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Abstract – Welding is used in manufacturing in all engineering industries. In this study, thick dissimilar 

steels were welded using double-sided tungsten inert gas (TIG) welding. Microstructural changes of joints 

were detected by using optical microscope (OM), X-Ray diffraction (XRD). Impact toughness of joints 

were determined by notch impact test. Fracture surface morphology was evaluated by SEM. A strong 

metallurgical bond appeared in the welding of the thick dissimilar plates. Full penetration was achieved 

without additional metal and welding gap. The widening and deepening of the weld pool increased the 

impact performance.  
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I. INTRODUCTION 

    Welding gained importance in production 

technology with developments in application and 

usability. It includes various technologies and a 

wide variety of materials that can be welded. The 

reason for joining dissimilar metals is creative 

engineering practices such as high strength, low 

specific gravity, good corrosion resistance and low 

cost [1], [2]. Tungsten inert gas (TIG) welding is 

preferred in the modern industry due to its deep 

penetration and high travel speed. DSAW-TIG has 

superiority in terms of welding efficiency and 

penetration ability. It can be preferred for welding 

dissimilar metals in the welding industry [3], [4]. 

Austenitic steels (ASS) are preferred for industry for 

their excellent weldability and corrosion 

performance. AISI304 steel with a surface cubic 

center (FCC) structure demonstrates ductility at 

lower temperatures than ferritic steel. The cause for 

this distinction is the variation in the properties of 

the shear planes and the orientation between the 

BCC and FCC alloys [5], [6]. The choice of primary 

phase in rapid solidification of austenitic steel is 

determined by nucleation mechanisms between 

ferrite and austenite. The activation energy provides 

the uniform nucleation of the primary phase in the 

supercooled melt. The phase with the less 

nucleation activation energy solidifies as the 

primary phase [7]. Solidification of the weld metal 

takes place on the grains at the boundaries of the 

molten pool, epitaxial growth occurs. For solid 

nucleation, the liquid does not need to be 

significantly supercooled. Therefore, the solid phase 

at the melting limits is effective in determining the 

primary phase. Primary ferrite grows and nucleates 

on the surface of body-centered cubic ferrite grains. 

Primary ferrite is difficult to nucleate on a face-

centered cubic grain due to the interface energy 

between the BCC and FCC lattices [8]. 

DUROSTAT500 steel grades are steels with high 

resistance to mechanical wear. It is used in 

conveyors, excavators, road machines and crushers 

[9]. Cui et al. reported the impact toughness of 

keyhole TIG welded S32101 joints. The impact 

energy rised with the increase in heat input and 

austenite volume [10]. 
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In this study; the impact toughness of TIG double-

sided arc welded thick dissimilar plates was 

investigated. 

II. MATERIALS AND METHOD 

    AISI304 (0.08%C, 18%Cr, 8%Ni, 2.00%Mn, 

1.00%Si, 0.04%S, Bal.%Fe) and DUROSTAT500 

(0.30%C, 1.00%Cr, 1.10%Mn, 0.60%Si, 0.01.%S, 

0.50%Mo, Bal.%Fe) steels in 10x100x100 mm 

dimensions were used. Weld parameters are shown 

in Table 1. The samples were joined using the Ge-

Ka-Mak TIG device. After sanding the samples with 

180-1200 mesh abrasives, they were polished with 

3 µm diamond paste. AISI304 grade was 

electrolytically etched in 50% alcohol + 50% HNO3 

solution, 12 V and 5-8 seconds. DUROSTAT500 

grade was etched in a Nital solution. The 

microstructure phase analysis of samples were 

determined using optical microscope and CuKα (λ= 

1.54058 Å) wavelength Rigaku XRD instrument. 

Impact qualities of joints were measured by notch 

impact test. Fracture surface morphology was 

evaluated by SEM. 
 

 
 

III.  RESULTS 

3.1 Macro face evoluation  

The surface and cross-sectional view of the S3 

joint is given in Fig. 1. A smooth crater structure 

was formed in the weld seams. Increasing current 

intensity increased penetration and weld seam 

widths. Different welding profiles were formed in 

the joints made without the use of additional metal 

and without opening the weld bevel. A wide 

temperature gradient occurred from the center under 

the torch to the edges of the weld pool. A broad 

surface tension gradient formed across the surface. 

Therefore, the liquid flowed from the center of the 

pool to the edge, forming a large weld pool. The 

welding arc tended towards the ferromagnetic 

material side during welding [11], [12]. 

 

 

 
Fig. 1. Surface and cross-section view of the S3 joint. 

 

3.2. Microstructure 

     Optical photo of S3 joint is displayed in Fig. 2. 

No weld faults were detected at the join interface. 

High heat input reasoned grain coarsening in near 

weld metal. On the HAZ-A, the grains were aligned 

towards the base metal in the rolling direction. 

Cr7C3 was detected at the grain boundaries. At the 

joints, the microstructure was divided into four 

parts. The melting zone is the coarse-grained zone, 

the fine-grained zone and the partially crystallized 

zone [13], [14]. On the HAZ-B, the transition zone 

was wider. Cementite + pearlite phases were formed 

in HAZ-B structure. X-Ray analysis is given in Fig. 

3. The weld metal had martensite, Fe3C, CrFe7C0.45, 

FeNi, Cr3C2 and Fe3Ni2 phases. 

 

Fig. 2. Optical photograph of S3 joint.  



 

208 
 

 
Fig. 3. XRD analysis of S3 joint. 

3.3. Impact test 

    Photograph of the S3 impact test specimen is 

demonstrated in Fig. 4. Impact strength was 

determined as S1= 43, S2= 49, S3= 59 (J). The heat 

input rised with the increase of the welding current. 

The increase in current intensity widened and 

deepened the weld pool. Increasing the quantity of 

δ- ferrite in weld pool reduces the impact toughness. 

The chromium carbide and sigma phases formed in 

the welded joint created embrittlement and low 

impact performance [15]–[17]. Fractured surface 

SEM image of S1 joint is shown in Fig. 5. Fibrous 

pits of different sizes and depths and ductile fracture 

were detected on the fractured surface. 

 

 

Fig. 4. Impact test image of S3 joint. 

 

Fig. 5. Fractured surface SEM image of the S1 joint.  

 

 

IV.  CONCLUSION 

The thick dissimilar plates were welded using 

DSAW-TIG welding. The results obtained are 

summarized below. 

Welded joints occurred without any problems. 

The steels were joined with full penetration without 

additional metal and welding gap  

The increase in current intensity allowed the weld 

pool to expand and deepen. 

Martensite, Fe3C, CrFe7C0.45, FeNi, Cr3C2 and 

Fe3Ni2 phases were formed in the welded joint. 

Impact strength was determined as S1 =43, S2 =49, 

S3 =59 (J). 
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