radially rotating beam subjected to base 

excitation,” Comput Methods Appl Mech Eng, vol. 

146, no. 3–4, pp. 265–279, Jul. 1997, doi: 

10.1016/S0045-7825(96)01238-8. 

[3] J. Cheng, H. Xu, and A. Yan, “Frequency Analysis of 

a Rotating Cantilever Beam Using Assumed Mode 

Method with Coupling Effect #,” 

http://dx.doi.org/10.1080/15367730500501587, vol. 

34, no. 1, pp. 25–47, Apr. 2007, doi: 

10.1080/15367730500501587. 

[4] Y. P. Chen, M. H. Yao, and W. Zhang, “Nonlinear 

vibrations of the blade with varying rotating speed,” 

2011 2nd International Conference on Mechanic 

Automation and Control Engineering, MACE 2011 - 

Proceedings, pp. 1435–1438, 2011, doi: 

10.1109/MACE.2011.5987216. 

[5] C. T. Loy, K. Y. Lam, and J. N. Reddy, “Vibration of 

functionally graded cylindrical shells,” Int J Mech Sci, 

vol. 41, no. 3, pp. 309–324, Mar. 1999, doi: 

10.1016/S0020-7403(98)00054-X. 

[6] A. Boukhalfa, “Dynamic Analysis of a Spinning 

Functionally Graded Material Shaft by the p- version 

of the Finite Element Method,” Latin American 

Journal of Solids and Structures, vol. 11, pp. 2018–

2038, Jan. 2014, doi: 10.1590/S1679-

78252014001100007. 

[7] Houmat and A., “a Sector Fourier p - Applied to Free 

Vibration Analysis of Sectorial Plates,” JSV, vol. 243, 

no. 2, pp. 269–282, May 2001, doi: 

10.1006/JSVI.2000.3410. 

 

 

Materials Stainless Steel Nickel Zirconia 

Modes Backward Forward Backward Forward Backward Forward 

Critical speeds 

[Rpm] 
1227,4345 1225,9698 1164,9887 1163,5985 1312,5409 1310,9733 


