A Study on Lacunary Summability of Order α with respect to Modulus Function for Fuzzy Variables in Credibility Spaces

Ömer Kişi ${ }^{1,{ }^{*}}$ and Erhan Güler ${ }^{2}$
1,*Department of Mathematics, Faculty of Sciences, Bartın University, Turkey ORCID ID 0000-0001-6844-3092
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Bartın University, Turkey ORCID ID 0000-0003-3264-6239
*(okisi@bartin.edu.tr) Email of the corresponding author

Abstract

The main aim of this study is to investigate strongly lacunary summable and lacunary statistically convergent fuzzy variable sequences (briefly FVS) by utilizing modulus functions f and s under some conditions and orders $\gamma, \rho \in(0,1]$ such that $\gamma \leq \rho$. In addition, we obtain some inclusion relations between these concepts.

Keywords - Lacunary Sequence, Lacunary Summability, Modulus Function, Fuzzy Variable Sequence, Credibility Space

I. Introduction

Fuzzy theory was pioneered by Zadeh [1] in 1965. A fuzzy variable (FV) is a function that maps from a credibility space to a set of real values. The convergence of FVs is a key component of credibility theory, which may be applied to realworld engineering and financial challenges. Kaufmann [2] has conducted research on FVs, possibility distributions, and membership functions. Several specific contents have been explored since Liu began his investigation of credibility theory (see [3-9]). Given the relevance of sequence convergence in credibility theory, Liu [5] proposed four forms of convergence concepts for FVs: credibility convergence, almost certainly convergence, mean convergence, and distribution convergence.
Fast [10] presented statistical convergence for real sequences as an extension of ordinary convergence. Gadjiev and Orhan [11] put forward the order of statistical convergence of a sequence of operators and then Çolak [12] worked the order of statistical convergence for a sequence of numbers. Lacunary statistical convergence was studied by Fridy and Orhan [13]. Significant
studies on this topic can be examined (see [14-15]). Nakano [16] investigated the idea of a modulus function. By utilizing a modulus function, several authors constructed new sequence spaces (see [1720]).
A set function Cr is credibility measure if it provides the subsequent axioms: Let H be a nonempty set, and Θ be a nonempty set, and $\mathcal{P}(\Theta)$ be the power set of Θ (i.e., the largest algebra over $\Theta)$. All element in \mathcal{P} is named an event. For any $A \in \mathcal{P}(\Theta)$, Liu and Liu [6] presented a credibility measure $\operatorname{Cr}(A)$ to indicate the chance that fuzzy event A occurs. Li and Liu [3] proved that a set function $\mathrm{Cr}($.$) a credibility measure iff$
Axiom i. $\operatorname{Cr}(\Theta)=1$;
Axiom ii. $\operatorname{Cr}(A) \leq \operatorname{Cr}(B)$ whenever $A \subset B$;
Axiom iii. Cr is self-dual, i.e., $\operatorname{Cr}(A)+\operatorname{Cr}\left(A^{c}\right)=$ 1 , for any $A \in \mathcal{P}(\Theta)$;
Axiom iv. $\operatorname{Cr}\left\{\mathrm{U}_{i} A_{i}\right\}=\sup _{i} \operatorname{Cr}\left\{A_{i}\right\}$ for any collection $\left\{A_{i}\right\}$ in $\mathcal{P}(\Theta)$ with $\sup _{i} \operatorname{Cr}\left\{A_{i}\right\}<0.5$.
The triplet $(\Theta, \mathcal{P}(\Theta), \mathrm{Cr})$ is called a credibility space. A fuzzy variable is put forward by Liu and Liu [3] as function from the credibility space to the set of real numbers.

Now, we serve the concepts of investigate strongly lacunary summable and lacunary statistically convergent FVS by utilizing modulus functions f and s under some conditions and orders $\gamma, \rho \in(0,1]$ such that $\gamma \leq \rho$, and obtain some features of these concepts.

II. Main Results

In this section, we present the relations between $N_{\theta}^{\gamma}(s)$ and $N_{\theta}^{\rho}(f), N_{\theta}^{\rho}(s)$ and $N_{\theta}^{\gamma}(f), S_{\theta}^{\rho}(s)$ and $N_{\theta}^{\gamma}(f), N_{\theta}^{\rho}(g)$ and $\ell_{\infty} \cap S_{\theta}^{\gamma}(f)$ for FVS in credibility spaces, where f and s are modulus functions under some conditions and $\gamma, \rho \in(0,1]$ such that $\gamma \leq \rho$. Throughout the article, let f, s be modulus functions, $\theta=\left(k_{r}\right)$ be a lacunary sequence, $\mu, \mu_{1}, \mu_{2}, \ldots$ be fuzzy variables identified on credibility space $(\Theta, \mathcal{P}(\Theta), \mathrm{Cr})$, and take $\gamma, \rho \in$ $(0,1]$.

Definition 2.1. A FVS $\left\{\mu_{k}\right\}$ is named to be strongly $N_{\theta}^{\gamma}(f)$-summable (or strongly f-lacunary summable) of order γ to the $\mathrm{FV} \mu$ provided, there exists a $A \in \mathcal{P}(\Theta)$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)=0
$$

for all $\theta \in \mathrm{A}$. In this case, we denote $\mu_{k} \rightarrow$ $\mu\left(N_{\theta}^{\gamma}(f)\right)$ or $N_{\theta}^{\gamma}(f)-\lim \mu_{k}=\mu$. The sets of strongly $\quad N_{\theta}^{\gamma}(f)$-summable FVS can be demonstrated by $N_{\theta}^{\gamma}(f)$. Namely,

$$
\begin{gathered}
N_{\theta}^{\gamma}(f)=\left\{\left\{\mu_{k}\right\}: \lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)\right. \\
=0 \text { for some FV } \mu\}
\end{gathered}
$$

In this definition, we emphasize that the modulus function f need not to be unbounded.

Theorem 2.1. Assume f and s be modulus functions, $\gamma, \rho \in(0,1]$ so that $\gamma \leq \rho$. When

$$
\sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}<\infty
$$

then $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$.
Proof. Take $t=\sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}<\infty$. At that time, we get $0<\frac{f(w)}{s(w)} \leq t$ and hence $f(w) \leq t s(w)$ for any $w \geq 0$. It is obvious that $t>0$ and if $N_{\theta}^{\gamma}(s)-$ $\lim \mu_{k}=\mu$, then

$$
\begin{aligned}
& \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& \leq \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} t s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)
\end{aligned}
$$

for all $\theta \in \mathrm{A}$, where $A \in \mathcal{P}(\Theta)$. Since $\gamma \leq \rho$, we obtain

$$
\begin{aligned}
& \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& \quad \leq t \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)
\end{aligned}
$$

for all $\theta \in \mathrm{A}$. Getting the limits on both sides as $r \rightarrow \infty$, we acquire that $\left\{\mu_{k}\right\} \in N_{\theta}^{\gamma}(s)$ gives $\left\{\mu_{k}\right\} \in$ $N_{\theta}^{\rho}(f)$.

Remark 2.1. The following example demonstrates that the inclusion $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ is strict.

Example 2.1. Choose $\gamma=\rho=1$ and identify FVS $\left\{\mu_{k}\right\}$ as μ_{k} to be $\left[\sqrt{h_{r}}\right]$ at the first $\left[\sqrt{h_{r}}\right]$ integers in I_{r}, and $\mu_{k}=0$ if not. When we establish the modulus functions $f(w)=\frac{w}{w+1}$ and $s(w)=w$, then $\sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}=1<\infty$ and so $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ by Theorem 2.1. With the aid of the $f(0)=0$ equality, we get

$$
\begin{gathered}
\frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)\right|\right)=\frac{1}{h_{r}}\left[\sqrt{h_{r}}\right] f\left(\left[\sqrt{h_{r}}\right]\right) \\
=\frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}\left(\left[\sqrt{h_{r}}\right]+1\right)}
\end{gathered}
$$

for all $\theta \in \mathrm{A}$. Getting the limits as $r \rightarrow \infty$, we obtain that $N_{\theta}^{\rho}(f)-\lim \mu_{k}=0$. Hence, $\left\{\mu_{k}\right\} \in$ $N_{\theta}^{\rho}(f)$. However, since

$$
\begin{gathered}
\frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)\right|\right)=\frac{1}{h_{r}}\left[\sqrt{h_{r}}\right] s\left(\left[\sqrt{h_{r}}\right]\right) \\
=\frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}}
\end{gathered}
$$

and $\frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}} \rightarrow 1$ as $r \rightarrow \infty$, we have $\left\{\mu_{k}\right\} \notin$ $N_{\theta}^{\gamma}(s)$. As a result $\left\{\mu_{k}\right\} \in N_{\theta}^{\rho}(f)-N_{\theta}^{\gamma}(s)$ and the inclusion $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ is strict.

Corollary 2.1. Assume f and s be modulus functions, $\gamma, \rho \in(0,1]$ so that $\gamma \leq \rho$.

1. When $\sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}<\infty$, then $N_{\theta}^{\gamma}(s) \subset$ $N_{\theta}^{\gamma}(f)$.
2. When $\sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}<\infty$, then $N_{\theta}(s) \subset$ $N_{\theta}(f)$.
3. $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(f)$.
4. $N_{\theta}^{\gamma} \subset N_{\theta}^{\rho}$.

Theorem 2.2. If

$$
\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0
$$

then $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(s)$ and the inclusion is strict.
Proof. Take $t=\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$. So that $\frac{f(w)}{s(w)} \geq$ t and $t s(w) \leq f(w)$ for all $w \geq 0$. If $N_{\theta}^{\gamma}(f)-$ $\lim \mu_{k}=\mu$, then

$$
\begin{aligned}
& \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& \quad \leq \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} \frac{1}{t} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)
\end{aligned}
$$

Since $\gamma \leq \rho$, we get

$$
\begin{aligned}
& \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& \leq \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} \frac{1}{t} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)
\end{aligned}
$$

Getting the limits on both sides as $r \rightarrow \infty$, we obtain $N_{\theta}^{\rho}(s)-\lim \mu_{k}=\mu$ and so $\left\{\mu_{k}\right\} \in N_{\theta}^{\rho}(s)$. For the strict inclusion, the FVS of Example 2.1.
with functions $s(w)=\frac{w}{w+1}$ and $f(w)=w$ serve the purpose in the case $\gamma=\rho=1$.

Corollary 2.2. Assume f and s are modulus functions, $\gamma, \rho \in(0,1]$ so that $\gamma \leq \rho$.

1. When $\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$, then $N_{\theta}^{\gamma}(f) \subset$ $N_{\theta}^{\gamma}(s)$.
2. When $\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$, then $N_{\theta}(f) \subset$ $N_{\theta}(s)$.
3. $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(f)$.
4. $N_{\theta}^{\gamma} \subset N_{\theta}^{\rho}$.

Corollary 2.3. If

$0<\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)} \leq \sup _{w \in(0, \infty)} \frac{f(w)}{s(w)}<\infty$ then $N_{\theta}^{\gamma}(f)=N_{\theta}^{\gamma}(s)$.

Corollary 2.4. If $\sup _{w \in(0, \infty)} \frac{f(w)}{w}<\infty$, then $N_{\theta}^{\gamma} \subset$ $N_{\theta}^{\rho}(s)$ for any $\gamma, \rho \in(0,1]$ so that $\gamma \leq \rho$.

Corollary 2.5. If $\sup _{w \in(0, \infty)} \frac{f(w)}{w}<\infty$, then $N_{\theta}^{\gamma} \subset$ $N_{\theta}^{\gamma}(f)$ for any $\gamma \in(0,1]$.

Corollary 2.6. If $\inf _{w \in(0, \infty)} \frac{f(w)}{w}>0$, then $N_{\theta}^{\gamma}(f) \subset$ N_{θ}^{ρ} for any $\gamma, \rho \in(0,1]$ such that $\gamma \leq \rho$.

Corollary 2.7. If $\inf _{w \in(0, \infty)} \frac{f(w)}{w}>0$, then $N_{\theta}^{\gamma}(f) \subset$ N_{θ}^{γ} for any $\gamma \in(0,1]$.

Corollary 2.8. If

$$
0<\inf _{w \in(0, \infty)} \frac{f(w)}{w} \leq \sup _{w \in(0, \infty)} \frac{f(w)}{w}<\infty
$$

then $N_{\theta}^{\gamma}(f)=N_{\theta}^{\gamma}$ for any $\gamma \in(0,1]$.
Theorem 2.3. When $\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$ and $\lim _{w \rightarrow \infty} \frac{s(w)}{w}>0$, then all strongly $N_{\theta}^{\gamma}(f)$ summable FVS is $S_{\theta}^{\rho}(s)$-convergent.

Proof. Presume that $t=\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$. Then $\frac{f(w)}{s(w)} \geq t$ and hence $t s(w) \leq f(w)$ for all $w \geq 0$. If
$N_{\theta}^{\gamma}(f)-\lim \mu_{k}=\mu$ and $\gamma, \rho \in(0,1]$ so that $\gamma \leq$ ρ, then

$$
\begin{aligned}
\frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\mid \mu_{k}\right. & (\theta)-\mu(\theta) \mid) \\
& \geq t \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& \geq t \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right) \\
& =t \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} s\left(\mid \mu_{k}(\theta)\right. \\
& -\mu(\theta) \mid) \mid\left(\mu_{k}(\theta)-\mu(\theta) \mid \geq \varepsilon\right. \\
& +t \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} s\left(\mid \mu_{k}(\theta)\right. \\
& -\mu(\theta) \mid) \\
& \geq t \frac{1}{h_{r}^{\rho}} \sum_{k \in I_{r}} \quad s\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|<\varepsilon\right. \\
& -\mu(\theta) \mid) \\
& \left.\geq t \frac{1}{h_{r}^{\rho}} \right\rvert\,\left\{k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right. \\
& \geq \varepsilon\} \mid s(\varepsilon) .
\end{aligned}
$$

for all $\theta \in$ A. As $\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right\}\right|$ is a positive integer, we obtain
$\frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)-\mu(\theta)\right|\right)$
$\geq \frac{1}{h_{r}^{\rho}} s\left(\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right\}\right|\right) \frac{s(\varepsilon)}{s(1)} t=$
$=\frac{s\left(\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right\}\right|\right)}{s\left(h_{r}^{\rho}\right)} \frac{s\left(h_{r}^{\rho}\right)}{h_{r}^{\rho}} \frac{s(\varepsilon)}{s(1)} t$.
Getting the limits on both sides as $r \rightarrow \infty$, we obtain that $\left\{\mu_{k}\right\} \in N_{\theta}^{\gamma}(f)$ means $\left\{\mu_{k}\right\} \in S_{\theta}^{\rho}(s)$ since $\lim _{w \rightarrow \infty} \frac{s(w)}{w}>0$.

Remark 3.2. Generally, contrary of the Theorem 2.3 could be impossible. Following example demonstrates this situation.

Example 2.2. Establish the FVS $\left\{\mu_{k}\right\}$ as in Example 2.1 and also take $s(w)=f(w)=w$.

Hence $\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$ and $\lim _{w \rightarrow \infty} \frac{s(w)}{w}>0$. If we assume $0<\gamma \leq \frac{1}{2}<\rho \leq 1$, then for any $\varepsilon>$ 0 , we get

$$
\begin{gathered}
\lim _{r \rightarrow \infty} \frac{1}{s\left(h_{r}^{\rho}\right)} s\left(\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)\right| \geq \varepsilon\right\}\right|\right) \\
=\lim _{r \rightarrow \infty} \frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\rho}}=0
\end{gathered}
$$

Therefore, $\left\{\mu_{k}\right\} \in S_{\theta}^{\rho}(s)$. However, since
$\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\gamma}} \sum_{k \in I_{r}} f\left(\left|\mu_{k}(\theta)\right|\right)=\lim _{r \rightarrow \infty} \frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}^{\gamma}}=\infty$, as a result $\left\{\mu_{k}\right\} \notin N_{\theta}^{\gamma}(f)$.

Corollary 2.9. Assume f is an unbounded modulus, $\gamma, \rho \in(0,1]$ so that $\gamma \leq \rho$. If $\lim _{w \rightarrow \infty} \frac{f(w)}{w}>0$, then all strongly $N_{\theta}^{\gamma}(f)$ convergent FVS is $S_{\theta}^{\rho}(f)$-convergent.

Corollary 2.10. Assume f and g are unbounded modulus functions, $\gamma \in(0,1]$. If $\inf _{w \in(0, \infty)} \frac{f(w)}{s(w)}>0$ and $\lim _{w \rightarrow \infty} \frac{s(w)}{w}>0$, then all strongly $N_{\theta}^{\gamma}(f)$ convergent FVS is $S_{\theta}^{\gamma}(s)$-convergent.
Corollary 2.11. If $\inf _{u \in(0, \infty)} \frac{f(u)}{u}>0$, then all strongly $N_{\theta}^{\gamma}(f)$ convergent FVS is S_{θ}^{γ}-convergent and also S_{θ}-convergent.

Theorem 2.4. Let f and g be any unbounded modulus functions, $0<\alpha \leq \beta \leq 1$, and assume $\theta=\left(k_{r}\right)$ and $\vartheta=\left(t_{r}\right)$ are lacunary sequences so that $I_{r} \subset I_{r}^{\prime}$ for all $r \in \mathbb{N}$. If $\lim _{r \rightarrow \infty} \frac{v_{r}}{h_{r}^{\rho}}=1$ and $\sup _{w \in(0, \infty)} \frac{s(w)}{w}<\infty$, then all bounded and $S_{\theta}^{\gamma}(f)$ convergent FVS is strongly $N_{\vartheta}^{\rho}(s)$-convergent, namely,

$$
\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s) .
$$

where $\quad I_{r}=\left(k_{r-1}, k_{r}\right], I_{r}^{\prime}=\left(t_{r-1}, t_{r}\right], h_{r}=k_{r}-$ $k_{r-1}, v_{r}=t_{r}-t_{r-1}$.
Proof. Take $0<\alpha \leq \beta \leq 1$. Let $\left\{\mu_{k}\right\} \in \ell_{\infty} \cap$ $S_{\theta}^{\gamma}(f)$ and $S_{\theta}^{\gamma}(f)-\lim \mu_{k}=\mu$. To confirm that
$\left\{\mu_{k}\right\} \in N_{\vartheta}^{\rho}(s)$, we have to demonstrate that $S_{\theta}^{\gamma}(f) \subset S_{\theta}^{\gamma}$. Considering f is a modulus and $S_{\theta}^{\gamma}(f)-\lim \mu_{k}=\mu$, for all $q \in \mathbb{N}$ there is a $r_{0} \in \mathbb{N}$ so that, if $r>r_{0}$, we obtain

$$
\begin{gathered}
f\left(\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right\}\right|\right) \leq \frac{1}{q} f\left(h_{r}^{\gamma}\right) \\
\leq \frac{1}{q} q f\left(\frac{h_{r}^{\gamma}}{q}\right)=f\left(\frac{h_{r}^{\gamma}}{q}\right)
\end{gathered}
$$

for any $\varepsilon>0$. Hence,

$$
\frac{1}{h_{r}^{\gamma}}\left|k \in I_{r}:\left|\mu_{k}(\theta)-\mu(\theta)\right| \geq \varepsilon\right| \leq \frac{1}{q} .
$$

It follows that $S_{\theta}^{\gamma}(f) \subset S_{\theta}^{\gamma}$ and so $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset$ $\ell_{\infty} \cap S_{\theta}^{\gamma}$. Since $\lim _{r \rightarrow \infty} \frac{v_{r}}{h_{r}^{\rho}}=1$, we get $\ell_{\infty} \cap S_{\theta}^{\gamma} \subset$ N_{ϑ}^{ρ}. Thereby $N_{\vartheta}^{\rho} \subset N_{\vartheta}^{\rho}(s)$ since $\sup _{w \in(0, \infty)} \frac{s(w)}{w}<$ ∞. As a result, $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s)$.

Remark 2.3. The inclusion $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s)$ is strict.

Example 2.3. Let the lacunary sequence $\theta=$ $\left(k_{r}\right)$ be provided and $\vartheta=\theta$. Identify the FVS $\left(\mu_{k}\right)$ as μ_{k} to be $\left[\sqrt[3]{h_{r}}\right]$ at the first $\left[\sqrt{h_{r}}\right]$ integers in I_{r}, and $\mu_{k}=0$ if not. In addition, establish the modulus functions $f(w)=s(w)=w$. If we take $0<\gamma \leq \frac{1}{2}$ and $\rho=1$, then $\lim _{r \rightarrow \infty} \frac{v_{r}}{h_{r}^{\rho}}=1$ and $\sup _{w \in(0, \infty)} \frac{s(w)}{w}=1<\infty$. Since $\vartheta=\theta$, then for any $r \in \mathbb{N}$, we obtain

$$
\begin{gathered}
\frac{1}{v_{r}^{\rho}} \sum_{k \in I_{r^{\prime}}} s\left(\left|\mu_{k}(\theta)\right|\right)=\frac{1}{v_{r}^{\rho}} \sum_{k \in I_{r}} s\left(\left[\sqrt[3]{v_{r}}\right]\right) \\
=\frac{\left[\sqrt{v_{r}}\right]\left[\sqrt[3]{v_{r}}\right]}{v_{r}}
\end{gathered}
$$

Since $\frac{\left[\sqrt{v_{r}}\left[\sqrt[3]{v_{r}}\right]\right.}{v_{r}} \rightarrow 0$ as $r \rightarrow \infty$, then $\left(\mu_{k}\right) \in$ $N_{\vartheta}^{\rho}(s)$. However, for all $\varepsilon>0$, we can write

$$
\begin{gathered}
\frac{1}{f\left(h_{r}^{\gamma}\right)} f\left(\left|\left\{k \in I_{r}:\left|\mu_{k}(\theta)\right| \geq \varepsilon\right\}\right|\right)=\frac{f\left(\left[\sqrt{h_{r}}\right]\right)}{f\left(h_{r}^{\gamma}\right)} \\
=\frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\gamma}}
\end{gathered}
$$

So, $\left(\zeta_{k}\right) \notin S_{\theta}^{\gamma}(f)$ since $\frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\gamma}} \rightarrow \infty$ as $r \rightarrow \infty$ for $0<\gamma<\frac{1}{2}$ and $\frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{V}} \rightarrow 1$ as $r \rightarrow \infty$ for $\gamma=\frac{1}{2}$. As a result, the inclusion $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s)$ is strict.

References

[1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(3), 338-353, 1965.
[2] A. Kaufmann, Introduction to the theory of fuzzy subsets, New York: Academic Press, 1975.
[3] B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Syst., 10(4), 445-450. 2002.
[4] B. Liu, Theory and practice of uncertain programming, Physica-Verlag, Heidelberg, 2002.
[5] B. Liu, Inequalities and convergence concepts of fuzzy and rough variables, Fuzzy Optim. Decis. Mak., 2(2), 87-100, 2003.
[6] B. Liu, A survey of credibility theory, Fuzzy Optim. Decis. Mak., 5(4), 387-408, 2006.
[7] B. Liu, Uncertainty theory, 2nd ed., Springer-Verlag, Berlin, 2007.
[8] E. Savaş, Ö. Kişi and M. Gürdal, On statistical convergence in credibility space, Numer. Funct. Anal. Optim., 43(8) (2022), 987-1008.
[9] Ö. Kişi, M. Gürdal and E. Savaş, On lacunary convergence in credibility space, Facta Univ. Ser. Math. Inform., 37(4) (2022), 683-708.
[10] H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 1951, 241-244.
[11] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics 32 (2002), 129-138.
[12] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, Anamaya Publishers (2010), 121-129.
[13] J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.
[14] M. Et and H. Şengül, Some Cesaro-Type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), 1593-1602.
[15] H. Şengül and M. Et, f-Lacunary statistical convergence and strong f-lacunary summability of order α, Filomat 32 (2018), 4513-4521.
[16] H. Nakano, Concave modulars, Journal of the Mathematical Society of Japan 5 (1953), 29-49
[17] R. Çolak, Lacunary strong convergence of difference sequences with respect to a modulus function, Filomat 17 (2003), 9-14.
[18] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194-198.
[19] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Stud. Sci. Math. Hung. 40 (2003), 463-476.
[20] I.S. Ibrahim, R. Çolak, On strong lacunary summability of order α with respect to modulus functions, Ann. Univ. Craiova Math. Comput. Sci. Ser., 48(1) (2021), 127-136.

