$1^{\text {st }}$ International Conference on Pioneer and Innovative Studies

\mathbf{M}_{λ} Method of Triple Sequence Space

Ayhan Esi*
${ }^{1}$ Department/Research Institute, Malatya Turgut Ozal University, Turkey
*aesi23@hotmail.com and ayhan.esi@ozal.edu.tr

Abstract

In this paper, we introduce the M_{λ}-method using by triple sequence $\lambda=\left(\lambda_{\text {mnk }}\right)$ and discuss general topological properties of this method.

Keywords -Regular Matrix, İnfinite Matrix, Silverman-Toeplitz Theorem, Triple Sequence.

I. INTRODUCTION

We introduce a new definition of limit of a triple sequence and a triple series on convergent triple sequences and Silverman-Toeplitz theorem for triple sequences and triple series.

A triple sequence (real or complex) can be defined as a function $x: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}(\mathbb{C})$, where \mathbb{N}, \mathbb{R} and \mathbb{C} denote the set of natural numbers, real numbers and complex numbers respectively. The different types of notions of triple sequence was introduced and investigated at the initial by Aiyub et al. [1], Esi et al. [2-5], Bharathi et al. [7], Subramanian et al. [8-18], Debnath et al. [6] and many others.
2.Definitions and Preliminaries

2.1 Definition

Let $\left(x_{m n k}\right)$ be a triple sequence. We say that $\lim _{m, n, k \rightarrow \infty} x_{m n k}=x$, if for every $\epsilon>0$, the set $\left\{(m, n, k) \in \mathbb{N}^{3}:\left|x_{m n k}-x\right| \geq \epsilon\right\}$ is finite, \mathbb{N} being the set of positive integers. In such a case, x is unique and x is called the limit of $\left(x_{m n k}\right)$.

2.2 Definition

Let $\left(x_{m n k}\right)$ be a triple sequence. We say that $s=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_{m n k} \quad$ if $\quad s=$
$\lim _{m . n, k \rightarrow \infty} S_{m n k}, \quad$ where $\quad s_{m n k}=$
$\sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} x_{r s t}, m, n, k=0,1,2, \cdots$.

2.3 Definition

The triple series $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_{m n k}$ is said to converge absolutely if $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|x_{m n k}\right|$ converges.

2.4 Definition

Let $A=\left(a_{m n k}^{r s t}\right)$ be a six dimensional infinite matrix and $x=\left(x_{m n k}\right)$ a triple sequence. Then the transformation sequence is $A(x)=\left((A x)_{m n k}\right)$, where

$$
(A x)_{m, n, k}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{m n k}^{r s t} x_{r s t}
$$

If $\lim _{m, n, k \rightarrow \infty}(A x)_{m, n, k}=s$, we say that the triple sequence $x=\left(x_{m n k}\right)$ is $A-$ summable or summable A to s, written as $x_{m n k} \rightarrow s(A)$. If $\lim _{m, n, k \rightarrow \infty}(A x)_{m, n, k}=s$, whenever $\lim _{m, n, k \rightarrow \infty} x_{m n k}=s$, we say that the six dimensional infinite matrix $A=\left(a_{m n k}^{r s t}\right)$ is regular.

2.5 Theorem

$\lim _{m, n, k \rightarrow \infty} x_{m n k}=x$ if and only if
(i) $\lim _{m \rightarrow \infty} x_{m n k}=x, n, k=0,1,2, \cdots$,
(ii) $\lim _{n \rightarrow \infty} x_{m n k}=x, m, k=0,1,2, \cdots$,
(iii) $\lim _{k \rightarrow \infty} x_{m n k}=x, m, n=0,1,2, \cdots$,
(iv) for any $\epsilon>0$, there exists and $N \in \mathbb{N}$ such that $\left|x_{m n k}-x\right|<\epsilon, \forall \quad m, n, k \geq N$. (Note that this is Prinsheims definition of limit of a triple sequence)

2.6 Theorem

If the triple series $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_{m n k}$ converges, then
$\lim _{m, n, k \rightarrow \infty} x_{m n k}=0$ but the converse is not true.

2.7 Theorem

The six dimensional infinite matrix $A=$ ($a_{m n k}^{r s t}$) is regular if and only if (i) $\sup _{m, n, k} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty}\left|a_{m n k}^{r s t}\right|<\infty$,
(ii) $\lim _{m, n, k \rightarrow \infty} a_{m n k}^{r s t}=0, r, s, t=0,1,2, \cdots$,
(iii) lim $_{m, n, k \rightarrow \infty} \sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} a_{m n k}^{r s t}=$ 1 ,
(iv) $l i m_{m, n, k \rightarrow \infty} \sum_{r=0}^{\infty}\left|a_{m n k}^{r s t}\right|=0, s, t=$ $0,1,2, \cdots$,
(v) $\lim _{m, n, k \rightarrow \infty} \sum_{s=0}^{\infty}\left|a_{m n k}^{r s t}\right|=0, r, t=$ $0,1,2, \cdots$,
(vi) $l i m_{m, n, k \rightarrow \infty} \sum_{t=0}^{\infty}\left|a_{m n k}^{r s t}\right|=0, r, s=$ $0,1,2, \cdots$.

3. The summability method of \boldsymbol{M}_{λ}

In this section, we introduce the M_{λ}-method for triple sequences.

3.1 Definition

Let $\left(\lambda_{m n k}\right)$ be a triple sequence such that $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|\lambda_{m n k}\right|<\infty$. The method M_{λ} is defined by the six dimensional infinite matrix ($a_{m n k}^{r s t}$), where
$\begin{cases}\lambda_{m-r, n-s, k-t} & \text { if } r \leq m, n \leq s, t \leq k \\ 0, & \text { otherwise }\end{cases}$

3.2 Definition

The methods M_{λ} and M_{μ} are said to be consistent if $s_{r s t} \rightarrow \sigma\left(M_{\lambda}\right)$ and $s_{r s t} \rightarrow \sigma^{\prime}\left(M_{\mu}\right) \Rightarrow$ $\sigma=\sigma^{\prime}$.

3.3 Definition

We say that M_{λ} is included in M_{μ} written as $M_{\lambda} \subseteq M_{\mu}$ if $s_{r s t} \rightarrow \sigma\left(M_{\lambda}\right) \Longrightarrow s_{r s t} \rightarrow \sigma\left(M_{\mu}\right)$. The two methods M_{λ} and M_{μ} are said to be equivalent if $M_{\lambda} \subseteq M_{\mu}$ and $M_{\mu} \subseteq M_{\lambda}$.

IV.DISCUSSION AND Results

4.1 Theorem

The method M_{λ} is regular if and only if

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{m n k}=1 .
$$

In the sequel, let M_{λ} and M_{μ} be regular methods such that each row and each column of the infinite matrices $\lambda=\left(\lambda_{m n k}\right)$ and $\mu=\left(\mu_{m n k}\right)$ are regular.

4.2 Theorem

If M_{λ} and M_{μ} be two regular methods then $\sigma=\sigma^{\prime}$.

4.3 Theorem

If M_{λ} and M_{μ} are regular, then $M_{\lambda} \subseteq M_{\mu}$ if and only if $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|g_{m n k}\right|<\infty$ and $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} g_{m n k}=1$.

4.4 Theorem

The regular methods M_{λ} and M_{μ} are equivalent if and only if $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|g_{m n k}\right|<$ $\infty, \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} g_{m n k}=1$ and
$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|h_{m n k}\right|<$ $\infty, \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} h_{m n k}=1$.

4.5 Theorem

| If $\quad \lim _{m, n, k \rightarrow \infty} a_{m n k}=0$ | and |
| :---: | ---: | ---: |
| $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left\|b_{m n k}\right\|<\infty$, | then |
| lim $_{m, n, k \rightarrow \infty} c_{m n k}=0, \quad$ where | $c_{m n k}=$ |

$\sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} a_{m-r, n-s, k-t} b_{r s t}, m, n, k=$ $0,1,2, \cdots$.

We now have the following results on the Cauchy multiplication of M_{λ} - summable triple sequences and triple series.

4.6 Theorem

If $\quad \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|a_{m n k}\right|<\infty \quad$ and ($b_{m n k}$) is M_{λ} - summable to B, then ($c_{m n k}$) is $M_{\lambda}-$ summable to $A B$, where $c_{m n k}=$ $\sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} a_{m-r, n-s, k-t} b_{r s t}, m, n, k=$ $0,1,2, \cdots, \infty$. and $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{m n k}=A$.

4.7 Theorem

If $\quad \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|a_{m n k}\right|<\infty \quad$ and $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} b_{m n k}$ is M_{λ} - summable to B, then $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{m n k}$ is $M_{\lambda}-$ summable to $A B$,
where $\quad c_{m n k}=$ $\sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{t=0}^{k} a_{m-r, n-s, k-t} b_{r s t}, m, n, k=$ $0,1,2, \cdots, \infty$. and

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{m n k}=A .
$$

We define we define $\left(M_{\lambda} M_{\mu}\right)(x)=$ $M_{\lambda}\left(M_{\mu}(x)\right)$ for triple sequence $x=\left(x_{m n k}\right)$.

4.8 Theorem

Let M_{λ}, M_{μ} be regular methods. Then, $\left(M_{\lambda} \cdot M_{\mu}\right)$ is also regular.

4.9 Theorem

Let M_{λ}, M_{μ} and $M_{\mathfrak{J}}$ are regular methods, $M_{\lambda} \subseteq M_{\mu}$ if and only if $\left(M_{\mathfrak{J}}\right)\left(M_{\lambda}\right) \subseteq\left(M_{\mathfrak{J}}\right) M_{\mu}$.

4.10 Theorem

Let M_{λ}, M_{μ} and M_{\Im} are regular methods, then the following statements are equivalent:
(i) $M_{\lambda} \subseteq M_{\mu}$;
(ii) $\left(M_{\mathfrak{I}}\right)\left(M_{\lambda}\right) \subseteq\left(M_{\mathfrak{F}}\right)\left(M_{\mu}\right)$; and
(iii) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|g_{m n k}\right|<\infty \quad$ and $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} g_{m n k}=1$, where

$$
\frac{\mu(x)}{\lambda(x)}=g(x)=
$$

$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} g_{m n k} x^{m} y^{n} z^{k} ; \lambda(x)=$
$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{m n k} x^{m} y^{n} z^{k} ; \mu(x)=$
$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mu_{m n k} x^{m} y^{n} z^{k}$.

V. CONCLUSION

In this study we introduced the M_{λ}-method using by triple sequence $\lambda=\left(\lambda_{m n k}\right)$ and discussed general topological properties of this method.

References

[1] M. Aiyub,A. Esi and N. Subramanian, The triple entire difference Ideal of fuzzy real numbers over fuzzy $p-$ metric spaces defined by Musielak Orlicz function,Journal of Intelligent \& Fuzzy Systems, 33(3) (2017), 1505-1512.
[2] A. Esi , On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews:Discrete Mathematical Structures, 1(2), (2014), 1625.
[3] A. Esi and M. Necdet Catalbas,Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1) (2014), 6-10.
[4] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl.Math.and Inf. Sci., 9(5) (2015), 2529-2534.
[5] A. Esi, S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators,Appl.Math.and Inf.Sci., 10(6), (2016), 2083-2086.
[6] S. Debnath and N. Subramanain,On Riesz Almost Lacunary Cesaro $[C, 111]$ statistical convergence in probabilistic space of $\chi_{f}^{3 \Delta}$,Acta Mathematica Academiae Paedagogicae Ny13̆053'fregyháziensis, 33(2) (2017), 221231.
[7] M. Jeyaram Bharathi, S. Velmurugan, N. Subramanain and R. Srikanth, On Triple sequence space of Bernstein operator of rough I_{λ}-statistical convergence of weighted $g(A)$,Journal of Intelligent \& fuzzy systems, 36, DOI: 10.3233/JIFS-171017 (2019), 13-27.
[8] N. Subramanian and A. Esi, The generalized tripled difference of χ^{3} sequence spaces, Global Journal of Mathematical Analysis, 3 (2) (2015), 54-60.
[9] N. Subramanian and A. Esi, Rough variables of convergence, Vasile Alecsandri University of Bacau Faculty of Sciences, Scientific studies and Research series Mathematics and informatics, 27(2) (2017), 65-72.
[10] N. Subramanian and A. Esi, Wijsman rough convergence triple sequences, Matematychni studii, 48 (2) (2017), 171-179.
[11] A. Esi and N. Subramanian, Generalized rough Cesaro and lacunary statistical triple difference sequence spaces inprobability of fractional order defined by Musielak Orlicz function, International Journal of Analysis and Applications, 16(1) (2018), 16-24.
[12] N. Subramanian and A. Esi, On triple sequence space of Bernstein operator of χ^{3} of rough $\lambda-$ statistical convergence in probability definited by Musielak-Orlicz function p - metric, Electronic Journal of Mathematical Analysis and Applications, 6 (1) (2018), 198-203.
[13] S. Velmurugan and N. Subramanian, Bernstein operator of rough λ - statistically and ρ Cauchy sequences convergence on triple sequence spaces, Journal of Indian Mathematical Society, 85 (1-2) (2018), 257-265.
[14] Bipan Hazarika, N. Subramanian and A. Esi, On rough weighted ideal convergence of triple sequence of Bernstein polynomials,, Proceedings of the Jangjeon Mathematical Society, 21(3) (2018), 497-506.
[15] N. Subramanian, A. Esi and M. Kemal Ozdemir, Rough Statistical Convergence on Triple sequence of Bernstein Operator of Random Variables in Probability , Songklanakarin Journal of Science and Technology, in press (2019).
[16] N. Subramanian, A. Esi and V.A. Khan, The Rough Intuitionistic Fuzzy Zweier Lacunary Ideal Convergence of Triple Sequence spaces, Journal of Mathematics and Statistics, DOI:10.3844/jmssp.(2018), 72.78 .
[17] A. Esi and N. Subramanian, On triple sequence spaces of Bernstein operator of χ^{3} of rough λ - statistical convergence in probability of random variables defined by Musielak-Orlicz function, Int. J. Open Problems Compt. Math, 11(2) (2019), 62-70.
[18] A. Indumathi, N. Subramanian and A. Esi, Geometric difference of six dimensional Riesz almost lacunary rough statistical convergence in probabilistic space of χ_{f}^{3}, Analysis, 39(1) (2019), 7-17.

