

1st International Conference on Modern and Advanced Research

July 29-31, 2023 : Konya, Turkey

© 2023 Published by All Sciences Proceedings

<u>https://as-</u> proceeding.com/index.php/icmar

SOME NEW GENERALIZED CLASSES OF SEQUENCES OF FUZZY NUMBERS DEFINED BY A ORLICZ FUNCTION I

Ayhan Esi*

¹Dept.of Basic Eng.Sci., Engineering Faculty, Malatya Turgut Ozal University, Türkiye

*(ayhan.esi@ozal.edu.tr, aesi23@hotmail..com) Emails of the corresponding author

Abstract – In this paper we introduce the concept of strongly $A_{\sigma}^{\lambda(p)}$ – convergence of fuzzy numbers with respect to an Orlicz function and examine some properties of the resulting sequence spaces and $\lambda(\sigma)$ -statistical convergence. It also shown that if a sequence of fuzzy numbers is strong $\lambda(\sigma)$ convergent with respect to an Orlicz function then it is $\lambda(\sigma)$ -statistically convergent.

Keywords - Orlicz Function, Paranorm, De La Vallee-Poussin Means, Fuzzy Number.

I. INTRODUCTION

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value. Let *X* be a linear space. A function $g: X \rightarrow R$ is called paranorm, if

(i) g(0) = 0,(ii) $g(x) \ge 0$, for all $x \in X$, (iii) g(-x) = g(x), for all $x \in X$, (iv) $g(x+y) \le g(x) + g(y)$, for all $x, y \in X$, and (v) if (α_n) is a sequence of scalars with $\alpha_n \to \alpha \ (n \to \infty)$ and (x_n) a sequence of vectors with $g(x_n - x) \to 0 \ (n \to \infty)$, then $g(\alpha_n x_n - \alpha x) \to 0 \ (n \to \infty)$. This property is called continuity of multiplication by scalars. The space X is called the paranormed space with the paranorm g.

Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^m(n) = \sigma(\sigma^{m-1}(n)), m = 1,2,3, \dots$. A continuous linear functional φ on l_{∞} , the set of all bounded sequences, is said to be an invariant mean or a σ -mean if and only if

(i) $\varphi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n,

(ii)
$$\varphi(e) = 1$$
, where $e=(1,1,1,...)$ and

(iii)
$$\varphi(\{x_{\sigma(n)}\}) = \varphi(\{x_n\}) \text{ all } x = (x_n) \in l_{\infty}.$$

For certain kinds of mappings σ , every invariant mean φ extends the limit functional on the space c,the set of all convergent sequences, in the sense that $\varphi(x) = limx$ for all $x = (x_n) \in c$. Consequently, $c \subset V_{\sigma}$, where V_{σ} is the set of bounded sequences all of whose σ -means are equal.

An Orlicz function is a function M: $[0, \infty[\rightarrow [0, \infty[$, which is continuous, nondecreasing and convex with M(0)=0, M(x) > 0 for x > 0 and M(x) $\rightarrow \infty$ as $x \rightarrow \infty$.

An Orlicz function is said to satisfy Δ_2 condition for all values of u, if there exists a constant K > 0, such that $M(2u) \leq KM(u)$, $u \geq 0$.

Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to construct the sequence space

$$l_{M} = \left\{ x = (x_{k}): \sum_{k} M\left(\frac{|x_{k}|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space l_M with the norm

$$\|x\| = Inf\left\{\rho > 0: \sum_{k} M\left(\frac{|x_{k}|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(x) = x^p$, $1 \le p < \infty$.

In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [9], Esi,Isik and Esi [10], Esi [11], Esi and Et [12], Esi[13] and many others.

The purpose of this paper is to introduce and study the concepts of strong $A_{\sigma}^{\lambda(p)}$ convergence of fuzzy numbers with respect to an Orlicz function and $\lambda(\sigma)$ -istatistical convergence and some relations between them.

Let $p=(p_k) \in \ell_{\infty}$, then the following wellknown inequality will be used the paper:

For sequences (a_k) and (b_k) of complex numbers we have

 $|a_{k}+b_{k}|^{p_{k}} \leq K(|a_{k}|^{p_{k}}+|b_{k}|^{p_{k}})$

where $K = max (1, 2^{\text{H-1}})$ and $H = \sup_k p_k$.

We now give here a brief introduction about the sequences of fuzzy numbers (see [1] and [6])

Let *D* denote the set of all bounded intervals $A = [\underline{A}, \overline{A}]$ on the real line R. For $A, B \in D$, define

$$A \leq B$$
 if and only if $\underline{A} \leq \underline{B}$ and $\overline{A} \leq \overline{B}$,
 $d(A,B) = \max\left\{ |\underline{A} - \underline{B}|, |\overline{A} - \overline{B}| \right\}.$

Then it can be easily seen that d defines a metric on D and (D,d) is a complete metric space [1]. Also the relation \leq is a partial order on D.

A fuzzy number is a fuzzy subset of the real line R which is bounded, convex and normal.Let L(R) have compact support, i.e. if $X \in L(R)$ then for any $\alpha \in [0,1]$, X^{α} is compact,where

$$X^{\alpha} = \left\{ t : X(t) \ge \alpha \quad if \quad \alpha \in (0,1] \right\}$$

and

$$X^{0} = cl(\{t \in R : X(t) > \alpha \ if \ \alpha = 0\}),$$

where cl(A) is the closure of A.

The set R of real numbers can be embedded in $L(\mathbf{R})$ if we define $r \in L(\mathbf{R})$ by

$$\overline{r}(t) = \frac{1, \quad if \quad t = r}{0, \quad if \quad t \neq r}$$

The additive identity and multiplicative identity of $L(\mathbf{R})$ are denoted by $\overline{0}$ and $\overline{1}$, respectively. Then the arithmetic operations on $L(\mathbf{R})$ are defined as follows:

$$(X \oplus Y)(t) = \sup \{X(s) \land Y(t-s)\}, t \in R;$$

$$(X \oplus Y)(t) = \sup \{X(s) \land Y(s-t)\}, t \in R;$$

$$(X \otimes Y)(t) = \sup \{X(s) \land Y(t/s)\}, t \in R;$$

$$(X / Y)(t) = \sup \{X(st) \land Y(s)\}, t \in R.$$

These operations can be defined in terms of α -level sets as follows:

,

$$\begin{bmatrix} X \oplus Y \end{bmatrix}^{\alpha} = \begin{bmatrix} a_1^{\alpha} + b_1^{\alpha}, a_2^{\alpha} + b_2^{\alpha} \end{bmatrix}$$
$$\begin{bmatrix} X \Theta Y \end{bmatrix}^{\alpha} = \begin{bmatrix} a_1^{\alpha} - b_1^{\alpha}, a_2^{\alpha} - b_2^{\alpha} \end{bmatrix};$$

$$\begin{bmatrix} X \otimes Y \end{bmatrix}^{\alpha} = \begin{bmatrix} \min_{i \in \{1,2\}} a_i^{\alpha} b_i^{\alpha}, \max_{i \in \{1,2\}} a_i^{\alpha} b_i^{\alpha} \end{bmatrix},$$
$$\begin{bmatrix} X^{-1} \end{bmatrix}^{\alpha} = \begin{bmatrix} \left(a_2^{\alpha}\right)^{-1}, \left(a_1^{\alpha}\right)^{-1} \end{bmatrix}, \quad a_i^{\alpha} > 0$$

for each $0 < \alpha \le 1$.

For r in R and X in L(R), the product rX is defined as follows:

$$rX(t) = \frac{X(r^{-1}t) \quad if \ r \neq 0}{0 \quad if \quad r = 0}.$$

Define a map $\overline{d} : L(R) \times L(R) \to R_+ \cup \{0\}$ by $\overline{d}(X,Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha},Y^{\alpha})$. For $X,Y \in L(R)$ define $X \le Y$ if and only if $X^{\alpha} \le Y^{\alpha}$ for any $\alpha \in [0,1]$. It is known that $(L(R), \overline{d})$ is a complete metric space [7].

A metric on $L(\mathbf{R})$ is said to be a translation invariant if $\overline{d}(X + Z, Y + Z) = \overline{d}(X, Y)$ for $X, Y, Z \in L(\mathbf{R})$.

LEMMA. [2]. If \overline{d} is a translation invariant metric on $L(\mathbf{R})$, then

(i)
$$\overline{d}(X+Y,\overline{0}) \leq \overline{d}(X,\overline{0}) + \overline{d}(Y,\overline{0}),$$

(ii) $\overline{d}(\lambda X,\overline{0}) \leq |\lambda| \overline{d}(X,\overline{0}), |\lambda| > 1.$

A sequence $X = (X_k)$ of fuzzy numbers is a function X from the set N of natural numbers into L(R). The fuzzy number X_k denotes the value of the function at $k \in N$.

A sequence $X = (X_k)$ of fuzzy numbers is said to be bounded if the set $\{X_k : k \in N\}$ of fuzzy numbers is bounded.

A sequence $X = (X_k)$ of fuzzy numbers is said to be converge to a fuzzy number X_o if for every $\varepsilon > 0$ there is a positive integer n_o such that $\overline{d}(X_k, X_o) < \varepsilon$ for $k > n_{o_{-}}$ II. RESULTS

Let $\Lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to infinity and $\lambda_1 = 1$ and $\lambda_{n+1} \le \lambda_n + 1$, $I_n = [n - \lambda_n + 1, n]$. Let M be an Orlicz function, $p = (p_k)$ be any sequence of strictly positive real numbers and $X = (X_k)$ be sequence of fuzzy numbers, then for some $\rho > 0$;

Esi [13] has defined the following classes of sequences of fuzzy numbers:

$$F_{o}[M, \lambda, p] = \begin{cases} (X_{k}): \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M\left(\frac{\bar{d}(X_{k}, \bar{0})}{\rho}\right) \right]^{p_{k}} = 0 \end{cases}, \\ F[M, \lambda, p] = \\ \left\{ (X_{k}): \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M\left(\frac{\bar{d}(X_{k}, X_{0})}{\rho}\right) \right]^{p_{k}} = 0 \rbrace, \\ F_{\infty}[M, \lambda, p] = \\ \left\{ (X_{k}): \sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M\left(\frac{\bar{d}(X_{k}, \bar{0})}{\rho}\right) \right]^{p_{k}} < \infty \rbrace \end{cases}$$

and in this paper, we define the following new classes of sequences of fuzzy numbers:

$$F_{o}[A_{\sigma}, M, \lambda, p] = \begin{cases} X \\ = (X_{k}): \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} a_{mk} \left[M\left(\frac{\bar{d}\left(X_{\sigma^{k}(m)}, \bar{0}\right)}{\rho}\right) \right]^{p_{k}} \\ = 0, uniformly in m \end{cases},$$

$$F[A_{\sigma}, M, \lambda, p] = \begin{cases} X = \\ (X_{k}): \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} a_{mk} \left[M\left(\frac{\bar{d}\left(X_{\sigma^{k}(m)}, X_{0}\right)}{\rho}\right) \right]^{p_{k}} = \\ 0, uniformly in m \end{cases},$$

$$F_{\infty}[A_{\sigma}, M, \lambda, p] = \left\{ X = \left\{ X = (X_k): \sup_{n,m} \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M\left(\frac{\overline{d}\left(X_{\sigma^k(m)}, \overline{0}\right)}{\rho}\right) \right]^{p_k} < \infty \right\}.$$

We denote $F[A_{\sigma}, M, \lambda, p]$, $F_o[A_{\sigma}, M, \lambda, p]$ and $F_{\infty}[A_{\sigma}, M, \lambda, p]$ as $F[A_{\sigma}, M, \lambda]$, $F_o[A_{\sigma}, M, \lambda]$ and $F_{\infty}[A_{\sigma}, M, \lambda]$, when $p_k = 1$ for all k. If $X = (X_k) \in$ $F[A_{\sigma}, M, \lambda, p]$ we say that $X = (X_k)$ is of strongly $A_{\sigma}^{\lambda(p)}$ - convergent to fuzzy number X_0 with respect to the Orlicz function M. If M(x)=x, A=(C,1)matrix order $1, \lambda_n = n$ for all n, and $\sigma(n) =$ n, then $F[A_{\sigma}, M, \lambda, p]=F[p]$, $F_o[A_{\sigma}, M, \lambda, p]=F_o[p]$ and $F_{\infty}[A_{\sigma}, M, \lambda, p]=F_{\infty}[p]$, which were defined by Mursaleen and Basarir [2]. If $X = (X_k) \in F[p]$, we say that $X = (X_k)$ strongly convergent to fuzzy number X_0 .

In this section we examine some topological properties of $F[A_{\sigma}, M, \lambda, p]$, $F_o[A_{\sigma}, M, \lambda, p]$ and $F_{\infty}[A_{\sigma}, M, \lambda, p]$ classes.

If \overline{d} is a translation invariant, we have the following theorem.

THEOREM 1. For any Orlicz function M and any sequence $p = (p_k)$ of strictly positive real numbers, then $F[A_{\sigma}, M, \lambda, p]$, $F_o[A_{\sigma}, M, \lambda, p]$ and $F_{\infty}[A_{\sigma}, M, \lambda, p]$, are linear spaces over the set of complex numbers.

PROOF. We shall prove only for $F_o[A_{\sigma}, M, \lambda, p]$. The others can be treated similarly. Let $X = (X_k)$, $Y = (Y_k) \in F_o[A_{\sigma}, M, \lambda, p]$ and $\alpha, \beta \in C$. In order to prove the result we need to find some $\rho_3 > 0$ such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M \left(\frac{\overline{d} \left(\alpha X_{\sigma^k(m)} + \beta Y_{\sigma^k(m)}, \overline{0} \right)}{\rho_3} \right) \right]^{p_k} = 0, \text{ uniformly in } m.$$

α

Since $X = (X_k)$, $Y = (Y_k) \in F_o[A_\sigma, M, \lambda, p]$, there exist some $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M\left(\frac{\overline{d}\left(X_{\sigma^k(m)}, \overline{0}\right)}{\rho_1}\right) \right]^{p_k} =$$

0, uniformly in m

and

$$\lim_{n \to \infty} \lim \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M\left(\frac{\overline{d}\left(Y_{\sigma^k(m)}, \overline{0}\right)}{\rho_2}\right) \right]^{p_k} = 0, \text{ uniformly in } m.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is nondecreasing and convex

$$\begin{split} \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M \left(\frac{\bar{d} \left(\alpha X_{\sigma^k(m)} + \beta Y_{\sigma^k(m)}, \bar{0} \right)}{\rho_3} \right) \right]^{p_k} \\ & \leq \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M \left(\frac{\bar{d} \left(\alpha X_{\sigma^k(m)}, \bar{0} \right)}{\rho_3} \right) \right]^{p_k} \\ & + \frac{\bar{d} \left(\beta Y_{\sigma^k(m)}, \bar{0} \right)}{\rho_3} \right) \right]^{p_k} \\ \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \frac{1}{2^{p_k}} \left[M \left(\frac{\bar{d} \left(X_{\sigma^k(m)}, \bar{0} \right)}{\rho_1} \right) \right]^{p_k} \\ & + M \left(\frac{\bar{d} \left(Y_{\sigma^k(m)}, \bar{0} \right)}{\rho_2} \right) \right]^{p_k} \\ & \leq \frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M \left(\frac{\bar{d} \left(X_{\sigma^k(m)}, \bar{0} \right)}{\rho_1} \right) \right]^{p_k} \\ & + M \left(\frac{\bar{d} \left(Y_{\sigma^k(m)}, \bar{0} \right)}{\rho_2} \right) \right]^{p_k} \end{split}$$

$$\leq \frac{K}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M\left(\frac{\bar{d}\left(X_{\sigma^k(m)}, \bar{0}\right)}{\rho_1}\right) \right]^{p_k} + \frac{K}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M\left(\frac{\bar{d}\left(Y_{\sigma^k(m)}, \bar{0}\right)}{\rho_2}\right) \right]^{p_k} \right]$$

 $\rightarrow 0$, as $n \rightarrow \infty$ uniformly in m.

where $K = max (1, 2^{H-1})$, $H = \sup_k p_k$, so that $\alpha X + \beta Y \in F_o[A_{\sigma}, M, \lambda, p]$. This completes the proof.

THEOREM 2. For any Orlicz function M and a bounded sequence $p = (p_k)$ of strictly positive real numbers, $F_o[A_{\sigma}, M, \lambda, p]$ and $F[A_{\sigma}, M, \lambda, p]$ are paranormed spaces with

$$\inf \left\{ \rho^{p_{n/H}} : \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} a_{mk} \left[M \left(\frac{\overline{d} \left(x_{\sigma^{k}(m)}, \overline{0} \right)}{\rho} \right) \right]^{p_{k}} \right)^{1/M} \le 1, \quad n = 1, 2, 3, \dots \\ m = 1, 2, 3, \dots \\ m = 1, 2, 3, \dots \\ n = 1, 2, \dots \\ n = 1,$$

This implies that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon} (0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}a_{mk}\left[M\left(\frac{\bar{d}\left(x_{\sigma^k(m)},\bar{0}\right)}{\rho_{\varepsilon}}\right)\right]^{p_k}\right)^{1/M} \leq 1.$$

Thus,

$$\begin{split} g(X) &= \\ \inf\left\{\rho^{p_{n}}_{H}: \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}a_{mk}\left[M\left(\frac{\bar{d}\left(X_{\sigma^{k}(m)},\bar{0}\right)}{\rho}\right)\right]^{p_{k}}\right)^{1/M} \left(\frac{1}{\mathfrak{A}_{n}}\sum_{k\in I_{n}}a_{mk}\left[M\left(\frac{\bar{d}\left(X_{\sigma^{k}(m)},\bar{0}\right)}{\varepsilon}\right)\right]^{p_{k}}\right)^{1/M} \right. \\ \left.1, \begin{array}{l} n &= 1, 2, 3, \dots \\ m &= 1, 2, 3, \dots \\ m &= 1, 2, 3, \dots \\ \end{array}\right\} \\ & \leq \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}a_{mk}\left[M\left(\frac{\bar{d}\left(X_{\sigma^{k}(m)},\bar{0}\right)}{\rho_{\varepsilon}}\right)\right]^{p_{k}}\right)^{1/M} \leq 1 \end{split}$$

where $M = \max(1, H)$.

PROOF. Clearly $g(\bar{0}) = 0$ and

g(X) = g(-X). It can be seen easily that $g(X+Y) \leq g(X) + g(Y)$ for $X = (X_k)$, Y = $(Y_k) \in F_o[A_{\sigma}, M, \lambda, p]$, since \overline{d} is a translation invariant.Since M(0) = 0, we get $Inf\left\{\rho^{p_n/H}\right\} = 0$ for $X = \overline{0}$. Conversely, suppose that g(X) = 0, then

for each n and m.

Suppose that
$$\overline{d}\left(X_{\sigma^{k_{s}}(m)},\overline{0}\right) \neq 0$$
 for some $s \in I_{n}$. Let $\varepsilon \to 0$, then $\frac{\overline{d}\left(X_{\sigma^{k_{s}}(m)},\overline{0}\right)}{\varepsilon} \to \infty$. It follows that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}a_{mk}\left[M\left(\frac{\bar{d}\left(X_{\sigma^{k_{S(m)}}},\bar{0}\right)}{\varepsilon}\right)\right]^{p_k}\right)^{1/M}\to\infty,$$

which is a contradiction. Therefore $X_{\sigma^{k_s}(m)} \neq \overline{0}$. Finally, we prove that scalar multiplication is continuous. Let γ be any complex number. By definition

$$g(\gamma X) = \inf \left\{ \rho^{p_n} H: \left(\frac{1}{\lambda_n} \sum_{k \in I_n} a_{mk} \left[M \left(\frac{\overline{d} \left(\gamma X_{\sigma^k(m)}, \overline{0} \right)}{\rho} \right) \right]^{p_k} \right) \right\}$$

$$1, \quad n = 1, 2, 3, \dots \\ m = 1, 2, 3, \dots \right\}.$$

Then

$$g(\gamma X) = \inf \left\{ \left(|\gamma|t \right)^{p_{n}} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} a_{mk} \left[M\left(\frac{\overline{d}\left(X_{\sigma^{k}(m)}, \overline{0}\right)}{t}\right) \right]^{p_{k}} \right) \right\}^{p_{k}}$$

$$1, \quad n = 1, 2, 3, ... \\ m = 1, 2, 3, ... \right\}$$

where
$$t = \frac{\rho}{|\gamma|}$$
. Since $|\gamma|^{p_k} \le \max(1, |\gamma|^H)$, we have $g(\gamma X)$

$$\leq \left(\max\left(1, |\gamma|^{H}\right) \right)^{\frac{1}{M}} \inf \left\{ t^{p_{n}} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} a_{mk} \right) \right\}^{\frac{1}{M}} \prod_{m=1,2,3,\ldots}^{n} \left\{ n = 1, 2, 3, \ldots \right\}^{\frac{1}{M}} \right\}.$$

So, the scalar multiplication is continuous follows from the above inequality.

III. CONCLUSION

In this conference paper, we studied some sequence spaces of fuzzy numbers defined by Orlicz function. Some topological properties were argued.

References

[1] Diamond, P. and Kloeden P., "Metric spaces of fuzzy sets", Fuzzy Sets and Systems, 35(1990), 241-249.

[2] Mursaleen and Basarir, M., "On some new sequence $1/\underset{M}{\text{spaces}}$ of fuzzy numbers", Indian J.pure appl. Math., 34(9), (2003), 1351-1357.

[3] Nanda, S., "On sequences of fuzzy numbers", Fuzzy Sets and Systems, 33(1989), 123-126.

[4] Nuray;F.and Savas,E.,"Statistical convergence of sequences of fuzzy numbers", Math.Slovaca, 45(1995), 269-273.

[5] Savas, E., "On strongly λ -summable sequences of fuzzy numbers", Information Sciences, 125(2000), 181-186.

[6] Zadeh,L.A.,"Fuzzy sets", Inform Control,8(1965), 338-353. $1/_{M}$

[7] Matloka,M.,"Sequences of fuzzy numbers", BUSEFAL, 28(1986 28-37.

[8] Lindenstrauss, J. And Tzafriri,L."On Orlicz sequence spaces", Israel J.Math.10(3) (1971), 379-390.

[9] Parashar,S.D. and Choundhary,B.,"Sequence spaces defined by Orlicz functions", Indian J.pure appl.Math., 25(14),(1994), 419-428.

[10] Esi,A.,Isik,M. and Esi,A.,"On some new sequence spaces defined by Orlicz functions", Indian J.pure appl.Math., 35(1),(2004), 31-36.

[11] Esi,A.,"Some new sequence spaces defined by Orlicz (functions", Bulketin^M of The Institute of Mathematics, Academia Sinica, 27(1)(1999), 71-76.

[12] Esi,A. and Et,M., "Some new sequence spaces defined by a sequence of Orlicz functions" Indian J.pure appl.Math., 31(8)(2000), 967-972.

[13] Esi,Ayhan, On some new paranormed sequence spaces of fuzzy numbers defined by Orlicz functions and statistical convergence, Mathematical Modelling and Analysis, 1(4), 379-388, 2006.