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Abstract — In this paper we introduce the concept of strongly

A}(‘,(p) — convergence of fuzzy numbers

with respect to an Orlicz function and examine some properties of the resulting sequence spaces and
A(o)-statistical convergence. It also shown that if a sequence of fuzzy numbers is strong A(c) convergent
with respect to an Orlicz function then it is A(o)-statistically convergent.
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I. INTRODUCTION

The concept of paranorm is closely related to linear
metric spaces. |t is a generalization of that of
absolute value. Let X be a linear space. A function
g: X — Ris called paranorm, if

(i) g(0)=0,(ii) g(x)>0, forall xe X,
(iii) g(- x)= g(x), forall xe X, (iv)
g(x+y)<g(x)+g(y), forall x,y e X, and (v) if
(a,) is a sequence of scalars with
a, = a (n— o) and (x,) a sequence of vectors
with g(x, —x)— 0 (n — =), then
g(a,x, —ax) — 0 (n — «).This property is called
continuity of multiplication by scalars.The space

X is called the paranormed space with the
paranorm g.

Let o be a one-to-one mapping of the set of
positive integers into itself such that ¢™(n) =
o(6™1(n)),m = 1,2,3, ... . A continuous linear
functional ¢ on [, , the set of all bounded
sequences, is said to be an invariant mean or a o-
mean if and only if
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() @(x) = 0 when the sequence x =
(x,,) has x,, = 0 for all n,

(i) p(e) = 1, where e=(1,1,1,...) and

(i) o({xom}) = pUxn}) allx =

(%) € lp.

For certain kinds of mappings a, every
invariant mean ¢ extends the limit functional on
the space c,the set of all convergent sequences, in
the sense that ¢ (x) = limx for all x = (x,,) € c.
Consequently, ¢ c V;, where V is the set of
bounded sequences all of whose o-means are
equal.

An Orlicz function is a function M:
[0, oo — [0, oo[ , which is continuous, non-
decreasing and convex with M(0)=0, M(x) > 0 for
Xx>0and M(X) > o as x — .

An Orlicz function is said to satisfy Ao-
condition for all values of u, if there exists a
constant K > 0, such that M(2u) < KM(u), u = 0.

Lindenstrauss and Tzafriri [8] used the idea
of Orlicz function to construct the sequence space
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=(x): X

The space |,, with the norm

IX|= Inf{p>0: Zk: M[%Jsl}

becomes a Banach space which is called an Orlicz
sequence space. The space |,, is closely related to

the space |, which is an Orlicz sequence space

with M (x) =x",1< p <.

In the later stage different Orlicz sequence
spaces were introduced and studied by Parashar
and Choudhary [9], Esi,Isik and Esi [10] , Esi [11],
Esi and Et [12], Esi[13] and many others.

The purpose of this paper is to introduce
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and study the concepts of strong AU(”)

convergence of fuzzy numbers with respect to an
Orlicz function and A(o)-istatistical convergence
and some relations between them.

Let p=(px)e ¢, , then the following well-
known inequality will be used the paper:

For sequences (ax) and (bx) of complex numbers
we have

la, +b "< K(la ™ +|b [*)

where K = max (1,2") and H =sup, p, .

We now give here a brief introduction
about the sequences of fuzzy numbers (see [1] and

[6])

Let D denote the set of all bounded
intervals A=[ A, A] on the real line R. For
A,B e D, define

M @qu <o, forsome }
— , p>0 ¢
P
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A<B if andonlyif A<B and A<B,
d (A,B)=max{|A-8|, [A-B|.

Then it can be easily seen that d defines a metric
on D and (D,d) is a complete metric space [1].
Also the relation < is a partial order on D.

A fuzzy number is a fuzzy subset of the real
line R which is bounded, convex and normal.Let
L(R) have compact support, i.e. if X € L(R) then
forany a €[0,1], X “is compact,where

X“={t: X(t)za if ae(01]f
and

X =cl({teR: X (t)>a if a=0}),

where cl(A) is the closure of A.

The set R of real numbers can be embedded
in L(R) if we define r e L(R) by
1 ift=r
0, ifter

r(t)

The additive identity and multiplicative

identity of L(R) are denoted by 0 and 1,
respectively. Then the arithmetic operations on
L(R) are defined as follows:

(X ®Y)(t)=sup{X (s)AY(t-s)},teR;
(XOY)(t)=sup{X (s)AY (s—t)},teR;

(X ®Y)(t)=sup{X (s)AY(t/s)},teR;
(X /Y)(t)=sup{X (st)AY (s)} ,teR.

These operations can be defined in terms of
o -level sets as follows:

[X@Y]" =[ay +b a5 +b; ],
[xeY]* =[a7 ~b7,ag —bg |;



[X®Y] =[m Ny
T [

foreach O0<a <1.

o~

For rin R and X in L(R), the product rX is
defined as follows:

X(r*]t) if r=0
0 if r=0

rX(t)=

Defineamap d: L(R)xL(R) — R, u{0}
by d(X,Y)=sup,.,d(X“,Y").For X,Y eL(R)
define X <Y ifandonly if X“ <Y“ for any
a €[04]. It is known that (L(R), d ) is a complete
metric space [7].

A metric on L(R) is said to be a translation
invariant if d(X +2,Y +Z)=d(X,Y) for
X,Y,Z eL(R).

LEMMA. [2]. If d is a translation
invariant metric on L(R), then

(i) d(X +Y,0)<d(X,0)+d(Y,0),
(ii) d(4X,0)<]4|d(X,0),[4/> L.

A sequence X = (X;) of fuzzy numbers is
a function X from the set N of natural numbers
into L(R). The fuzzy number X, denotes the value

of the functionat k e N .

A sequence X = (X;) of fuzzy numbers is
said to be bounded if the set {X, :k € N } of fuzzy

numbers is bounded.

A sequence X = (X;) of fuzzy numbers is
said to be converge to a fuzzy number X, if for

every ¢ >0 there is a positive integer n, such that
d(X,,X,)<e fork >n,.
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Il. RESULTS

Let A=(4
of positive real numbers tending to infinity and
A=land A,,<A,+1,1, =[n-4, +1n]. LetM

n+l1—
be an Orlicz function, p = (pk) be any sequence of

) be a non-decreasing sequence

strictly positive real numbers and X = (X;,) be
sequence of fuzzy numbers, then for some p > 0;

Esi [13] has defined the following classes
of sequences of fuzzy numbers:

Fo[M, 4,p] = o
{(Xk): rlli_lgoiz"e’n [M (@)] = 0},
F[M, 4, p] = ]
fono: Jim L3y, [m (222" = o]
Fo[M, A, p] =

{(Xk): S%pizkan [M (ﬂ?ﬁ))]pk oo}

and in this paper, we define the following new
classes of sequences of fuzzy numbers:

F,[As M, 2,p]

X

NG

= (Xp): llm — Z A | M ot Gmy

keIn

=0, uniformlyinmy,

FlA, M, A p] ={X =

_ Pk
d<X0'k (m),X())

(Xi): M P =

. 1
lim 7 Zkeln Amk
n-oo An

0,uniformly inm ;,



FolAg, M, A, p] =4X =

_( Pk
al X g ,6)

g’ (m)

M| —2

p

(X5): supi <

Ykel, Amk
nm n "

We denote F[A,, M, A4,p], F,[As, M, 4,p] and

E [A;, M, A, p]las F[A;, M, A], F,[As, M, A] and
E[As;, M, 2], when p, =1forall k. If X = (X )e
F[Ags, M, A4, p] we say that X = (X,,) is of strongly
Af,(p)- convergent to fuzzy number X, with respect
to the Orlicz function M. If ,M(x)=x, A=(C,1)
matrix order 1, 4, =n forall n,and o(n) =
n,then F[A;, M, 4, p]= Flpl, F,[As, M, 2, p]=F,[p]
and F,[A,, M, A, p]=E,[p], which were defined by
Mursaleen and Basarir [2]. If X = (X;) e F[pl],
we say that X = (X)) strongly convergent to fuzzy
number X,.

In this section we examine some
topological properties of F[A,, M, A, p],
F,[Ay;, M, A, p] and E [A4, M, A, p] classes.

If d is a translation invariant, we have the
following theorem.

THEOREM 1. For any Orlicz function M
and any sequence p = (p, ) of strictly positive real
numbers, then F[A,;, M, A, p], F,[A5, M, 4, p] and
E [As;, M, ,p], are linear spaces over the set of
complex numbers.

PROOF. We shall prove only for
F,[A,, M, 2, p]. The others can be treated similarly.
LetX = (X,),Y = (Yy) €EF,[A;, M, A, p] and
a, € C. In order to prove the result we need to

find some p, >0 such that

B _ Pk
d(aXak ) +ﬁYak (m)'0>

P3

1

lim

n—oo An

Yker, Ami |M

0, uniformly inm.
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a

Since X = (X)) , Y = (Vi) € F,[44, M, 4,p], there
exist some p, >0 and p, > 0 such that

_ B Pk
|

P1

lim

1
n_)@szezn Amk |M
0, uniformly inm
and

~ \\ 1Pk
M _d<y°‘k<m>’0>

1
lim— a
- In Zkeln mk 02

n—
0, uniformly inm.

Define p, = max(2|a|pl,2|ﬂ|p2). Since M is non-
decreasing and convex

_\\ 1Pk
1 d ((XXO_k m T BY _k (m)’ 0)
7 Z Amk M
n T P3
1 d (aXO_k (m), 6)
SZ Amk M
kel P3
Pk
d (BY gy 0)
P3
1 z L, 4 (X my 0)
1 Amk 5y
Ankeln 2Pk P1
_ _\\ 1Pk
oy d (Yak o 0)
P2
1 d (Xo_k my’ (_))
<— Z Amk M
An i P1
_ _\\ 1Pk
. d (Yak my o)



IA

S| =

Z o | &(Xo_k(m),ﬁ) oK
kely,

le

" (m)’
HLS P P ),
nkeln %)

-0, as n = oo uniformly in m.

where K = max (1,2"), H =sup, p,, so that

aX + B Y € E,[A,;, M, A, p]. This completes the
proof.

THEOREM 2. For any Orlicz function M
and a bounded sequence p = (p, ) of strictly

positive real numbers, F,[A;, M, A4, p] and
F[Ay, M, A, p] are paranormed spaces with

gXx) =
( B \\ 1Pk /M
. Pn/ 1 d<Xak (m)'0>
inf "t | S e M|~
1 n=1223,..
"m=123,..

where M = max(LH).

PROOF. Clearly g(ﬁ)=0and
g(X)=g(~ X). It can be seen easily that
g(X +Y)<g(X)+g(Y) forx = (X,),Y =
(V) € E,[A,, M, A,p], since d is a translation
invariant.Since M(0)=0, we get Inf {p i } =0

for X =0.Conversely, suppose that g(X) =0,
then
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_( Pk 1/M
al X g ,6)

o’ (m)

M| —-—2

. DPn 1
inf {p /i ZZkeInamk -

n=123..1_
Lom=123..(%

This implies that for a given ¢ > 0, there exists
some p, (0< p, < &) such that

_ B Pk 1/M
d(Xak (m)'0>

1
ZZkezn Amk |M

Pe
1.
Thus,
1
P\ /M
= | (X 0)
mk
ﬁﬂkezn €
1
_\\ 1Pk /M
1 dlX k. +,0
< —ZamkM ("("‘) ) <1
KEl, Pe

for each n and m.

Suppose that d (Xo_ks(m), 0) + 0 for some

d(Xo_ks (m)'0>

s € I,. Lete%O,thenfaoo. It

follows that
_ _ Pk 1/M
d<X0k5(m)’0>

1
ZZkEIn Ui | M| ——(—— - 0,

which is a contradiction. Therefore Xaks(m) # 0.

Finally, we prove that scalar multiplication is
continuous. Let y be any complex number. By

definition

<
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follows from the above inequality.

111. CONCLUSION

In this conference paper, we studied some
sequence spaces of fuzzy numbers defined by
Orlicz function. Some topological properties
were argued.
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