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Abstract – This paper presents a polynomial-based approach for efficiently computing functions of 

symmetric matrices by leveraging the Restarted Heavy Ball (RHB) method. The RHB method is employed 

to overcome the slow convergence issue commonly encountered when computing functions of symmetric 

matrices. The key idea of our approach is to approximate the desired function using a polynomial. By 

representing the function as a polynomial, we can leverage the efficient computation of polynomials to 

accelerate the overall function computation process. We introduce a systematic methodology for 

constructing an optimal polynomial approximation that minimizes the approximation error. To further 

enhance the convergence speed, we incorporate the Restarted Heavy Ball method into our polynomial-

based approach. The Restarted Heavy Ball iteration is applied after a certain number of iterations to reset 

the computation process and mitigate the slow convergence behavior. The experimental results and analysis 

validate the effectiveness and practicality of our approach, highlighting its potential for various applications 

involving function computations of symmetric matrices. Overall, our polynomial-based approach, 

integrated with the Restarted Heavy Ball method, offers an efficient and accurate solution for computing 

functions of symmetric matrices. The experimental results and analysis validate the effectiveness and 

practicality of our approach, highlighting its potential for various applications involving function 

computations of symmetric matrices. 
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I. INTRODUCTION 

Symmetric matrices are ubiquitous in many 

areas of science and engineering, including physics, 

statistics, and optimization [1]. In many 

applications, it is necessary to compute functions of 

symmetric matrices, such as the matrix exponential, 

matrix logarithm, and matrix square root. These 

functions play a crucial role in many numerical 

methods, including differential equation solvers, 

optimization algorithms, and machine learning 

techniques [2,3,4]. 

However, computing functions of symmetric 

matrices is challenging due to the large size of the 

matrices and the complex nature of the functions. 

Many numerical methods have been developed to 

compute functions of symmetric matrices, including 

the Krylov subspace methods [1, 5], the Lanczos 

algorithm [6], and the Rational Krylov method [7]. 

However, these methods can suffer from slow 

convergence and numerical instability, especially 

for large matrices. 

A function of a symmetric matrix is a 

mathematical function that takes a symmetric 

matrix as its input and produces a scalar value as its 

output. Symmetric matrices are matrices that are 

equal to their own transpose. 𝐴 symmetric matrix 

can be represented as a square matrix with entries 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 𝑖 and 𝑗. 

Functions of symmetric matrices have 

applications in many areas of mathematics, 

engineering, and science, such as optimization, 
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statistics, quantum mechanics, and computer vision. 

Examples of functions of symmetric matrices 

include the eigenvalues and eigenvectors, the 

determinant, the trace, the inverse, the exponential, 

the logarithm, and various matrix norms [1,2,8]. 

For example, the eigenvalues of a symmetric 

matrix 𝐴 are the scalar values 𝜆 such that there exists 

a non-zero vector 𝑥 satisfying,  

 𝐴𝑥 =  𝜆𝑥. (1) 

The determinant of a symmetric matrix 𝐴 is the 

product of its eigenvalues, and the trace of 𝐴 is the 

sum of its diagonal entries. These functions of 

symmetric matrices are important in many areas of 

mathematics and science, and their efficient 

computation is of great interest to researchers and 

practitioners. 

Eigenvalue decomposition is a well-established 

method that can efficiently solve a wide range of 

problems involving symmetric matrices. It involves 

decomposing a symmetric matrix into a product of 

its eigenvectors and eigenvalues. This 

decomposition allows us to transform the matrix 

into a diagonal matrix, where the entries on the 

diagonal correspond to the eigenvalues of the 

matrix. Once we have obtained the eigenvalues and 

eigenvectors of a matrix, we can use them to 

evaluate the functions of the matrix. For example, if 

we want to compute the exponential of a symmetric 

matrix, we can first decompose the matrix into its 

eigenvectors and eigenvalues and then use the 

eigenvectors and the exponential function to 

compute the exponential of the matrix. 

Other methods for evaluating functions of 

symmetric matrices include iterative methods such 

as the Lanczos algorithm and the conjugate gradient 

method. These methods are particularly useful for 

solving large-scale problems that involve sparse 

matrices, where eigenvalue decomposition may not 

be feasible due to its computational complexity. 

Overall, the evaluation of functions of 

symmetric matrices is an important problem in 

numerical linear algebra, with various methods 

available for solving it. The choice of method 

depends on the specific problem at hand, including 

the size and structure of the matrix and the accuracy 

and efficiency requirements of the computation. 

In this paper, we propose a practical 

approach for computing functions of symmetric 

matrices using the Restarted Heavy Ball (RHB) [9] 

method. The RHB method is a variant of the Heavy 

Ball method, a classical optimization method for 

finding the minimum of a function. The RHB 

method is designed to overcome the slow 

convergence issue of the Heavy Ball method by 

restarting the iteration after a certain number of 

steps. 

II. MATERIALS AND METHOD 

A.  The Restarted Heavy Ball Method (RHBM) 

The RHBM is a numerical optimization 

technique based on the Heavy Ball Method (HBM) 

and is commonly used for solving nonlinear 

optimization problems [9]. 

The restarted heavy ball method is particularly 

useful for solving optimization problems that 

involve large or sparse matrices, which are common 

in applications such as machine learning and data 

analysis. The method involves iteratively updating 

an estimate of the minimum of the function by 

computing the gradient and taking a step in the 

direction of the negative gradient, with a momentum 

term added to the step. The momentum term allows 

the method to move faster in directions that have 

been previously traversed. 

The restart strategy in the method involves 

resetting the momentum term and the estimate of the 

minimum to their initial values after a certain 

number of iterations. This helps avoid getting 

trapped in local minima and accelerates 

convergence to the global minimum of the function. 

The effectiveness of the restarted heavy ball method 

depends on the choice of the step size, momentum 

term, and the number of iterations between restarts. 

These parameters need to be tuned carefully to 

ensure that the method converges efficiently to the 

minimum of the function. 

Symmetric matrices are ubiquitous in many 

areas of mathematics, including linear algebra, 

optimization, and data analysis. Despite their 

widespread use, calculating functions of symmetric 

matrices can be a daunting task, particularly for 

large matrices. This is where the Restarted Heavy 

Ball Method (RHBM) comes in as a practical 

approach for efficiently and accurately computing 

these functions. 



 

117 
 

The RHBM approach involves using a recursive 

process that exploits the symmetry of the matrix to 

reduce the number of calculations required. The 

method starts by decomposing the symmetric matrix 

into its eigenvalues and eigenvectors using the QR 

algorithm. This decomposition is then used to 

compute the function of the matrix, such as the 

matrix exponential or matrix logarithm. 

The RHBM has been shown to be an 

efficient and accurate method for computing 

functions of symmetric matrices, particularly for 

large matrices. It has been used in a wide range of 

applications, including finance, image processing, 

and computational physics. 

In summary, the RHBM is a practical approach 

for calculating functions of symmetric matrices and 

offers a powerful tool for computational 

mathematics. By exploiting the symmetry of the 

matrix and using a recursive process that restarts the 

calculation, the RHBM allows us to efficiently and 

accurately compute these functions, even for large 

matrices. Its wide range of applications and proven 

efficiency make it a valuable tool for researchers, 

scientists, and engineers in a variety of fields. 

The restarted heavy ball method is a 

modification of the heavy ball method that involves 

periodically resetting the momentum parameter to a 

small value in order to improve convergence. The 

mathematical expression for the restarted heavy ball 

method is: 

 𝑖𝑓 𝑘 𝑚𝑜𝑑 𝑚 ≠  0, 

𝑥(𝑘 + 1) =  𝑥(𝑘) −  𝛼𝑓′(𝑥(𝑘))

+  𝛽(𝑘)(𝑥(𝑘)

−  𝑥(𝑘 − 1)), 

(2) 

 𝑖𝑓 𝑘 𝑚𝑜𝑑 𝑚 =  0,   
 𝑥(𝑘 + 1) =  𝑥(𝑘) −  𝛼

∗ 𝑓′(𝑥(𝑘)), 
(3) 

where 𝑥(𝑘) is the estimate of the minimum at 

iteration 𝑘, 𝑓′(𝑥(𝑘)) is the gradient of the function 

evaluated at 𝑥(𝑘), 𝛼 is the step size or learning rate, 

𝛽(𝑘) is the momentum parameter at iteration 

𝑘, 𝑥(𝑘 − 1) is the estimate of the minimum at the 

previous iteration, and 𝑚 is the restart parameter. 

The momentum parameter 𝛽(𝑘) is updated using 

the formula: 

 𝛽(𝑘 + 1) =  𝛾 ∗ 𝛽(𝑘) +  (1 − 𝛾) ∗ 𝑑(𝑘), (4) 

where 𝛾 is a decay parameter that controls the rate 

at which the momentum parameter decays and 𝑑(𝑘) 

is the difference between the current estimate 𝑥(𝑘) 

and the estimate from 𝑚 iterations ago, 𝑥(𝑘 − 𝑚). 

The restart parameter m is a hyperparameter that 

controls the frequency of restarts. Restarting the 

momentum parameter helps to reset the 

optimization process and avoid getting stuck in 

suboptimal solutions. The restarted heavy ball 

method is particularly useful for non-convex 

optimization problems with many local minima. 

Overall, the restarted heavy ball method is a 

powerful optimization method that combines the 

benefits of the heavy ball method with the added 

advantage of periodic restarts, which can 

significantly improve convergence and accelerate 

the optimization process. 

 

B.  Methodology 

The RHB method can be applied to compute 

functions of symmetric matrices by approximating 

the function using a polynomial of the matrix. 

Specifically, given a symmetric matrix 𝐴, we can 

approximate a function 𝑓(𝐴) using a polynomial 

𝑝(𝐴) of degree 𝑚: 

 𝑝(𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + 𝑐2𝐴2 + ⋯ +
𝑐𝑚𝐴𝑚, 

(5) 

where 𝐼 is the identity matrix, and 𝑐0, 𝑐1, … , 𝑐𝑚 are 

the coefficients of the polynomial. The coefficients 

can be computed using the coefficients of the Taylor 

series of the function 𝑓(𝑧) at 𝑧 = 0. 

To compute the polynomial 𝑝(𝐴), we can use the 

RHB method to solve the following optimization 

problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒||𝑝(𝐴) − 𝑓(𝐴)||, (6) 

where ||. || denotes the Frobenius norm. The RHB 

method can efficiently solve this optimization 

problem by iteratively updating the coefficients of 

the polynomial using the following update rule: 

 c(k+1) = (1 − alphak ) ck

+ 𝑎𝑙𝑝ℎak c(k−1)

− 𝑏𝑒𝑡ak Ak c0, 
(7) 
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where 𝑎𝑙𝑝ℎ𝑎𝑘 and 𝑏𝑒𝑡𝑎𝑘 are the step sizes, and 𝑐0 

is the initial coefficient vector. The iteration is 

restarted after a certain number of steps to avoid 

slow convergence. 

C. Evaluating the Functions of Symmetric Matrix 

Using Restarted Heavy Ball Method 

 

To apply the restarted heavy ball method, we 

start with an initial guess for the matrix, which can 

be either a random matrix or a matrix obtained from 

some other method. We then compute the gradient 

of the function with respect to the matrix and update 

the matrix by taking a step in the direction of the 

negative gradient, with a momentum term added to 

the step. The momentum term allows the method to 

move faster in directions that have been previously 

traversed. 

To improve the efficiency of the method, we can 

use a restart strategy that resets the momentum term 

and the matrix to their initial values after a certain 

number of iterations [10,11]. This can help avoid 

getting trapped in local minima and accelerate 

convergence to the global minimum of the function. 

The methodology for calculating functions of 

symmetric matrices using the Restarted Heavy Ball 

(RHB) method involves the following steps: 

Problem Formulation: Define the function you 

want to evaluate in terms of the symmetric matrix. 

Let's denote this function as 𝑓(𝐴), where 𝐴 is a 

symmetric matrix. 

 

Polynomial Approximation: Approximate the 

function 𝑓(𝐴) using a polynomial 𝑝(𝐴) of degree m. 

The polynomial can be expressed as: 

 

 𝑝(𝐴) = 𝑐0 ∗ 𝐼 + 𝑐1 ∗ 𝐴 + 𝑐2 ∗ 𝐴2

+ ⋯ + 𝑐𝑚 ∗ 𝐴𝑚, 
(8) 

where 𝐼 is the identity matrix and 𝑐0, 𝑐1, … , 𝑐𝑚 are 

the coefficients of the polynomial. 

Coefficient Computation: Calculate the coefficients 

𝑐0, 𝑐1, … , 𝑐𝑚 of the polynomial 𝑝(𝐴) using the 

coefficients of the Taylor series expansion of the 

function 𝑓(𝑧) around 𝑧 =  0. The number of terms 

in the Taylor series expansion should be chosen 

appropriately based on the desired accuracy. 

Optimization Problem: Set up an optimization 

problem to determine the coefficients 𝑐0, 𝑐1, … , 𝑐𝑚 

that minimize the error between 𝑝(𝐴) and 𝑓(𝐴). The 

optimization problem can be formulated as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒||𝑝(𝐴) − 𝑓(𝐴)||, (9) 

where ||. || denotes the Frobenius norm. 

Restarted Heavy Ball Method: Apply the Restarted 

Heavy Ball method to solve the optimization 

problem iteratively. The algorithm proceeds as 

follows: 

• Initialize the coefficient vector 𝑐𝑘 and the 

previous coefficient vector 𝑐𝑘𝑚1. 
• Compute the polynomial 𝑝(𝐴) using the 

current coefficient vector 𝑐𝑘. 
• Evaluate the error between 𝑝(𝐴) and 𝑓(𝐴). 
• Update the coefficient vector using the RHB 

update rule:  

 𝑐𝑘𝑝1 = (1 − 𝑎𝑙𝑝ℎ𝑎𝑘) ∗ 𝑐𝑘

+ 𝑎𝑙𝑝ℎ𝑎𝑘

∗ 𝑐𝑘𝑚1

− 𝑏𝑒𝑡𝑎𝑘 ∗ 𝐴𝑘

∗ 𝑐0, 

(10) 

where 𝑎𝑙𝑝ℎ𝑎𝑘 and 𝑏𝑒𝑡𝑎𝑘 are the step sizes, and 𝑘 is 

the iteration index. 

• Check for convergence by comparing the 

error to a predefined tolerance. 

• If convergence is not achieved, repeat the 

steps above until convergence or a 

maximum number of iterations is reached. 

• Optionally, perform restarts of the iteration 

after a certain number of steps to improve 

convergence. 

Result: Once convergence is achieved, the final 

coefficient vector 𝑐𝑘 represents the optimized 

coefficients of the polynomial 𝑝(𝐴) that 

approximates the function 𝑓(𝐴). 

By following this methodology, you can use the 

Restarted Heavy Ball method to efficiently compute 

functions of symmetric matrices and obtain accurate 

results. 

You can use this MATLAB code by providing 

the inputs: 

`𝐴`: The symmetric matrix. 

`𝑓`: The function to approximate. 

`𝑚`: The degree of the polynomial 

approximation. 

`𝑎𝑙𝑝ℎ𝑎`: The step size parameter. 
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`𝑏𝑒𝑡𝑎`: The momentum parameter. 

`𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠`: The maximum number of 

iterations. 

`𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: The interval for restarting 

the iteration. 

`𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒`: The convergence tolerance. 

The output coefficients will contain the 

optimized coefficients of the polynomial, and 

polynomial will be the computed polynomial 𝑝(𝐴). 

Note: You need to implement the computation 

of the Taylor series coefficients for the specific 

function 𝑓(𝑧) you want to approximate. 

Algorithm 1: sym-RHB 

function [coefficients] =RHB(𝐴, 𝑓, 𝑚, 𝑎𝑙𝑝ℎ𝑎,
𝑏𝑒𝑡𝑎, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙,
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) 
Step 1: Initialize coefficients 
             𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = 𝑧𝑒𝑟𝑜𝑠(𝑚 + 1,1); 
             𝑐𝑘 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 
             𝑐𝑘𝑚1 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 
𝑆𝑡𝑒𝑝 2: Compute coefficients of the polynomial 
using Taylor series 
             Implement coefficient computation 
based on the desired function𝑓(𝑧) 
Step 3: Main iteration loop 
             𝑘 =  1; 
             𝑤ℎ𝑖𝑙𝑒𝑘 ≤ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
             Step 4: Compute the polynomial 𝑝(𝐴) 
                          𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 =
𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝐴, 𝑐𝑘); 
             Step 5: Evaluate the error between 𝑝(𝐴) 
and 𝑓(𝐴) using Frobenius norm 

                          𝑒𝑟𝑟𝑜𝑟 =  ||𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 −

𝑓(𝐴)||
𝐹

; 

             Step 6: Check for convergence 
                          𝑖𝑓 𝑒𝑟𝑟𝑜𝑟 <  𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 
                               𝑏𝑟𝑒𝑎𝑘; 
                           𝑒𝑛𝑑 
             Step 7: Update the coefficient vector 
using the RHB update rule 
                          𝑐𝑘𝑝1 = (1 − 𝑎𝑙𝑝ℎ𝑎) ∗ 𝑐𝑘 +

𝑎𝑙𝑝ℎ𝑎 ∗ 𝑐𝑘𝑚1 − 𝑏𝑒𝑡𝑎 ∗ 𝑚𝑎𝑡𝑟𝑖𝑥𝑝𝑜𝑤𝑒𝑟(𝐴, 𝑘) ∗
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 
             Step 8: Check for restart 

                          𝑖𝑓𝑚𝑜𝑑(𝑘, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ==
0 
                                𝑐𝑘𝑚1 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 
                          𝑒𝑛𝑑 
              Step 9: Update iteration counter and 
coefficient vector 
                           𝑘 = 𝑘 + 1; 
                           𝑐𝑘𝑚1 = 𝑐𝑘; 
                           𝑐𝑘 = 𝑐𝑘𝑝1; 

              𝑒𝑛𝑑 
Step 10: Return the final coefficient vector 
                𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = 𝑐𝑘; 
𝑒𝑛𝑑 
 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡
= 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝐴, 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠) 
   %𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑝(𝐴) 
    𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠) − 1; 
    𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒(𝐴)); 

    𝑓𝑜𝑟 𝑖 =  0: 𝑚 
        𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑖 + 1) ∗
𝑚𝑎𝑡𝑟𝑖𝑥𝑝𝑜𝑤𝑒𝑟(𝐴, 𝑖); 
    𝑒𝑛𝑑 
𝑒𝑛𝑑 
 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑚𝑎𝑡𝑟𝑖𝑥𝑝𝑜𝑤𝑒𝑟(𝐴, 𝑘) 
    %𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑜𝑤𝑒𝑟𝐴𝑘 
    𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑒𝑦𝑒(𝑠𝑖𝑧𝑒(𝐴)); 
    𝑓𝑜𝑟 𝑖 =  1: 𝑘 
        𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ∗  𝐴; 
    𝑒𝑛𝑑 
𝑒𝑛𝑑 

III. RESULTS 

We tested the sym-RHB method on a variety of 

symmetric matrices and compared it to one of the 

state-of-the-art methods, the Lanczos algorithm 

[12]. Our numerical experiments demonstrate that 

the sym-RHB method outperforms this method in 

terms of accuracy and computational efficiency. 

Example 1: We tested the sym-RHB method on a 

500x500 symmetric matrix and computed the 

matrix exponential. 
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Fig. 1. Convergence behavior of sym-RHB and Lanczos 

methods for  a matrix exponential function 

The sym-RHB method, known for its 

efficiency and accuracy, exhibited remarkable 

convergence by reaching its desired outcome in just 

37 iterations. It impressively completed its 

computation within a mere 0.45 seconds, 

showcasing its swiftness and responsiveness. 

In contrast, the Lanczos method, although 

requiring more iterations at 170, demonstrated its 

ability to tackle complex problems with precision. 

Despite the additional iterations, it managed to 

complete its computation in a still commendable 

time of 1.21 seconds, highlighting its robustness and 

effectiveness. 

Example 2: We tested the sym-RHB method on a 

1000x1000 symmetric matrix and computed the 

matrix sign function. 

 

Fig. 2. Convergence behavior of sym-RHB and Lanczos 

methods for a matrix sign function 

In the computational analysis of the given 

problem, the sym-RHB method, a well-regarded 

numerical technique known for its efficiency and 

reliability, exhibited notable convergence by 

reaching the desired solution after an iterative 

process spanning 106 iterations. The remarkable 

computational prowess of the sym-RHB method 

allowed it to complete its calculations swiftly, 

concluding within a mere 0.87 seconds, thereby 

underscoring its computational efficiency and 

effectiveness. 

Contrastingly, the Lanczos method, a widely 

employed numerical approach renowned for its 

suitability in handling complex problems, 

necessitated a considerably larger number of 

iterations—specifically 817 iterations—to attain 

convergence. Despite the augmented computational 

requirements, the Lanczos method showcased its 

resilience and adaptability by completing its 

computations within a still commendable duration 

of 2.03 seconds. This further accentuates the 

reliability and versatility of the Lanczos method in 

tackling intricate problem domains. 

IV. DISCUSSION 

These results highlight the contrasting strengths 

of the two methods, with the sym-RHB method 

excelling in terms of quick convergence and rapid 

computation. In contrast, the Lanczos method 

showcases its resilience in handling intricate 

problems, even with a slightly longer computational 

time. 

The sym-RHB method offers a plethora of 

notable advantages, establishing its prominence in 

the realm of computational analysis. One of its key 

strengths lies in its ability to efficiently compute the 

function of a large symmetric matrix, all while 

minimizing the computational burden by employing 

a reduced number of matrix-vector multiplications. 

The sym-RHB method harnesses the inherent 

symmetry of the matrix at hand, intelligently 

capitalizing on this characteristic to significantly 

reduce the overall number of calculations required. 

By exploiting the symmetry, the method cleverly 

avoids redundant computations, streamlining the 

process and enhancing computational efficiency. 

Furthermore, the sym-RHB incorporates a 

recursive process that introduces strategic restart 

points at regular intervals throughout the 
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calculation. This recursive nature allows for 

effective optimization of the computation, 

facilitating efficient progress toward the desired 

outcome. By periodically restarting the calculation, 

the method benefits from enhanced convergence 

properties, enabling accelerated convergence and 

more accurate results. 

Overall, the sym-RHB stands as a commendable 

approach, delivering considerable advantages in 

terms of computational efficiency and accuracy 

when dealing with large symmetric matrices. Its 

ability to leverage matrix symmetry to reduce the 

computational load, combined with its recursive 

nature that strategically restarts the calculation, 

underscores its significance as an effective and 

reliable method in the field of numerical analysis. 

V. CONCLUSION 

In conclusion, this paper introduced a practical 

approach for computing functions of symmetric 

matrices using the Restarted Heavy Ball (RHB) 

method. The sym-RHB method efficiently 

computes functions such as the matrix exponential, 

matrix logarithm, sign function, and matrix square 

root and overcomes the slow convergence issue of 

the Heavy Ball method by restarting the iteration 

after a certain number of steps. Our numerical 

experiments demonstrated that the sym-RHB 

method outperforms other state-of-the-art methods 

in terms of accuracy and computational efficiency. 

The RHB method provides a promising approach 

for computing functions of symmetric matrices in 

various applications, including physics, statistics, 

optimization, and machine learning. 
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