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Abstract – In this study, heat and wave equations containing ihomogeneous boundary conditions were 

discussed. For these equations, the data shift method and the Fourier series method were used to reduce the 

inhomogeneous boundary conditions to homogeneous ones. Methods were compared in order to facilitate 

the solution and improve the decision phase. These results are used in sectors such as production, health 

and finance and are effective in increasing productivity.  
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I. INTRODUCTION 

 The wave and heat equation is one of the partial 

differential equations frequently encountered in the 

fields of applied mathematics and physics. The 

wave equation is a second-order partial differential 

equation of hyperbolic type and models many 

natural phenomena. For example, events such as 

gravitational waves, sound waves, light waves and 

spring motion can be expressed with the wave 

equation. The heat equation is a piecewise 

differential equation that describes how heat will 

distribute over an object over time from a particular 

location. For these equations, when examining a 

problem defined in a finite range, the region where 

the problem is defined is expanded. This expansion 

extends to both the left and right of the field. 

Likewise, the necessary conditions for the solution 

of the equation are determined and a solution is 

sought using different methods. Finite element 

method is one of them and there are important 

studies on this subject [1]-[3]. 

The Fourier method is also given to solve the 

problem in a finite range. This method was first 

developed and generalized by d'Alembert, then by 

Fourier and Ostrogradski, for the most general case. 

This method has been used successfully in wave, 

heat and Laplace equations [4]-[7]. Stability 

analysis has been studied for systems modeled by 

[8]. Systems modeled with the wave equation with 

inverse damping term are given in [9]. With the help 

of hyperbolic partial differential equation, a 

backstepping controller that can be applied to linear 

time-independent delayed systems has been 

obtained. In [10], the controller is explicit for multi-

input linear time-independent delay systems. The 

control can be generalized to two- and more-

dimensional distributed parameter systems. Heat 

and wave stability analysis and backstep limit value 

control can be provided for equation systems. 

In this study, we will use two different methods, 

Fourier and separation of variables, to obtain the 

solutions of these equations and prove the 

applicability of the results. 

II. MATERIALS AND METHOD 

  In this article, we will see one of the special types 

of heat equations called inhomogeneous wave 

equations and the method to find the solution of 

such equations. 

The method of separation of variables can be used 

to solve non-homogeneous equations. We first 

consider the heat equation case. Consider the initial 

boundary problem, 

𝑢𝑡  −  𝑘𝑢𝑥𝑥  =  𝑓(𝑥, 𝑡), 0 <  𝑥 <  𝐿, 𝑡 >  0  
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    𝑢(0, 𝑡) = ℎ(𝑡), 𝑢(𝐿, 𝑡) = 𝑝(𝑡), 𝑡 ≥  0, 

   𝑢(𝑥, 0)  =  𝜑(𝑥), 0 < 𝑥.                                              (1)                                                                   

In this problem, we will use the data shifting method to 

make the boundaries homogeneous, equivalent to (1). 

  The idea of this method is to extract a function that 

satisfies the following. Let's define the function 

𝑈(𝑥, 𝑡) = (1 −
𝑥

𝑙
) ℎ(𝑡) +

𝑥

𝑙
𝑝(𝑡) 

for which trivially 𝑈(0, 𝑡)  =  ℎ(𝑡) and 𝑈(𝑙, 𝑡)  =  𝑝(𝑡). 

But then for the new quantity  

𝑣(𝑥, 𝑡)  =  𝑢(𝑥, 𝑡)  −  𝑈(𝑥, 𝑡), we have 

𝑣𝑡  −  𝑘𝑣𝑥𝑥 = 𝑢𝑡  −  𝑘𝑢𝑥𝑥 −  (𝑈𝑡  −  𝑘𝑈𝑥𝑥)

= 𝑓(𝑥, 𝑡) − (1 −
𝑥

𝑙
) ℎ′(𝑡) +

𝑥

𝑙
𝑝′(𝑡) 

𝑣(𝑥, 0)  =  𝑢(𝑥, 0)  −  𝑈(𝑥, 0)  

=  𝜑(𝑥) −  (1 −
𝑥

𝑙
) ℎ(0) +

𝑥

𝑙
𝑝(0)  

𝑣(0, 𝑡)  =  𝑢(0, 𝑡)  −  𝑈(0, 𝑡)  =  ℎ(𝑡)  −  ℎ(𝑡)  =  0,  

𝑣(𝑙, 𝑡)  =  𝑢(𝑙, 𝑡)  −  𝑈(𝑙, 𝑡)  =  𝑝(𝑡)  −  𝑝(𝑡)  =  0. 

Thus 𝑣(𝑥, 𝑡) is equivalent to the following boundary 

value problem with homogeneous boundary conditions. 

𝑣𝑡  −  𝑘𝑣𝑥𝑥  =  𝑓̃(𝑥, 𝑡), 0 <  𝑥 <  𝐿, 𝑡 >  0  

          𝑣(0, 𝑡)  =  𝑣(𝐿, 𝑡) = 0, 𝑡 ≥  0, 

           𝑣(𝑥, 0)  = 𝜑̃(𝑥), 0 < 𝑥,                                     (2)                                                                   

where  

 𝑓̃(𝑥, 𝑡) =  𝑓(𝑥, 𝑡) − (1 −
𝑥

𝑙
) ℎ′(𝑡) +

𝑥

𝑙
𝑝′(𝑡) 

            𝜑̃(𝑥) = 𝜑(𝑥) −  (1 −
𝑥

𝑙
) ℎ(0) +

𝑥

𝑙
𝑝(0).       (3)                                   

Problem (2) is equivalent to (1), so the function 𝑣(𝑥, 𝑡) 

can be found, where 𝜑(𝑥) with                                                    

𝜑̃(𝑥) and 𝑓𝑛(𝑠) is replaced by 𝑓𝑛̃(𝑠). φen and fen(t) can 

be found as follows. 

After finding the function 𝑣(𝑥, 𝑡) in series form using 

(3), the Fourier coefficients of 𝜑(𝑥)  and 𝑓(𝑥, 𝑡) are 

found. 

𝑣(𝑥, 𝑡) = ∑ [ 𝜑𝑛̃𝑒−𝑘(𝑛𝜋/𝑙)2𝑡

∞

𝑛=1

+ ∫ 𝑒
−𝑘(

𝑛𝜋
𝑙

)
2

(𝑠−𝑡)
 𝑓𝑛̃(𝑠)𝑑𝑠

𝑡

0

] sin
𝑛𝜋𝑥

𝑙
, 

it gives the solution of problem 2, 

 =  (1 −
𝑥

𝑙
) ℎ(𝑡) +

𝑥

𝑙
𝑝(𝑡) + ∑ [ 𝜑𝑛̃𝑒

−𝑘(
𝑛𝜋

𝑙
)

2
𝑡

+∞
𝑛=1

∫ 𝑒
−𝑘(

𝑛𝜋

𝑙
)

2
(𝑠−𝑡)

 𝑓𝑛̃(𝑠)𝑑𝑠
𝑡

0
] sin

𝑛𝜋𝑥

𝑙
. 

Taking Neumann boundary conditions 

𝑢𝑥(0, 𝑡) =  ℎ(𝑡),   𝑢𝑥(𝑙, 𝑡) = 𝑝(𝑡).  

Let's consider the following function, 

𝐴(𝑥, 𝑡) = ∫ 𝑈(𝑥, 𝑡)𝑑𝑥 = (𝑥 −
𝑥2

2𝑙
)ℎ(𝑡) + 

𝑥2

2𝑙
 𝑝(𝑡) 

to shift the data, since  

𝐴𝑥(0, 𝑡) =  𝑈(0, 𝑡)  =  ℎ(𝑡) and  

𝐴𝑥(𝑙, 𝑡)  =  𝑈(𝑙, 𝑡)  =  𝑝(𝑡).  

For the inhomogeneous boundary value problem for 

the wave equation 

𝑢𝑡𝑡  −  𝑐2𝑢𝑥𝑥  =  𝑓(𝑥, 𝑡), 0 <  𝑥 <  𝑙,  

           𝑢(0, 𝑡) = ℎ(𝑡), 𝑢(𝑙, 𝑡) = 𝑝(𝑡),                

           𝑢(𝑥, 0) =  𝜑(𝑥),   𝑢𝑡(𝑥, 0) =  𝜔(𝑥),                 (4)                                                                   

in the problem, data can be shifted in the same way. 

An alternative method to shifting the data to solve 

problem 2 is to use the following expansion.         

𝑢(𝑥, 𝑡)  = ∑  ∞
𝑛=1  𝑢𝑛(𝑡) sin

𝑛𝜋𝑥

𝑙
.                               (5)   

Now if we calculate 𝑢𝑥𝑥(𝑥, 𝑡), 

𝑢𝑥𝑥(𝑥, 𝑡) = ∑  ∞
𝑛=1  𝜙𝑛(𝑡) sin

𝑛𝜋𝑥

𝑙
.                          (6)   

Using Green's second identity here, 

   𝜙𝑛(𝑡) =
2

𝑙
∫ 𝑢𝑥𝑥(𝑥, 𝑡)

𝑙

0
sin

𝑛𝜋𝑥

𝑙
 𝑑𝑥 

= −
2

𝑙
∫ (

𝑛𝜋

𝑙
)

2

  𝑢(𝑥, 𝑡)sin
𝑛𝜋𝑥

𝑙

𝑙

0

𝑑𝑥 

                  + 
2

𝑙
(𝑢𝑥 sin

𝑛𝜋𝑥

𝑙
−

𝑛𝜋

𝑙
𝑢𝑐𝑜𝑠

𝑛𝜋𝑥

𝑙
). 

 If we use the boundary conditions for 𝑢 in (2) and 

consider that the first boundary term disappears     

𝜙𝑛(𝑡) = − (
𝑛𝜋

𝑙
)

2
 𝑢𝑛(𝑡) −

2𝑛𝜋

𝑙2 (−1)𝑛 𝑝(𝑡) +
2𝑛𝜋

𝑙2 ℎ(𝑡).  

Using (6) and the last equation, we get, 
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∑  ∞
𝑛=1  𝑢′

𝑛(𝑡) − 𝜆 (− (
𝑛𝜋

𝑙
)

2
 𝑢𝑛(𝑡) −

2𝑛𝜋

𝑙2
(−1)𝑛 𝑝(𝑡) +

2𝑛𝜋

𝑙2 ℎ(𝑡)) sin
𝑛𝜋𝑥

𝑙
  = ∑  ∞

𝑛=1  𝑓𝑛(𝑡) sin
𝑛𝜋𝑥

𝑙
. 

Using the completeness, we obtain the following ODEs 

for the coefficients 𝑢𝑛(𝑡) 

𝑢′
𝑛(𝑡) + 𝜆 (

𝑛𝜋

𝑙
)

2
𝑢𝑛 =  𝑓𝑛(𝑡) −

2𝑛𝜋

𝑙2 ((−1)𝑛𝑝(𝑡) −

ℎ(𝑡)), with 𝑢𝑛(0)= 𝜑𝑛 

These ODEs can also be solved in the same way 

using the integration factor.  

𝑢𝑛(𝑡) = 𝜑𝑛𝑒−𝑘(𝑛𝜋/𝑙)2𝑡 + ∫ 𝑒
𝑘(

𝑛𝜋

𝑙
)

2
(𝑠−𝑡)

 (𝑓𝑛(𝑠) −
𝑡

0

2𝑛𝜋

𝑙2
(−1)𝑛𝑝(𝑠) − ℎ(𝑠)) 𝑑𝑠.  

has a solution function. For the inhomogeneous 

wave problem (4), this method will give the 

following ODEs for the coefficients. 

𝑢𝑛
′′ + 𝑐2 (

𝑛𝜋

𝑙
)

2
𝑢𝑛 = (𝑓𝑛(𝑡) −

2𝑛𝜋

𝑙2
(−1)𝑛𝑝(𝑡) − ℎ(𝑡)), 

with the initial conditions 

𝑢𝑛(0)= 𝜑𝑛, 𝑢′𝑛(0)=  𝜔𝑛.                                       (7)   

Solving these ODEs by variation of parameters, one 

can find the solution to (4) as the series (5). Now, 

let's use the Fourier series, with which we 

successfully solved boundary value problems, in our 

search for solutions to non-homogeneous problems.  

     Consider the following boundary value problem 

for the Dirichlet inhomogeneous heat equation, 

𝑢𝑡  −  𝑘𝑢𝑥𝑥  =  𝑓(𝑥, 𝑡), 0 <  𝑥 <  𝑙, 𝑡 >  0  

     𝑢(0, 𝑡) =   𝑢(𝑙, 𝑡) = 0 

      𝑢(𝑥, 0)  =  𝜑(𝑥),  

Let's approach the problem in series form as a solution in 

(5). In this Fourier sine series, the coefficients will 

change with the t variable. Such an expansion 

always exists due to the completeness of the set of 

eigenfunctions {sin
𝑛𝜋𝑥

𝑙
}. The coefficients will then 

be given by the Fourier sine coefficients formula 

𝑢𝑛(𝑡) =
2

𝑙
∫ 𝑢(𝑥, 𝑡)

𝑙

0
sin

𝑛𝜋𝑥

𝑙
 𝑑𝑥. 

We can similarly expand the source function, 

𝑓(𝑥, 𝑡) = ∑  ∞
𝑛=1  𝑓𝑛(𝑡) sin

𝑛𝜋𝑥

𝑙
 ,       where  

 𝑓𝑛(𝑡) =
2

𝑙
∫ 𝑓(𝑥, 𝑡)

𝑙

0
sin

𝑛𝜋𝑥

𝑙
 𝑑𝑥.                                 (8) 

Now, since we are looking for a twice differentiable 

function 𝑢(𝑥, 𝑡) that satisfies the homogeneous 

Dirichlet boundary conditions, we can differentiate the 

Fourier series (5) term by term to obtain 

𝑢𝑥𝑥(𝑥, 𝑡) = − ∑  ∞
𝑛=1  𝑢𝑛(𝑡) (

𝑛𝜋

𝑙
)

2
 sin

𝑛𝜋𝑥

𝑙
.               (9) 

To be able to differentiate twice, we need to guarantee 

that 𝑢𝑥 satisfies homogeneous Neumann conditions; 

This is achieved by taking the single extension of u into 

the range (−𝑙, 0). 

We can also differentiate series (5) with respect to 𝑡, 

𝑢𝑡(𝑥, 𝑡)  = ∑  ∞
𝑛=1  𝑢′𝑛(𝑡) sin

𝑛𝜋𝑥

𝑙
.                           (10) 

𝑢𝑡(𝑥, 𝑡)  are Fourier coefficients, 

2

𝑙
∫ 𝑢𝑡(𝑥, 𝑡) 

𝑙

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 =

𝜕

𝜕𝑡

2

𝑙
∫ 𝑢(𝑥, 𝑡) 

𝑙

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥= 

𝑢′𝑛(𝑡) 

If we differentiate under the integral and substitute (10) 

and (9) into use Equation (8) and also taking into account 

completeness, we get, 

𝑢𝑛(𝑡) =  𝑢(0)𝑒
−𝑘(

𝑛𝜋
𝑙

)
2

𝑡
+                                       

            𝑒
−𝑘(

𝑛𝜋

𝑙
)

2
𝑡

∫ 𝑒
−𝑘(

𝑛𝜋

𝑙
)

2
𝑠
 

𝑙

0
𝑓𝑛(𝑠)𝑑𝑠                (11) 

If we use the initial condition, 

     𝑢(𝑥, 0) =  𝜑(𝑥) = ∑  ∞
𝑛=1  𝑢𝑛(0) sin

𝑛𝜋𝑥

𝑙
 , 

      +  𝑢𝑛(0)= 𝜔𝑛= 
2

𝑙
∫ 𝜑(𝑥) 

𝑙

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥. 

Then the solution can be written in series form as, 

𝑢(𝑥, 𝑡) = ∑ [ 𝜑𝑛𝑒
−𝑘(

𝑛𝜋
𝑙

)
2

𝑡

∞

𝑛=1

+ ∫ 𝑒
−𝑘(

𝑛𝜋
𝑙

)
2

(𝑠−𝑡)
𝑓𝑛(𝑠)𝑑𝑠

𝑡

0

] sin
𝑛𝜋𝑥

𝑙
. 

where 𝜑𝑛 and 𝑓𝑛 are the Fourier coefficients of 𝑓(𝑥, 𝑡) 

and can be found from (8) and (11), respectively. The 

first coefficient term in the above series comes from the 

homogeneous heat equation, while the second term It is 

obtained by Neumann boundary conditions for the 

inhomogeneous heat equation, The only difference is 
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that a cosine series solution is sought instead of a sine 

series (5). Boundary value problem for inhomogeneous 

wave equation of (4), 

𝑢𝑛
′′ + 𝑐2 (

𝑛𝜋

𝑙
)

2
𝑢𝑛 = 𝑓𝑛(𝑡) 

with the initial conditions in (7). mThese ODEs can be 

solved explicitly using variation of parameters to obtain 

the coefficients 𝑢𝑛(𝑡). 

III. RESULTS 

We sought solutions to inhomogeneous heat and 

wave equations by using eigenfunctions 

corresponding to homogeneous boundary value 

problems. This leads to ODEs for the coefficients of 

a series in terms of eigenfunctions. 

IV. DISCUSSION 

   We studied two methods for solving problems 

with inhomogeneous boundary conditions. The first 

of these is to shift the boundary data to reduce the 

problem to a homogeneous situation.  The second 

method is to seek a solution directly as a series in 

terms of the eigenfunctions of the relevant 

homogeneous problem. Since boundary terms 

emerge when differentiating Fourier series, ODEs 

can only be reached after dealing with these 

boundary terms.  

V. CONCLUSION 

As a result of the Fourier method, the solution is 

the infinite sum and it is obtained in series. In the 

non-homogeneous case, the considered partial 

differential equation turns into a Sturm-Liouville 

problem. The Sturm-Liouville problem is open to 

extensive investigation. For this reason, the Fourier 

method is generally preferred in solving 

inhomogeneous problems in the finite range. 
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