

January 28 - 31, 2023, Konya, Turkey

A Study on Lacunary Summability of Order α with respect to Modulus Function for Fuzzy Variables in Credibility Spaces

Ömer Kişi^{1,*} and Erhan Güler²

 ^{1,*}Department of Mathematics, Faculty of Sciences, Bartin University, Turkey ORCID ID 0000-0001-6844-3092
 ²Department of Mathematics, Faculty of Sciences, Bartin University, Turkey ORCID ID 0000-0003-3264-6239

*(<u>okisi@bartin.edu.tr</u>) Email of the corresponding author

Abstract – The main aim of this study is to investigate strongly lacunary summable and lacunary statistically convergent fuzzy variable sequences (briefly FVS) by utilizing modulus functions f and s under some conditions and orders $\gamma, \rho \in (0,1]$ such that $\gamma \leq \rho$. In addition, we obtain some inclusion relations between these concepts.

Keywords – Lacunary Sequence, Lacunary Summability, Modulus Function, Fuzzy Variable Sequence, Credibility Space

I. INTRODUCTION

Fuzzy theory was pioneered by Zadeh [1] in 1965. A fuzzy variable (FV) is a function that maps from a credibility space to a set of real values. The convergence of FVs is a key component of credibility theory, which may be applied to realworld engineering and financial challenges. Kaufmann [2] has conducted research on FVs, possibility distributions. and membership functions. Several specific contents have been explored since Liu began his investigation of credibility theory (see [3-9]). Given the relevance of sequence convergence in credibility theory, Liu [5] proposed four forms of convergence concepts for FVs: credibility convergence, almost certainly convergence, mean convergence, and distribution convergence.

Fast [10] presented statistical convergence for real sequences as an extension of ordinary convergence. Gadjiev and Orhan [11] put forward the order of statistical convergence of a sequence of operators and then Çolak [12] worked the order of statistical convergence for a sequence of numbers. Lacunary statistical convergence was studied by Fridy and Orhan [13]. Significant studies on this topic can be examined (see [14-15]). Nakano [16] investigated the idea of a modulus function. By utilizing a modulus function, several authors constructed new sequence spaces (see [17-20]).

A set function Cr is credibility measure if it provides the subsequent axioms: Let H be a nonempty set, and Θ be a nonempty set, and $\mathcal{P}(\Theta)$ be the power set of Θ (i.e., the largest algebra over Θ). All element in \mathcal{P} is named an event. For any $A \in \mathcal{P}(\Theta)$, Liu and Liu [6] presented a credibility measure Cr(A) to indicate the chance that fuzzy event A occurs. Li and Liu [3] proved that a set function Cr(.) a credibility measure iff

Axiom i. $Cr(\Theta) = 1;$

Axiom ii. $Cr(A) \leq Cr(B)$ whenever $A \subset B$;

Axiom iii. Cr is self-dual, i.e., $Cr(A) + Cr(A^c) = 1$, for any $A \in \mathcal{P}(\Theta)$;

Axiom iv. $Cr{\bigcup_i A_i} = \sup_i Cr{A_i}$ for any collection $\{A_i\}$ in $\mathcal{P}(\Theta)$ with $\sup_i Cr{A_i} < 0.5$.

The triplet $(\Theta, \mathcal{P}(\Theta), Cr)$ is called a credibility space. A fuzzy variable is put forward by Liu and Liu [3] as function from the credibility space to the set of real numbers. Now, we serve the concepts of investigate strongly lacunary summable and lacunary statistically convergent FVS by utilizing modulus functions f and s under some conditions and orders $\gamma, \rho \in (0,1]$ such that $\gamma \leq \rho$, and obtain some features of these concepts.

II. MAIN RESULTS

In this section, we present the relations between $N_{\theta}^{\gamma}(s)$ and $N_{\theta}^{\rho}(f)$, $N_{\theta}^{\rho}(s)$ and $N_{\theta}^{\gamma}(f)$, $S_{\theta}^{\rho}(s)$ and $N_{\theta}^{\gamma}(f)$, $N_{\theta}^{\rho}(g)$ and $\ell_{\infty} \cap S_{\theta}^{\gamma}(f)$ for FVS in credibility spaces, where f and s are modulus functions under some conditions and $\gamma, \rho \in (0,1]$ such that $\gamma \leq \rho$. Throughout the article, let f, s be modulus functions, $\theta = (k_r)$ be a lacunary sequence, μ, μ_1, μ_2, \dots be fuzzy variables identified on credibility space $(\Theta, \mathcal{P}(\Theta), Cr)$, and take $\gamma, \rho \in (0,1]$.

Definition 2.1. A FVS $\{\mu_k\}$ is named to be strongly $N_{\theta}^{\gamma}(f)$ -summable (or strongly *f*-lacunary summable) of order γ to the FV μ provided, there exists a $A \in \mathcal{P}(\Theta)$ such that

$$\lim_{r \to \infty} \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) = 0$$

for all $\theta \in A$. In this case, we denote $\mu_k \rightarrow \mu(N_{\theta}^{\gamma}(f))$ or $N_{\theta}^{\gamma}(f) - \lim \mu_k = \mu$. The sets of strongly $N_{\theta}^{\gamma}(f)$ -summable FVS can be demonstrated by $N_{\theta}^{\gamma}(f)$. Namely,

$$N_{\theta}^{\gamma}(f) = \left\{ \{\mu_k\}: \lim_{r \to \infty} \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) = 0 \text{ for some FV } \mu \right\}.$$

In this definition, we emphasize that the modulus function f need not to be unbounded.

Theorem 2.1. Assume *f* and *s* be modulus functions, $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$. When

$$\sup_{w\in(0,\infty)}\frac{f(w)}{s(w)}<\infty$$

then $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$. **Proof.** Take $t = \sup_{w \in (0,\infty)} \frac{f(w)}{s(w)} < \infty$. At that time, we get $0 < \frac{f(w)}{s(w)} \le t$ and hence $f(w) \le ts(w)$ for any $w \ge 0$. It is obvious that t > 0 and if $N_{\theta}^{\gamma}(s) - \lim \mu_k = \mu$, then

$$\frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) \\ \leq \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} ts(|\mu_k(\theta) - \mu(\theta)|)$$

for all $\theta \in A$, where $A \in \mathcal{P}(\Theta)$. Since $\gamma \leq \rho$, we obtain

$$\frac{1}{h_r^{\rho}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) \le t \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|)$$

for all $\theta \in A$. Getting the limits on both sides as $r \to \infty$, we acquire that $\{\mu_k\} \in N_{\theta}^{\gamma}(s)$ gives $\{\mu_k\} \in N_{\theta}^{\rho}(f)$.

Remark 2.1. The following example demonstrates that the inclusion $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ is strict.

Example 2.1. Choose $\gamma = \rho = 1$ and identify FVS $\{\mu_k\}$ as μ_k to be $[\sqrt{h_r}]$ at the first $[\sqrt{h_r}]$ integers in I_r , and $\mu_k = 0$ if not. When we establish the modulus functions $f(w) = \frac{w}{w+1}$ and s(w) = w, then $\sup_{w \in (0,\infty)} \frac{f(w)}{s(w)} = 1 < \infty$ and so $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ by *Theorem 2.1*. With the aid of the f(0) = 0 equality, we get

$$\frac{1}{h_r^{\rho}} \sum_{k \in I_r} f(|\mu_k(\theta)|) = \frac{1}{h_r} \left[\sqrt{h_r} \right] f\left(\left[\sqrt{h_r} \right] \right)$$
$$= \frac{\left[\sqrt{h_r} \right] \left[\sqrt{h_r} \right]}{h_r \left(\left[\sqrt{h_r} \right] + 1 \right)}$$

for all $\theta \in A$. Getting the limits as $r \to \infty$, we obtain that $N_{\theta}^{\rho}(f) - \lim \mu_k = 0$. Hence, $\{\mu_k\} \in$ $N^{\rho}_{\theta}(f)$. However, since

$$\frac{1}{h_r^{\gamma}} \sum_{k \in I_r} s(|\mu_k(\theta)|) = \frac{1}{h_r} \left[\sqrt{h_r} \right] s(\left[\sqrt{h_r} \right])$$
$$= \frac{\left[\sqrt{h_r} \right] \left[\sqrt{h_r} \right]}{h_r}$$

and $\frac{[\sqrt{h_r}][\sqrt{h_r}]}{h_r} \to 1$ as $r \to \infty$, we have $\{\mu_k\} \notin$ $N_{\theta}^{\gamma}(s)$. As a result $\{\mu_k\} \in N_{\theta}^{\rho}(f) - N_{\theta}^{\gamma}(s)$ and the inclusion $N_{\theta}^{\gamma}(s) \subset N_{\theta}^{\rho}(f)$ is strict.

Corollary 2.1. Assume f and s be modulus functions, $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$.

- 1. When $\sup_{w \in (0,\infty)} \frac{f(w)}{s(w)} < \infty$, then $N_{\theta}^{\gamma}(s) \subset$
- 1. $N_{\theta}^{\gamma}(f)$. 2. When $\sup_{w \in (0,\infty)} \frac{f(w)}{s(w)} < \infty$, then $N_{\theta}(s) \subset$ $N_{\theta}(f).$ 3. $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(f).$ 4. $N_{\theta}^{\gamma} \subset N_{\theta}^{\rho}.$

Theorem 2.2. If

$$\inf_{w\in(0,\infty)}\frac{f(w)}{s(w)}>0,$$

. . .

then $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(s)$ and the inclusion is strict.

Proof. Take $t = \inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$. So that $\frac{f(w)}{s(w)} \ge$ t and $ts(w) \leq f(w)$ for all $w \geq 0$. If $N^{\gamma}_{\theta}(f)$ – $\lim \mu_k = \mu$, then

$$\frac{1}{h_r^{\gamma}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ \leq \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} \frac{1}{t} f(|\mu_k(\theta) - \mu(\theta)|)$$

Since $\gamma \leq \rho$, we get

$$\frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \le \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} \frac{1}{t} f(|\mu_k(\theta) - \mu(\theta)|).$$

Getting the limits on both sides as $r \to \infty$, we obtain $N_{\theta}^{\rho}(s) - \lim \mu_k = \mu$ and so $\{\mu_k\} \in N_{\theta}^{\rho}(s)$. For the strict inclusion, the FVS of Example 2.1.

with functions $s(w) = \frac{w}{w+1}$ and f(w) = w serve the purpose in the case $\gamma = \rho = 1$.

Corollary 2.2. Assume f and s are modulus functions, $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$.

- 1. When $\inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$, then $N_{\theta}^{\gamma}(f) \subset$ $N_{\theta}^{\gamma}(s).$ 2. When $\inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$, then $N_{\theta}(f) \subset$ $N_{\theta}(s)$. 3. $N_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(f)$. 4. $N_{\theta}^{\gamma} \subset N_{\theta}^{\rho}$.
- Corollary 2.3. If $0 < \inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} \le \sup_{w \in (0,\infty)} \frac{f(w)}{s(w)} < \infty$ then $N_{\alpha}^{\gamma}(f) = N_{\alpha}^{\gamma}(s)$.

Corollary 2.4. If $\sup_{w \in (0,\infty)} \frac{f(w)}{w} < \infty$, then $N_{\theta}^{\gamma} \subset$ $N_{\theta}^{\rho}(s)$ for any $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$.

Corollary 2.5. If $\sup_{w \in (0,\infty)} \frac{f(w)}{w} < \infty$, then $N_{\theta}^{\gamma} \subset$ $N_{\alpha}^{\gamma}(f)$ for any $\gamma \in (0,1]$.

Corollary 2.6. If $\inf_{w \in (0,\infty)} \frac{f(w)}{w} > 0$, then $N_{\theta}^{\gamma}(f) \subset$ N_{θ}^{ρ} for any $\gamma, \rho \in (0,1]$ such that $\gamma \leq \rho$.

Corollary 2.7. If $\inf_{w \in (0,\infty)} \frac{f(w)}{w} > 0$, then $N_{\theta}^{\gamma}(f) \subset$ N_{A}^{γ} for any $\gamma \in (0,1]$.

Corollary 2.8. If $0 < \inf_{w \in (0,\infty)} \frac{f(w)}{w} \le \sup_{w \in (0,\infty)} \frac{f(w)}{w} < \infty,$

then
$$N_{\theta}^{\gamma}(f) = N_{\theta}^{\gamma}$$
 for any $\gamma \in (0,1]$.

Theorem 2.3. When $\inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$ and $\lim_{w\to\infty} \frac{s(w)}{w} > 0$, then all strongly $N_{\theta}^{\gamma}(f)$ summable FVS is $S^{\rho}_{\theta}(s)$ -convergent.

Proof. Presume that $t = \inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$. Then $\frac{f(w)}{s(w)} \ge t$ and hence $ts(w) \le f(w)$ for all $w \ge 0$. If $N_{\theta}^{\gamma}(f) - \lim \mu_k = \mu$ and $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$, then

$$\begin{aligned} \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) \\ &\geq t \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &\geq t \frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &= t \frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &= t \frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &+ t \frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &\geq t \frac{1}{h_r^{\rho}} \sum_{k \in I_r} s(|\mu_k(\theta) - \mu(\theta)|) \\ &\geq t \frac{1}{h_r^{\rho}} |\{k \in I_r : |\mu_k(\theta) - \mu(\theta)| \\ &\geq \varepsilon\}|_{S}(\varepsilon). \end{aligned}$$

for all $\theta \in A$. As $|\{k \in I_r : |\mu_k(\theta) - \mu(\theta)| \ge \varepsilon\}|$ is a positive integer, we obtain

$$\frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta) - \mu(\theta)|) \\
\geq \frac{1}{h_r^{\rho}} s(|\{k \in I_r : |\mu_k(\theta) - \mu(\theta)| \ge \varepsilon\}|) \frac{s(\varepsilon)}{s(1)} t = \\
= \frac{s(|\{k \in I_r : |\mu_k(\theta) - \mu(\theta)| \ge \varepsilon\}|)}{s(h_r^{\rho})} \frac{s(h_r^{\rho})}{s(1)} t.$$

Getting the limits on both sides as $r \to \infty$, we obtain that $\{\mu_k\} \in N_{\theta}^{\gamma}(f)$ means $\{\mu_k\} \in S_{\theta}^{\rho}(s)$ since $\lim_{w\to\infty} \frac{s(w)}{w} > 0$.

Remark 3.2. Generally, contrary of the Theorem 2.3 could be impossible. Following example demonstrates this situation.

Example 2.2. Establish the FVS $\{\mu_k\}$ as in Example 2.1 and also take s(w) = f(w) = w.

Hence $\inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$ and $\lim_{w \to \infty} \frac{s(w)}{w} > 0$. If we assume $0 < \gamma \le \frac{1}{2} < \rho \le 1$, then for any $\varepsilon > 0$, we get

$$\lim_{r \to \infty} \frac{1}{s(h_r^{\rho})} s(|\{k \in I_r : |\mu_k(\theta)| \ge \varepsilon\}|)$$
$$= \lim_{r \to \infty} \frac{[\sqrt{h_r}]}{h_r^{\rho}} = 0.$$

Therefore, $\{\mu_k\} \in S^{\rho}_{\theta}(s)$. However, since

$$\lim_{r \to \infty} \frac{1}{h_r^{\gamma}} \sum_{k \in I_r} f(|\mu_k(\theta)|) = \lim_{r \to \infty} \frac{\left[\sqrt{h_r}\right]\left[\sqrt{h_r}\right]}{h_r^{\gamma}} = \infty,$$

as a result $\{\mu_k\} \notin N_{\theta}^{\gamma}(f)$.

Corollary 2.9. Assume f is an unbounded modulus, $\gamma, \rho \in (0,1]$ so that $\gamma \leq \rho$. If $\lim_{w\to\infty} \frac{f(w)}{w} > 0$, then all strongly $N_{\theta}^{\gamma}(f)$ -convergent FVS is $S_{\theta}^{\rho}(f)$ -convergent.

Corollary 2.10. Assume *f* and *g* are unbounded modulus functions, $\gamma \in (0,1]$. If $\inf_{w \in (0,\infty)} \frac{f(w)}{s(w)} > 0$ and $\lim_{w \to \infty} \frac{s(w)}{w} > 0$, then all strongly $N_{\theta}^{\gamma}(f)$ -convergent FVS is $S_{\theta}^{\gamma}(s)$ -convergent.

Corollary 2.11. If $\inf_{u \in (0,\infty)} \frac{f(u)}{u} > 0$, then all strongly $N_{\theta}^{\gamma}(f)$ convergent FVS is S_{θ}^{γ} -convergent and also S_{θ} -convergent.

Theorem 2.4. Let f and g be any unbounded modulus functions, $0 < \alpha \le \beta \le 1$, and assume $\theta = (k_r)$ and $\vartheta = (t_r)$ are lacunary sequences so that $I_r \subset I_r'$ for all $r \in \mathbb{N}$. If $\lim_{r\to\infty} \frac{v_r}{h_r^{\rho}} = 1$ and $\sup_{w \in (0,\infty)} \frac{s(w)}{w} < \infty$, then all bounded and $S_{\theta}^{\gamma}(f)$ convergent FVS is strongly $N_{\vartheta}^{\rho}(s)$ -convergent, namely,

$$\ell_{\infty} \cap S^{\gamma}_{\theta}(f) \subset N^{\rho}_{\vartheta}(s).$$

where $I_r = (k_{r-1}, k_r], I_r' = (t_{r-1}, t_r], h_r = k_r - k_{r-1}, v_r = t_r - t_{r-1}.$

Proof. Take $0 < \alpha \le \beta \le 1$. Let $\{\mu_k\} \in \ell_{\infty} \cap S_{\theta}^{\gamma}(f)$ and $S_{\theta}^{\gamma}(f) - \lim \mu_k = \mu$. To confirm that

 $\{\mu_k\} \in N_{\vartheta}^{\rho}(s)$, we have to demonstrate that $S_{\theta}^{\gamma}(f) \subset S_{\theta}^{\gamma}$. Considering *f* is a modulus and $S_{\theta}^{\gamma}(f) - \lim \mu_k = \mu$, for all $q \in \mathbb{N}$ there is a $r_0 \in \mathbb{N}$ so that, if $r > r_0$, we obtain

$$f(|\{k \in I_r: |\mu_k(\theta) - \mu(\theta)| \ge \varepsilon\}|) \le \frac{1}{q} f(h_r^{\gamma})$$
$$\le \frac{1}{q} q f\left(\frac{h_r^{\gamma}}{q}\right) = f\left(\frac{h_r^{\gamma}}{q}\right)$$

for any $\varepsilon > 0$. Hence,

$$\frac{1}{h_r^{\gamma}} |k \in I_r: |\mu_k(\theta) - \mu(\theta)| \ge \varepsilon| \le \frac{1}{q}.$$

It follows that $S_{\theta}^{\gamma}(f) \subset S_{\theta}^{\gamma}$ and so $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset \ell_{\infty} \cap S_{\theta}^{\gamma}$. Since $\lim_{r \to \infty} \frac{v_r}{h_r^{\rho}} = 1$, we get $\ell_{\infty} \cap S_{\theta}^{\gamma} \subset N_{\theta}^{\rho}$. Thereby $N_{\theta}^{\rho} \subset N_{\theta}^{\rho}(s)$ since $\sup_{w \in (0,\infty)} \frac{s(w)}{w} < \infty$. As a result, $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\theta}^{\rho}(s)$.

Remark 2.3. The inclusion $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s)$ is strict.

Example 2.3. Let the lacunary sequence $\theta = (k_r)$ be provided and $\vartheta = \theta$. Identify the FVS (μ_k) as μ_k to be $\left[\sqrt[3]{h_r}\right]$ at the first $\left[\sqrt{h_r}\right]$ integers in I_r , and $\mu_k = 0$ if not. In addition, establish the modulus functions f(w) = s(w) = w. If we take $0 < \gamma \leq \frac{1}{2}$ and $\rho = 1$, then $\lim_{r\to\infty} \frac{v_r}{h_r^{\rho}} = 1$ and $\sup_{w \in (0,\infty)} \frac{s(w)}{w} = 1 < \infty$. Since $\vartheta = \theta$, then for any $r \in \mathbb{N}$, we obtain

$$\frac{1}{v_r^{\rho}} \sum_{k \in I_{r'}} s(|\mu_k(\theta)|) = \frac{1}{v_r^{\rho}} \sum_{k \in I_{r'}} s(\left[\sqrt[3]{v_r}\right])$$
$$= \frac{[\sqrt{v_r}][\sqrt[3]{v_r}]}{v_r}.$$

Since $\frac{[\sqrt{v_r}][\sqrt[3]{v_r}]}{v_r} \to 0$ as $r \to \infty$, then $(\mu_k) \in N_{\mathcal{A}}^{\rho}(s)$. However, for all $\varepsilon > 0$, we can write

$$\frac{1}{f(h_r^{\gamma})}f(|\{k \in I_r : |\mu_k(\theta)| \ge \varepsilon\}|) = \frac{f([\sqrt{h_r}])}{f(h_r^{\gamma})}$$
$$= \frac{[\sqrt{h_r}]}{h_r^{\gamma}}$$

So, $(\zeta_k) \notin S_{\theta}^{\gamma}(f)$ since $\frac{[\sqrt{h_r}]}{h_r^{\gamma}} \to \infty$ as $r \to \infty$ for $0 < \gamma < \frac{1}{2}$ and $\frac{[\sqrt{h_r}]}{h_r^{\gamma}} \to 1$ as $r \to \infty$ for $\gamma = \frac{1}{2}$. As a result, the inclusion $\ell_{\infty} \cap S_{\theta}^{\gamma}(f) \subset N_{\vartheta}^{\rho}(s)$ is strict.

REFERENCES

- [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(3), 338–353, 1965.
- [2] A. Kaufmann, Introduction to the theory of fuzzy subsets, New York: Academic Press, 1975.
- [3] B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Syst., 10(4), 445–450. 2002.
- [4] B. Liu, Theory and practice of uncertain programming, Physica-Verlag, Heidelberg, 2002.
- [5] B. Liu, Inequalities and convergence concepts of fuzzy and rough variables, Fuzzy Optim. Decis. Mak., **2**(2), 87–100, 2003.
- [6] B. Liu, A survey of credibility theory, Fuzzy Optim. Decis. Mak., 5(4), 387–408, 2006.
- [7] B. Liu, Uncertainty theory, 2nd ed., Springer-Verlag, Berlin, 2007.
- [8] E. Savaş, Ö. Kişi and M. Gürdal, On statistical convergence in credibility space, Numer. Funct. Anal. Optim., 43(8) (2022), 987-1008.
- [9] Ö. Kişi, M. Gürdal and E. Savaş, On lacunary convergence in credibility space, Facta Univ. Ser. Math. Inform., 37(4) (2022), 683-708.
- [10] H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 1951, 241-244.
- [11] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics 32 (2002), 129–138.
- [12] R. Çolak, Statistical convergence of order α , Modern Methods in Analysis and Its Applications, New Delhi, Anamaya Publishers (2010), 121–129.
- [13] J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.
- [14] M. Et and H. Şengül, Some Cesaro-Type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28 (2014), 1593-1602.
- [15] H. Şengül and M. Et, *f*-Lacunary statistical convergence and strong f-lacunary summability of order α , Filomat 32 (2018), 4513-4521.
- [16] H. Nakano, Concave modulars, Journal of the Mathematical Society of Japan 5 (1953), 29-49
- [17] R. Çolak, Lacunary strong convergence of difference sequences with respect to a modulus function, Filomat 17 (2003), 9-14.
- [18] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194-198.
- [19] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Stud. Sci. Math. Hung. 40 (2003), 463-476.
- [20] I.S. Ibrahim, R. Çolak, On strong lacunary summability of order α with respect to modulus functions, Ann. Univ. Craiova Math. Comput. Sci. Ser., 48(1) (2021), 127-136.