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Abstract — The main aim of this study is to investigate strongly lacunary summable and lacunary
statistically convergent fuzzy variable sequences (briefly FVS) by utilizing modulus functions f and s
under some conditions and orders y, p € (0,1] such that y < p. In addition, we obtain some inclusion

relations between these concepts.
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I. INTRODUCTION

Fuzzy theory was pioneered by Zadeh [1] in
1965. A fuzzy variable (FV) is a function that maps
from a credibility space to a set of real values. The
convergence of FVs is a key component of
credibility theory, which may be applied to real-
world engineering and financial challenges.
Kaufmann [2] has conducted research on FVs,
possibility  distributions, and  membership
functions. Several specific contents have been
explored since Liu began his investigation of
credibility theory (see [3-9]). Given the relevance
of sequence convergence in credibility theory, Liu
[5] proposed four forms of convergence concepts
for FVs: credibility convergence, almost certainly
convergence, mean convergence, and distribution
convergence.

Fast [10] presented statistical convergence for
real sequences as an extension of ordinary
convergence. Gadjiev and Orhan [11] put forward
the order of statistical convergence of a sequence
of operators and then Colak [12] worked the order
of statistical convergence for a sequence of
numbers. Lacunary statistical convergence was
studied by Fridy and Orhan [13]. Significant
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studies on this topic can be examined (see [14-15]).
Nakano [16] investigated the idea of a modulus
function. By utilizing a modulus function, several
authors constructed new sequence spaces (see [17-
20]).

A set function Cr is credibility measure if it
provides the subsequent axioms: Let H be a
nonempty set, and © be a nonempty set, and P (0)
be the power set of O (i.e., the largest algebra over
0). All element in P is named an event. For any
A € P(0), Liu and Liu [6] presented a credibility
measure Cr(A4) to indicate the chance that fuzzy
event A occurs. Li and Liu [3] proved that a set
function Cr(.) a credibility measure iff

Axiomi. Cr(0) = 1;

Axiom ii. Cr(4) < Cr(B) whenever A c B;

Axiom iii. Cr is self-dual, i.e., Cr(A4) + Cr(4°) =
1, forany A € P(0);

Axiom iv. Cr{U;A;} = sup,;Cr{4;} for
collection {4;} in P(©) with sup,;Cr{4;} < 0.5.

The triplet (0,2 (0),Cr) is called a credibility
space. A fuzzy variable is put forward by Liu and
Liu [3] as function from the credibility space to the
set of real numbers.
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Now, we serve the concepts of investigate
strongly lacunary summable and lacunary
statistically convergent FVS by utilizing modulus
functions f and s under some conditions and
orders y,p € (0,1] such that y < p, and obtain
some features of these concepts.

1. MAIN RESULTS

In this section, we present the relations between
NY(s) and N (), NJ(s) and N)Y(f), S5(s) and
NY(f).NS(g) and £, nSY(f) for FVS in
credibility spaces, where f and s are modulus
functions under some conditions and y, p € (0,1]
such that y < p. Throughout the article, let f,s be
modulus functions, 6 = (k,) be a lacunary
sequence, W, Uy, Uy, ... be fuzzy variables identified
on credibility space (0,72 (0),Cr), and take y,p €
(0,1].

Definition 2.1. A FVS {u;} is named to be
strongly Nj(f)-summable (or strongly f-lacunary
summable) of order y to the FV u provided, there
exists a A € P(0) such that

lim > £ (6) = u(®)) = 0

" kel,

for all 6 € A. In this case, we denote u; —
u(Ny(F)) or Nj(f) —limy, = pu. The sets of
strongly  Ny(f)-summable FVS can be
demonstrated by Ny (f). Namely,

1
N3 =4 i lim — > f(le(6) = u(®D

T kel,

= 0 for some FV u

In this definition, we emphasize that the modulus
function f need not to be unbounded.

Theorem 2.1. Assume f and s be modulus
functions, y, p € (0,1] so that y < p. When
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fw)
s(w) <@

sup
WE(0,00)

then N} (s) © N5 (f).

Proof. Take t = sup L) o, At that time,

wE(0,00) s(w)
fE i <t and hence f(w) < ts(w) for

any w > 0. It is obvious that t > 0 and if N;’(s) —
limy;, = u, then

we get 0 <

= Fm®) - o))

n
T kel,

1
< ZBWM%MW)

~h
T kel,

for all & € A, where A € P(0). Since y < p, we
obtain

1
> £ (k(® = @D

e
T kel,

1
<t s(u® — u©®)N

< hy
T kel,

for all & € A. Getting the limits on both sides as
r — oo, we acquire that {u;} € N} (s) gives {u;} €

NJ ().

Remark 2.1. The following example
demonstrates that the inclusion N} (s) c Nj (f) is
strict.

Example 2.1. Choose y =p =1 and identify
FVS {w} as w to be [/h,] at the first [\/h,]
integers in [, and p, =0 if not. When we
establish the modulus functions f(w) = L and
fw)

s(w)

s(w) =w, then sup =1<o and o)

wEe(0,0)
N} (s) € NJ(f) by Theorem 2.1. With the aid of
the £(0) = 0 equality, we get

W (/A

_ YmI/A
e (W] + 1)

1
> Fm@D =

hP
T keI,




for all 6 € A. Getting the limits as r —» oo, we
obtain that NJ(f) —limy, = 0. Hence, {w}€
Né’(f) However, since

—Z s (O)]) = —w—] (WA ])

hy kel
=
hr
and @ﬁl as r — oo, we have {u;} ¢

N} (s). As a result {,} € NJ(f) — N} (s) and the
inclusion N} (s) © N} (f) is strict.

Corollary 2.1. Assume f and s be modulus
functions, y, p € (0,1] so thaty < p.

1. When TW) « o, then NJ(s) c

sup o

WE(0,00)
Ny ().
When fw)

s(w)

sup < oo, then Ny(s) c

wEe(0,0)

No (f).
N} (f) € NS ().
Nchg.

3.
4.

Theorem 2.2. If
in fw) >0,
we(0,%0) s(W)
then N;’(f) c ng (s) and the inclusion is strict.

Proof. Take t = inf %> 0. So that L >
we(0,00) S(W) s(w )

t and ts(w) < f(w) for all w=0. If NY(f) -
limy, = u, then

1
> 508 — u®)D

hY
T kel

<7 Y 1 U®) ~ w@)D

r kel
Since y < p, we get

h?

T kel,

sl (8) — ()1

<7 Y 1 Ul®) = RO

r kel
Getting the limits on both sides as r — oo, we

obtain Nj (s) —limyy = p and so {u;} € Nj (s).
For the strict inclusion, the FVS of Example 2.1.
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with functions s(w) = ﬁ and f(w) =w serve
the purpose inthecasey = p = 1.

Corollary 2.2. Assume f and s are modulus
functions, y, p € (0,1] so thaty < p.

fw) 14
1. When e 0fc>o (W)>0 then N, (f) c
NY(s).
fw)
2. When WE(Ofoo (W)>0 then Ny(f) c
Ng(s).
3. Ny () < NG ().
4. Ny cN).
Corollary 2.3. If
N (L) B (O B
wE€(0,0) S(W) we(0,00) S(W)
then N} (f) = N} (s).
Corollary 2.4. If sup %2 < oo, then N) c
wEeE(0,0) w

Nj (s) forany y, p € (0,1] so thaty < p.

fw)
sup ——
wEe(0,0) w

NY () forany y € (0,1].

Corollary 2.5. If < oo, then N} c

inf LW v
Corollary 2.6. If Wel(%’foo) — >0, then Ny (f) c
Nj foranyy,p € (0,1] such thaty < p.

Corollary 2.7. If _inf f(w) > 0, then N (f)

we(0,0)

N} foranyy € (0,1].

Corollary 2.8. If
0< inf <

wE(0,0) W

sup m< 0,

we(0,00) W

then N} (f) = N} forany y € (0,1].

inf rw) >0 and

we(0,00) S(w)
>0, then all strongly N} (f)-

summable FVS is S} (s)-convergent.

Theorem 2.3. When

lim,,_, — S(W)

inf rw) > 0. Then

we(0,00) S(W)
>t and hence ts(w) < f(w) forallw > 0. If

Proof. Presume that t =

fw)
s(w)



N, (f) —limu, = u and y,p € (0,1] so that y <
p, then

=S Fua®) ~ w @)D

1Y
hr kEl,
1
>t WZ s(lue (8) — u(8))
T kel,
1
> ¢ WZ s(ue(8) — u(®))
T kel,
1
=t s(|u(6)
h
T kel,
[ (0)—u(8)|ze
- M(H)I)
+ t? s(|lpk (6)
T kEl,
[ (8)—u(6)|<e
- u(f)n
> h—p S(l.uk(e)
T ker,
[ur(0)—u(8)|ze
- u(f)l)
2t |{k € 12 |1 (8) — u(8)]
T
> }|s(e).

forall 8 € A. As |{k € I.: |u, (8) — u(8)| = &}| is
a positive integer, we obtain

D Fme®) = (@)D

T kel
s(e )

1
hf s(I{k € I+ |1 (8) — u(0)| = e}) —== (1)
_ s(l{k € L: |1 (8) — u(6) = €}]) s(hy) s(e)
} () W s

Getting the limits on both sides as r — oo, we
obtain that {u;} € NY(f) means {u;}€ S} (s)

s(w) > 0.

since lim,,_,

Remark 3.2. Generally, contrary of the Theorem
2.3 could be impossible. Following example
demonstrates this situation.

Example 2.2. Establish the FVS {u,} as in
Example 2.1 and also take s(w) = f(w) = w.
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inf fw) S(W)
wE(O ) s(w)
we assume 0 < y§5<ps 1, then for any € >

0, we get

Hence >0 and lim,,_,—>0. If

lim Sk )s(l{kel |t (6)] = 31)
= N,ELO-

Therefore, {u,} € Sg(s). However, since

NG
lim —Z F( @)D = lim N_}]}J_] = o,

T kel,

asaresult {u;} € NY ().

Corollary 2.9. Assume f is an unbounded
modulus, y,p€(0,1] so that y<p. |If

f(w) >0, then all strongly N} (f)-
convergent FVSis Sg (f)-convergent.

lim,, o —

Corollary 2.10. Assume f and g are unbounded

modulus functions, y € (0,1]. If inf L)
wEe(0,00) S(w)

and lim,,_, — > 0, then all strongly N} (f)-

convergent FVS IS Sy(s) -convergent.
fw

s (w)

Corollary 2.11. If 1nfue(0w) > 0, then all

strongly N”(f) convergent FVS |s S”-convergent
and also Sg-convergent.

Theorem 2.4. Let f and g be any unbounded
modulus functions, 0 < a < f <1, and assume
6 = (k,) and 9 = (t,) are lacunary sequences so

that I, c I, for all € N. If lim,_, :—; =1 and

SUPwe(0,00) % < oo, then all bounded and S;’(f)-

convergent FVS is strongly Ng(s)-convergent,
namely,

2 NSY(f) < NE(s).

where I, = (k,_q1, k., I,
k-1, Vr =t —tr_q.
Proof. Take 0 <a < B <1. Let {ux} €4, N

Sy(f) and S} (f) —limy, = u. To confirm that

"= (tr—y ) R = Ky —



{t} € NJ(s), we have to demonstrate that
Sy(f) € Sy. Considering f is a modulus and
Sy (f) — limpy, = p, forall g € N there isar, € N
so that, if r > r,, we obtain

1
fUtk € L: | (0) —u(0)| = €}]) < af(hz)

()13

<= qf
for any € > 0. Hence,
1 1
7 1k € L |1 (0) — p(0)] 2 €] = 7
T

It follows that S} (f) c Sy and so £, NSy (f)
2., N S} Since lim,_q, % =1, we get £, NS} C

. s(w)
Nj. Thereby Nj < NJ (s) since supe(o,c0) =

0. Asaresult, £, N S} (f) < Nj (s).

<

Remark 2.3. The inclusion ¢, N S} (f) € NJ (s)
is strict.

Example 2.3. Let the lacunary sequence 6 =
(k,-) be provided and 9 = 6. Identify the FVS (uy)

as uy to be [3/h,] at the first [/, ] integers in I,
and w, =0 if not. In addition, establish the
modulus functions f(w) = s(w) = w. If we take

0<y§l and p =1, then limHmZ—;=1 and

s(w)

SUPwe(o,00) —— = 1 < 0. Since ¥ =6, then for
anyr € N, we obtain

=y stu@b=—5 > s([yw])

Ur k€l T keIT
_ VEIR/w]
vy, '
3
Since Ma 0 as r—> oo, then (u) €

Np (s). However, for all € > 0, we can write

£k € L | (8)] = g}|):%
_Wn]

W

f(hy)

18

So, (i) € S, (f) since N_] — o0 as r — oo for
N—]

T

result, the inclusion £, N Sy (f) < N§ (s) is strict.

0<)/< L and —>1asr—>oofory——Asa
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