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Abstract – This study aimed to integrate the discrete-event simulation system with the statistical process 

control method to test whether the discrete-event simulation system is under control using the discrete-

event simulation method. This study created a three-dimensional discrete-event simulation model of the 

emergency service unit. Using the data of patient stay (or length of stay) and waiting times obtained in the 

simulation model, analyses were made with Xbar-R and Xbar-S control charts in statistical process control 

methods. Determining which values of the simulation data are out of control was carried out with statistical 

process control charts. For Xbar-R and Xbar-S graphics, 901 data were analyzed, with 30 subgroups. This 

study determined that the patient was under control according to Xbar-R and Xbar-S control charts of 

patient stay and waiting times, but the system was out of control according to R and S control charts. As a 

result, it has been determined that the system in the 3D simulation model is out of control according to the 

statistical process control charts. It is recommended to take the system under control by observing the data 

that is out of control. This study emphasized that the results obtained from the systems performed in the 

computer environment should be integrated with statistical process control charts to verify their validity. 
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I. INTRODUCTION 

In studies in the field of healthcare, the problems in 

the health sector are generally solved by considering 

the human factor [1]. Most of the issues in the 

healthcare sector have recently been applied to 

engineering applications such as statistics 

(descriptive statistics, regression, ANOVA, t-test, z-

test, correlation, statistical process control, time 

series, forecasting, design of experiments, quality 

tools, etc.), optimization (linear programming, 

nonlinear programming, integer model, dynamic 

programming, etc.), artificial intelligence (machine 

learning algorithms, deep learning model, etc.), and 

simulation (discrete-event simulation) to increase  

 

the quality of service [2], [3]. In such applications, 

two variable types are dependent and independent 

[4]. Dependent variables are affected by many 

independent variables, such as environmental, 

economic, social, structural, and resource, 

depending on the problems [5]. 

The discrete-event simulation method is generally 

expressed as computer-based programs for systems 

with dynamic structures [6], [7]. This method is 

used in many areas, such as health, production, 

transportation, and logistics [8]–[10]. In this study, 

a discrete-event simulation model has been 

developed for the health system emergency service 

unit, where the dynamic and human factor is intense. 

The discrete-event simulation technique provides 

concrete results in solving many problems, 
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especially in health [11]–[13]. Since the results of 

changes in location and human-based health 

resources require a long time and high cost in real 

life, discrete-event simulation models can obtain 

results in a short time and with low cost [14], [15]. 

Discrete event simulation models are preferred to 

solve many health-related problems such as patient 

stay, patient waiting times, staff productivity, and 

the number of patients treated [16], [17]. 

In one study, the effects of changes in the number of 

health resources on patient waiting and length of 

stay were analyzed using a discrete-event 

simulation model [18]. In another study, optimum 

health resource numbers were calculated for the 

minimum waiting time of patients using the 

simulation technique and statistical experiment 

design method [19]. In another study, discrete-event 

simulation model outputs were integrated with 

discrete factorial experimental design to investigate 

the relationship between health facility size and the 

number of physicians [20]. Atalan et al. have 

investigated by integrating the discrete-event 

simulation model with machine learning algorithms, 

the effects of health resource costs on the number of 

patients treated and patient waiting times [14]. 

A second technique is needed to verify the validity 

of the results obtained in the simulation models. 

Statistical methods are generally used to analyze the 

results obtained in simulation models [20]–[23]. In 

a study, the results obtained in the simulation model 

were analyzed with a statistical experimental design 

to obtain optimum results [11]. In another study, the 

discrete-event simulation model was preferred, and 

the correlations of the variables were tested using 

correlation test tools, which are among the 

descriptive statistics methods [24]. In this study, 

statistical process control charts were used to test 

whether the results obtained in the simulation model 

were under the control of the model system. 

Statistical process control charts test whether the 

systems are under control by considering the mean 

and standard deviation values of the data [25], [26]. 

This method is used in many fields [27], [28]. In this 

study, statistical process control charts were used 

for the data of the simulation model developed for 

the health field. 

This study consists of four main parts. In the first 

part, there is a literature review on the subject of the 

study. Theoretical information about the discrete-

event simulation model and statistical control charts 

proposed in the study are included in the second part 

of the study. Numerical and statistical data of the 

study are shared in the third part. The general 

information about the applicability of the method 

used is given in the last part of the study. 

II. MATERIALS AND METHOD 

 

This study tested the validity of the results obtained 

by integrating two methods. Using the first method, 

the discrete-event simulation technique, data on the 

duration of hospitalization and waiting time of 

patients in an emergency department were obtained. 

The simulation model developed for the emergency 

service was created using the 3-dimensional 

Flexsim HC computer program. The screenshot of 

the simulation model is shared in Figure 1. 
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Figure 1. Screenshot of the discrete-event simulation model 

 

The discrete-event simulation model used data from 

901 patients' mean waiting and length of stay. The 

length of stay is based on the time between a patient 

entering and leaving the hospital. Patient length of 

stay was defined as the sum of the time a patient 

spent in contact with health resources for waiting 

and treatment. On the other hand, patient waiting 

time is calculated not only as the time until the 

patients' availability of resources, such as doctors 

and nurses, but also as the sum of the times until the 

availability of location-based health resources, such 

as treatment rooms and triage areas. The descriptive 

statistics data, which are the mean, standard 

deviation, variance, kurtosis, skewness, and quartile 

values of the patient stay and waiting times obtained 

in the discrete-event simulation model, are given in 

Table 1. 

 
Table 1. Descriptive statistics of variables 

Variable LOS WT 

Total Sample 901.000 901.00 

Mean 17.4420 2.4110 

Standard Deviation 13.9700 6.5200 

Variance 195.174 42.509 

Minimum 1.26700 0.0000 

Q1 7.23100 0.0000 

Median 13.4190 0.0000 

Q3 23.8160 0.8700 

Maximum 101.624 57.752 

Range 100.357 57.752 

Inter quartile range 16.5850 0.8700 

Mode 11.9542 0.0000 

N for Mode 4.00000 615.00 

Skewness 1.65000 3.8500 

Kurtosis 3.71000 17.620 

*LOS, length of stay; WT, waiting time 

 

Statistical process control charts were used to test 

whether the data obtained about the patient flow 

system proposed in the discrete-event simulation 

model is under control. In this study, the system is 

controlled by using X-R and X-S control charts. 

These two control chart types are created using the 

mean and standard deviation data of the data. 

Although X-R control charts are the most 

commonly used charts for measurable variables, it 

is more appropriate for some systems to choose 

sample standard deviation (s) as a measure of 

subgroup dispersion. For this reason, statistical 

results were obtained using both graphic types in 
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this study. The following formulas are used for the 

x ̅ control chart of the X-R chart: 

 

For the upper control limit 

 𝑈𝐶𝐿 = �̿� + 𝐴2�̅� (1) 

For the central control limit 

 𝐶𝐿 = �̿� (2) 

For the central control limit 

 𝐿𝐶𝐿 = �̿� − 𝐴2�̅� (3) 

 

where, UCL, CL, and LCL are the notations for 

upper limit, central limit, and lower limit 

expressions, respectively. The mean value  �̿� of the 

mean of the subgroup samples are expressed. 

Expressions 𝐴2 and 𝐴3 represent a constant term 

depending on the number of subgroups used in the 

control limits. The  �̅�  value is defined as the 

difference between the maximum and minimum 

values of the data in the subgroups. The following 

formulas are used for the  �̅�  control chart of the X-

R chart: 

 

For the upper control limit 

 𝑈𝐶𝐿 = 𝐷4�̅� (4) 

For the central control limit 

 𝐶𝐿 = �̅� (5) 

For the central control limit 

 𝐿𝐶𝐿 = 𝐷3�̅� (6) 

 

where, the expressions 𝐷3 and 𝐷4  represent a 

constant term depending on the number of 

subgroups used in the control limits. The equations 

suggested for the �̅� control chart of the X-S chart is 

given below: 

 

For the upper control limit 

 𝑈𝐶𝐿 = �̿� + 𝐷3�̅� (7) 

 

For the central control limit 

 𝐶𝐿 = 𝑠̅ (8) 

For the central control limit 

 𝑈𝐶𝐿 = �̿� − 𝐷4�̅� (9) 

 

where, the �̅� value is expressed as the mean of the 

standard deviation values of the data sets belonging 

to its subgroups. The expressions 𝐷3 and 𝐷4  

represent a constant term depending on the number 

of subgroups used in the control limits. The 

equations suggested for the �̅� control plot of the X-

S plot is given below: 

 

For the upper control limit 

 𝑈𝐶𝐿 = 𝐵4�̅� (10) 

For the central control limit 

 𝐶𝐿 = �̅� (11) 

For the central control limit 

 𝑈𝐶𝐿 = 𝐵3�̅� (12) 

 

If the lower limits of the control charts are negative, 

the lower limit values are accepted as 0. In this 

study, the data that is out of control is determined by 

integrating simulation and statistical process 

control. 

III. RESULTS 

 

In this study, 30-day data on patient stay and patient 

waiting times, which are defined as output variables, 

were obtained. According to the statistical process 

control charts of these data, the data out of control 

was determined. Four different Xbar-R and Xbar-S 

control graphs were created for each output variable. 

The Xbar-R graph of the first variable, length of 

stay, is shown in Figure 2. 
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Figure 2. X-bar-R control chart of patient stay 

 

It has been observed that the simulation model 

system is under control, according to the Xbar graph 

of the Xbar-R graph of the patient's length of stay. 

However, according to the R chart, it was observed 

that 3 data were out of control and not under control. 

Data 17, 19, and 26 of the R graphs cause the system 

to be out of control. The Xbar-R graph of the second 

variable, length of stay, is shown in Figure 3. 

 

 
Figure 3. X-bar-R control chart of patient waiting time 
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According to the Xbar-R control chart of the 

simulation data of patient waiting times, the system 

is out of control. It was observed that 4 data, 

according to the Xbar control chart, and 11 data, 

according to the R control chart, were out of control. 

Data out of control according to patient stay and 

waiting times are given in Table 3. 

 

 
Table 3: Out-of-control data according to Xbar-R control charts of patient stay and waiting times 

Output Variables Control Charts Data Out of Control Explanation 

LOS 
X-bar Graph --- in control 

R Graph 17, 19, 26 out of control 

WT 
X-bar Graph 1, 10, 14, 17 out of control 

R Graph 3, 4, 7, 9, 11, 17, 22, 24, 25, 26, 28 out of control 

 

Out-of-control points indicate more than 3.00 

standard deviations from the centerline. The Xbar  

 

 

control chart from the Xbar-S control chart of the 

duration of patient stay, which is the first variable of 

the study, is shown in Figure 4. 

 
Figure 4. Xbar-S control chart of patient stay 

 

According to the system of the simulation model, 

although the patient waiting times were under 

control according to the Xbar control chart, it was 

observed that 2 data were out of control according 

to the S control chart. The Xbar-S control chart of 

the second variable, length of stay, is shown in 

Figure 5. 
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Figure 5. X-bar S control chart of patient waiting time 

 

According to the Xbar-S control chart of the 

simulation data of patient waiting times, the system 

is out of control. It was observed that 4 data, 

according to the Xbar control chart, and 18 data, 

according to the S control chart, were out of control. 

Data out of control according to patient stay and 

waiting times are given in Table 4. 

 

 

 
Table 4: Out-of-control data according to X-bar S control charts of patient stay and waiting times 

Output Variables Control Charts Data Out of Control Explanation 

LOS 
X-bar Graph --- in control 

R Graph 19, 26 out of control 

WT 

X-bar Graph 1, 4, 10, 17 out of control 

R Graph 
1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 

14, 17, 20, 22, 24, 25, 26, 28 
out of control 

 

As a result, the accuracy of the results obtained by 

integrating the discrete-event simulation method 

and statistical control graphic technique proposed in 

this study was tested. The method used in this study 

has some assumptions. The 3D discrete-event 

simulation model created is according to the 

emergency department of a hospital, and the results 

obtained according to other simulation models may  

 

also vary. The result data were derived according to 

the statistical distributions of the process data 

belonging to the simulation model. For this reason, 

derived data were used in the statistical control 

chart. Finally, based on the results obtained, this 

study is an example of using the proposed method 

in many areas such as health, transportation, 

economy, and production. 

IV. CONCLUSION 

 

This study proposes integrating 3D discrete-event 

simulation with statistical process control charts. A 

discrete-event simulation model has been developed 

for the emergency department, which has a dynamic 
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and dense structure of hospitals. There is variability 

in the results obtained in the model since the 

durations of the processes in this model are created 

according to statistical distributions. Data on two 

output variables, patient stay and waiting times, 

were obtained in the simulation model. These data 

were tested using Xbar-R and Xbar-S control charts 

from statistical process control charts to test whether 

the simulation model was under control. This study 

determined that both output variables were under 

control in Xbar charts but out of control according 

to R and S control charts. In addition, the data out of 

control was determined. This study ensures that the 

systems developed for simulation models are under 

control in a short time and at a low cost. 
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