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Abstract – In functional analysis, linear operators induced by functions are frequently encountered; these 

contain Hankel operators, constitution operators, and Toeplitz operators. The symbol of the resultant 

operator is another name for the inciting function. In many instances, a linear operator on a Hilbert space 

ℋ results in a function on a subset of a topological space. As a result, we regularly investigate operators 

induced by functions, and we may also investigate functions induced by operators. The Berezin sign is a 

wonderful representation of an operator-function relationship. F. Berezin proposed the Berezin switch in 

[8], and it has proven to be a vital tool in operator theory given that it utilizes many essential aspects of 

significant operators. Many mathematicians and physicists are fascinated by the Berezin symbol of an 

operator defined on the functional Hilbert space. The Berezin radius inequality has been extensively studied 

in this situation by a number of mathematicians. In this paper, we use the Alughte transform and the 

generalized Alughte transform to develop Berezin radius inequalities for Hilbert space operators. We 

additionally offer fresh Berezin radius inequality results. Huban et al. [15] and Başaran et al. [6] supply the 

Berezin radius inequality. 

 
Keywords – Berezin Symbol, Functional Hilbert Space, Alughte Transform, Generalized Alughte Transform 

 

I. INTRODUCTION 

Hankel operators, constitution operators, and 

Toeplitz operators are some examples of the linear 

operators induced by functions that are commonly 

seen in functional analysis. The symbol of the 

resultant operator is another name for the inciting 

function. In many instances, a linear operator on a 

Hilbert space ℋ results in a function on a subset of 

a topological space. As a result, we frequently look 

into operators that functions induce, and 

occasionally we look into functions that operators 

induce. The Berezin sign is a wonderful 

representation of an operator-function relationship. 

F. Berezin proposed the Berezin switch in [8], and 

it has proven to be a vital tool in operator theory 

given that it utilizes many essential aspects of 

significant operators. The Berezin symbol of an 

operator defined on the reproducing kernel Hilbert 

space fascinates many mathematicians and 

physicists. The Berezin radius inequality has been 

extensively studied in this situation by a number of 

mathematicians. In this paper, we use the Alughte 

transform and the generalized Alughte transform to 

develop Berezin radius inequalities for Hilbert 

space operators. We additionally offer fresh Berezin 

radius inequality results. Huban et al. and Başaran 

et al. supply the Berezin radius inequality. 

Let ℋ be a complex Hilbert space and 𝔹(ℋ) 

define the 𝐶∗-algebra of all bounded linear operators 

on ℋ. Recall the functional Hilbert space (briefly, 

FHS) ℋ = ℋ(𝔛) is a Hilbert space on some set 

(nonempty) Ϝ, such that evalution functional 

𝜓𝜍(𝑓), 𝜍 ∈  Ϝ, are continouns on a ℋ. Hence, by 

Riesz representation theorem, for each 𝜍 ∈ 𝔛 , there 

is an unique element 𝑘𝜍 ∈ ℋ such that 𝑓( 𝜍) =

〈𝑓, 𝑘𝜍〉, for all 𝑓 ∈ ℋ. The family {𝑘𝜍: 𝜍 ∈  𝔛} is 

called the reproducing kernel in ℋ. For 𝜍 ∈  Ϝ, 𝑘�̂� =
𝑘𝜍

‖𝑘𝜍‖
 is defined the normalized reproducing kernel. 
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For 𝑉 ∈  𝔹(ℋ), the function �̃� defined on 𝔛 by 

�̃�( 𝜍) = 〈𝑉𝑘�̂�, 𝑘�̂�〉 is the Berezin symbol of 𝑉. 

Berezin symbol firstly has been introduced by 

Berezin ([8]). The Berezin set and Berezin number 

of the operator 𝑉 are defined by 

𝐵𝑒𝑟(𝑉) = {�̃�( 𝜍): 𝜍 ∈  𝔛} 

and 

𝑏𝑒𝑟(𝑉) = 𝑠𝑢𝑝{�̃�( 𝜍): 𝜍 ∈  𝔛} = 𝑠𝑢𝑝𝜍∈ Ϝ|〈𝑉𝑘�̂� , 𝑘�̂�〉| 

respectively (see, [18, 19]). The Berezin symbol has 

been thoroughly studied for the Toeplitz and Hankel 

operators on the Hardy and Bergman spaces. It is 

frequently used in many fields of study and uniquely 

identifies an operator. We recommend the reader to 

[4-7, 13] for more information on the Berezin 

symbol. 

 

In a FHS, the Berezin range and Berezin number 

of an operator 𝑉 are a subset of numerical range and 

numerical radius of 𝑉, respectively. There are 

interesting properties of numerical range and 

numerical radius. For basic properties numerical 

radius, we refer to [10, 11, 14]. The fact that 

 

𝑏𝑒𝑟(𝑉) ≤ 𝑤(𝑉) ≤ ‖𝑉‖                                      (1.1) 

 

is significant. It is common knowledge that for all 

𝑉 ∈  𝔹(ℋ), 

 

𝑏𝑒𝑟(𝑉) ≤
1

2
(‖𝑉‖𝑏𝑒𝑟 + ‖𝑉2‖𝑏𝑒𝑟

1/2
),                           (1.2) 

 
(see [16, 17]). Huban et al. consolidationed the 

second inequality in (1.2) using the Cartesian 

decomposition for operators in [15]: 

 
1

4
‖𝑉∗𝑉 + 𝑉𝑉∗‖𝑏𝑒𝑟 

≤ 𝑏𝑒𝑟2(𝑉) ≤
1

2
‖𝑉∗𝑉 + 𝑉𝑉∗‖𝑏𝑒𝑟                      (1.3) 

 

for any operator 𝑉 ∈  𝔹(ℋ). The same authors have 

also obtained that 

 

(𝑏𝑒𝑟(𝑉)) ≤
1

2
‖|𝑉|2𝛾 + |𝑉∗|2(1−𝛾) ‖

𝑏𝑒𝑟
,    (1.4) 

 

and 

 

(𝑏𝑒𝑟(𝑉))  

≤
1

2
‖𝛾|𝑉|2 + (1 − 𝛾)|𝑉∗|2 ‖𝑏𝑒𝑟,              (1.5) 

for 0 < 𝛾 < 1 and 휀 ≥ 1 (see, [16, Th. 3.1 and Th. 

3.2]. They also showed the following as stronger 

than [3]: 

 

𝑏𝑒𝑟(𝑉) ≤
1

2
‖|𝑉| + |𝑉∗|‖𝑏𝑒𝑟                               (1.6). 

 

Another improvement has been established by 

Başaran et al. [6] and Huban et al. [15]: 

𝑏𝑒𝑟2(𝑋) ≤
1

2
‖|𝑉|2 + |𝑉∗|2‖𝑏𝑒𝑟,                     (1.7). 

 

Let 𝑇 = 𝑈|𝑇| be the polar decomposition of the 

bounded linear operator 𝑇 with 𝑈 a partial isometry. 

The Aluthge transform 𝑇~ of 𝑇 is denoted by 𝑇~ =
|𝑇|1/2𝑈|𝑇|1/2, see [1]. 

 

For 𝑡 ∈ (0,1) 

 

∆𝑡(𝑇) = |𝑇|𝑡𝑈|𝑇|1−𝑡 

 

is called the generalized Aluthge transform (see, [2, 

9]). 

II. MAIN RESULT 

Before we start the section, we presented two 

lemmas. 

 

Lemma 2.1. 𝐴, 𝐵 ∈ 𝔹(ℋ) and 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1. Then 

(i) If 휀 > 0 and 𝜌휀, 𝜎휀 ≥ 2, then 

𝑏𝑒𝑟2 (𝐴𝐵) ≤
1

2
‖

1

𝜌
|𝐴|2𝜌 +

1

𝜎
|𝐵|2 𝜎‖

𝑏𝑒𝑟
     (2.1) 

(ii) If 휀 ≥ 1 and 𝜌휀, 𝜎휀 ≥ 2, then 

𝑏𝑒𝑟2 (𝐴𝐵) 

≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2𝜖 ‖𝐵‖𝐵𝑒𝑟
2𝜖 + 𝑏𝑒𝑟 (|𝐵|2|𝐴∗|2)]      (2.2) 

(iii) If 휀 ≥ 1 and 𝜌휀, 𝜎휀 ≥ 2, then 

𝑏𝑒𝑟2 (𝐴𝐵) ≤
1

2
‖

1

𝜌
|𝐴|2𝜌 +

1

𝜎
|𝐵|2 𝜎‖

𝑏𝑒𝑟

 

+𝑏𝑒𝑟 (|𝐵|2|𝐴∗|2)                                                           (2.3) 

(see, [12]). 

 

Lemma 2.2. 𝐴, 𝐵 ∈ 𝔹(ℋ), then for 𝛾𝜖[0,1] and 휀 ≥
1, 

𝑏𝑒𝑟2(𝐴𝐵) ≤
1

2
‖(1 − 𝛾)|𝐴∗|2 +

𝛾|𝐵|2 ‖𝑏𝑒𝑟
1/ ‖𝐴‖𝑏𝑒𝑟

2𝛾 ‖𝐵‖𝑏𝑒𝑟
2(1−𝛾)

                            (2.4) 

and 
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𝑏𝑒𝑟2(𝐴𝐵) ≤ ‖(1 − 𝛾)|𝐴∗|2

+ 𝛾|𝐵|2 ‖
𝑏𝑒𝑟

1

‖(1 − 𝛾)|𝐴∗|2

+ 𝛾|𝐵|2 ‖
𝑏𝑒𝑟

1

. 

In particular, 

𝑏𝑒𝑟2(𝐴𝐵) 

≤
1

21/ℰ
‖|𝐴∗|2 + |𝐵|2 ‖𝑏𝑒𝑟

1/ ‖𝐴‖𝐵𝑒𝑟‖𝐵‖𝐵𝑒𝑟        

and 

𝑏𝑒𝑟(𝐴𝐵) ≤
1

21/ℰ
‖|𝐴∗|2 + |𝐵|2 ‖

𝑏𝑒𝑟

1

 

(see, [12]) 

 

Now, we get the following inequalities for one 

operator: 

 

Theorem 2.3. Let ℋ = ℋ(𝔛) be a FHS. Let 𝐴 ∈
𝔹(ℋ) and 𝛾𝜖[0,1], then 

𝑏𝑒𝑟2 (𝐴) 

≤ ‖
1

𝜌
|𝐴∗|2𝛾 𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
,                  (2.5) 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

Also, for 휀 ≥ 1 

𝑏𝑒𝑟2 (𝐴) 

≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴|2(1−𝛾)|𝐴∗|2𝛾)].               (2.6) 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then 

𝑏𝑒𝑟2 (𝐴) ≤
1

2
(‖

1

𝜌
|𝐴∗|2𝛾 𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
+

𝑏𝑒𝑟 (|𝐴|2(1−𝛾)|𝐴∗|2𝛾))                                               (2.7) 

Moreover, if 𝛾𝜖[0,1] and 휀 ≥ 1, then 

𝑏𝑒𝑟2(𝐴) ≤ ‖(1 − 𝛿)|𝐴∗|2𝛾 +

𝛿|𝐴|2(1−𝛾) ‖
𝑏𝑒𝑟

1/
‖𝐴‖𝑏𝑒𝑟

2[𝛾𝛿+(1−𝛿)(1−𝛾)]
.                (2.8) 

 

Proof. If we write 𝑇 = 𝑈|𝐴|𝛾 and 𝑆 = 𝑈|𝐴|(1−𝛾) in 

(2.1) and can see that 𝑇𝑆 = 𝑈|𝐴| = 𝐴, 

 

|𝑇∗|2 = 𝑇𝑇∗ =  𝑈|𝐴|𝛾 |𝐴|𝛾𝑈∗ = 𝑈|𝐴|2𝛾 𝑈∗ 

=  |𝐴∗|2𝛾, 

 

then 

 

𝑏𝑒𝑟2 (𝐴) ≤
1

2
‖

1

𝜌
|𝐴∗|2𝛾 𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟

 

 

which proves (2.5). 

 

The same choice 𝑇 and 𝑆 in (2.2) has 

 

𝑏𝑒𝑟2 (𝐴) 

≤
1

2
[‖𝑈|𝐴|𝛾‖𝐵𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴|2(1−𝛾)|𝐴∗|2𝛾)].    (2.9) 

 

It is clear that 

 

|𝑇|2 = 𝑇∗𝑇 = |𝐴|𝛾 𝑈∗𝑈|𝐴|𝛾 = |𝐴|𝛾|𝐴|𝛾 =  |𝐴|2𝛾 

 

since 𝑈 is an isometry on 𝑟𝑎𝑛(𝑇). Then 

‖𝑈|𝐴|𝛾‖𝑏𝑒𝑟
2 = ‖𝐴‖𝑏𝑒𝑟

2𝛾
 and by (2.9) we have (2.6). 

 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then by (2.3) we have (2.7). 

 

Moreover, if we use (2.4) for 𝑇 = 𝑈|𝐴|𝛾 and 𝑆 =

𝑈|𝐴|(1−𝛾), then we have for 𝛿𝜖[0,1] and 휀 ≥ 1 that 

 

𝑏𝑒𝑟2(𝐴)

≤
1

2
‖(1 − 𝛿)|𝐴∗|2𝛾

+ 𝛿|𝐴|2(1−𝛾) ‖
𝑏𝑒𝑟

1

‖𝐴‖𝑏𝑒𝑟
2(1−𝛿)(1−𝛾)

‖𝐴‖𝑏𝑒𝑟
2𝛾𝛿

≤
1

2
‖(1 − 𝛿)|𝐴∗|2𝛾

+ 𝛿|𝐴|2(1−𝛾) ‖
𝑏𝑒𝑟

1

‖𝐴‖𝑏𝑒𝑟
2[𝛾𝛿+(1−𝛿)(1−𝛾)]

 

 

which proves (2.8). 

 

Corollary 2.4. Let 𝐴 ∈ 𝔹(ℋ). Then 

𝑏𝑒𝑟2 (𝐴) ≤ ‖
1

𝜌
|𝐴∗| 𝜌 +

1

𝜎
|𝐴|𝜎 ‖

𝑏𝑒𝑟
,            (2.10) 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

Also, for 휀 ≥ 1 

𝑏𝑒𝑟2 (𝐴) ≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴||𝐴∗|)].      (2.11) 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then 

𝑏𝑒𝑟2 (𝐴) 

≤
1

2
(‖

1

𝜌
|𝐴∗| 𝜌 +

1

𝜎
|𝐴|𝜎 ‖

𝑏𝑒𝑟
+ 𝑏𝑒𝑟 (|𝐴||𝐴∗|)) 

(2.12) 

Moreover, if 𝛾𝜖[0,1] and 휀 ≥ 1, then 

𝑏𝑒𝑟2(𝐴) 

≤ ‖(1 − 𝛿)|𝐴∗|2 + 𝛿|𝐴| ‖𝑏𝑒𝑟
1/ ‖𝐴‖𝑏𝑒𝑟.          (2.13) 
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Remark 2.5. If we choose 휀 = 1 in (2.10), then we 

have 

𝑏𝑒𝑟2(𝐴) ≤ ‖
1

𝜌
|𝐴∗|𝜌 +

1

𝜎
|𝐴|𝜎‖

𝑏𝑒𝑟

, 

for 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1. In particular, 𝜌 = 𝜎 =

2 we have 

𝑏𝑒𝑟2 (𝐴) ≤
1

2
‖|𝐴∗|2 + |𝐴|2‖𝑏𝑒𝑟 . 

If we write 휀 = 1 in (2.7), then we have 

𝑏𝑒𝑟2(𝐴) ≤
1

2
(‖𝐴‖𝑏𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴|2(1−𝛾)|𝐴∗|2𝛾)). 

 

If we choose 휀 = 1 and 𝜌 = 𝜎 = 2, then by (2.12) 

we have 

 

𝑏𝑒𝑟2(𝐴) ≤
1

2
(‖|𝐴∗|2 + |𝐴|2‖𝑏𝑒𝑟 + 𝑏𝑒𝑟(|𝐴||𝐴∗|)) 

=
1

4
‖|𝐴∗|2 + |𝐴|2‖𝑏𝑒𝑟 +

1

2
𝑏𝑒𝑟(|𝐴||𝐴∗|). 

 

If we choose 휀 = 2 and 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 in 

(2.12), then we reach 

 

𝑏𝑒𝑟4(𝐴) 

≤
1

2
(‖

1

𝜌
|𝐴∗|2𝜌 +

1

𝜎
|𝐴|2𝜎‖

𝑏𝑒𝑟
+ 𝑏𝑒𝑟2(|𝐴||𝐴∗|)), 

 

which for 𝜌 = 𝜎 = 2 has 

 

𝑏𝑒𝑟4(𝐴) ≤
1

4
‖|𝐴∗|4 + |𝐴|4‖𝑏𝑒𝑟 +

1

2
𝑏𝑒𝑟2(|𝐴||𝐴∗|). 

 

We also get: 

 

Theorem 2.6. Let ℋ = ℋ(𝔛) be a FHS. Let 𝐴 ∈
𝔹(ℋ) and 𝛾𝜖[0,1], then 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤ ‖
1

𝜌
|𝑈∗|𝐴|𝛾|2𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
,          (2.14) 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

Also,  

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴|2−𝛾𝑈𝑈∗|𝐴∗|𝛾)]         (2.13) 

for 휀 ≥ 1. Moreover 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤
1

2
(‖

1

𝜌
|𝑈∗|𝐴|𝛾|2𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
+

𝑏𝑒𝑟 (|𝐴|2−𝛾𝑈𝑈∗|𝐴∗|𝛾))                                (2.14) 

for 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2. 

Also, for 𝛿𝜖[0,1] and 휀 ≥ 1, then 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤ (1 − 𝛿)‖|𝑈∗|𝐴|𝛾|2𝜌 +

𝛿|𝐴|2(1−𝛾)𝜎 ‖
𝑏𝑒𝑟

1/
‖𝐴‖𝑏𝑒𝑟

2[𝛾𝛿+(1−𝛿)(1−𝛾)]
.            (2.15) 

 

Proof. If we put T = |A|γU and S = |A|1−γ in (2.1) 

and can see that TS = |A|γU|A|1−γ = ∆γ(A), then 

we have 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤ ‖
1

𝜌
|𝑈∗|𝐴|𝛾|2𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
. 

With the same choice and by (2.2) we reach 

𝑏𝑒𝑟2 (∆𝛾(𝐴))

≤
1

2
[‖|A|γU ‖𝐵𝑒𝑟

2 ‖|A|1−γ‖𝐵𝑒𝑟
2

+ 𝑏𝑒𝑟 (|A|1−γ|A|γ𝑈𝑈∗|A|γ)]

=
1

2
[‖|A|γU ‖𝐵𝑒𝑟

2 ‖|A|1−γ‖𝐵𝑒𝑟
2

+ 𝑏𝑒𝑟 (|A|2−γ𝑈𝑈∗|A|γ)]

≤
1

2
[‖A ‖𝐵𝑒𝑟

2𝛾 ‖A‖𝐵𝑒𝑟
2(1−𝛾)

+ 𝑏𝑒𝑟 (|A|2−γ𝑈𝑈∗|A|γ)]

=
1

2
[‖A ‖𝐵𝑒𝑟

2

+ 𝑏𝑒𝑟 (|A|2−γ𝑈𝑈∗|A|γ)] 
which proves (2.13). 

 

If 휀 ≥ 1, 𝜌, 𝜎 ≥ 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

the from (2.3) we have (2.14). 

 

If we take T = |A|γU and S = |A|1−γ in (2.4) for 

𝛿𝜖[0,1] and 휀 ≥ 1, 

 

𝑏𝑒𝑟2 (∆𝛾(𝐴))

≤
1

2
‖(1 − 𝛿)|𝑈∗|A|γ|2𝜌

+ 𝛿|A|2(1−γ)𝜎 ‖
𝑏𝑒𝑟

1

‖|A|γU‖𝑏𝑒𝑟
2𝛿 ‖𝐴‖𝑏𝑒𝑟

2(1−𝛾)(1−𝛿)
 

≤
1

2
‖(1 − 𝛿)|𝑈∗|A|γ|2𝜌 +

𝛿|A|2(1−γ)𝜎 ‖
𝑏𝑒𝑟

1/
‖A‖𝑏𝑒𝑟

2γ𝛿‖𝐴‖𝑏𝑒𝑟
2(1−𝛾)(1−𝛿)

=
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1

2
‖(1 − 𝛿)|𝑈∗|A|γ|2𝜌 +

𝛿|A|2(1−γ)𝜎 ‖
𝑏𝑒𝑟

1/
‖𝐴‖𝑏𝑒𝑟

2[γ𝛿+(1−𝛾)(1−𝛿)]
, 

which proves (2.15). 

 

For 𝛾 =
1

2
 we have obtain the following inequalities 

for the Alughte transform 𝐴~. 

 

Corollary 2.7. Let 𝐴 ∈ 𝔹(ℋ) and 𝛾𝜖[0,1], then 

𝑏𝑒𝑟2 (𝐴~) ≤ ‖
1

𝜌
|𝑈∗|𝐴|1/2|

2𝜌
+

1

𝜎
|𝐴|𝜎 ‖

𝑏𝑒𝑟
, 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

Also,  

𝑏𝑒𝑟2 (𝐴~) ≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2

+ 𝑏𝑒𝑟 (|𝐴|3/2𝑈𝑈∗|𝐴∗|1/2)] 

for 휀 ≥ 1. Moreover 

𝑏𝑒𝑟2 (𝐴~) ≤
1

2
(‖

1

𝜌
|𝑈∗|𝐴|1/2|

2𝜌

+
1

𝜎
|𝐴|𝜎 ‖

𝑏𝑒𝑟

+ 𝑏𝑒𝑟 (|𝐴|3/2𝑈𝑈∗|𝐴∗|1/2)) 

for 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2. 

Also, for 𝛿𝜖[0,1] and 휀 ≥ 1, then  

𝑏𝑒𝑟2(𝐴~) 

≤ ‖(1 − 𝛿) |𝑈∗|𝐴|
1

2|
2𝜌

+ 𝛿|𝐴|𝜎 ‖
𝑏𝑒𝑟

1

𝜀

‖𝐴‖𝑏𝑒𝑟. 

For 𝛾 = 0 we also have: 

 

Corollary 2.8. If 𝐴 ∈ 𝔹(ℋ), then we have 

𝑏𝑒𝑟2 (𝐴) ≤ ‖
1

𝜌
|𝑈∗|2𝜌 +

1

𝜎
|𝐴|2𝜎 ‖

𝑏𝑒𝑟
, 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

Also,  

𝑏𝑒𝑟2 (𝐴) ≤
1

2
[‖𝐴‖𝐵𝑒𝑟

2 + 𝑏𝑒𝑟 (|𝐴|2𝑈𝑈∗)] 

for 휀 ≥ 1. Moreover 

𝑏𝑒𝑟2 (𝐴) ≤
1

2
(‖

1

𝜌
|𝑈∗|2𝜌 +

1

𝜎
|𝐴|2𝜎 ‖

𝑏𝑒𝑟

+ 𝑏𝑒𝑟 (|𝐴|2𝑈𝑈∗)) 

for 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2. 

Also, for 𝛿𝜖[0,1] and 휀 ≥ 1, then 

 

𝑏𝑒𝑟2(𝐴) 

≤ (1 − 𝛿)‖|𝑈∗|2𝜌 + 𝛿|𝐴|2𝜎 ‖𝑏𝑒𝑟
1/ ‖𝐴‖𝑏𝑒𝑟

2(1−𝛿)
. 

 

The following upper bounds for the numerical of the 

generalized Alughte transform are also obtained by 

us.: 

 

Theorem 2.9. ℋ = ℋ(𝔛) be a FHS. Let 𝐴 ∈ 𝔹(ℋ) 

and 𝛾𝜖[0,1], then 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤ ‖
1

𝜌
|𝐴|2𝛾𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
,                   (2.16) 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then  

𝑏𝑒𝑟2 (∆𝛾(𝐴)) 

≤
1

2
(‖

1

𝜌
|𝐴|2𝛾𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟
+ ‖𝐴‖𝑏𝑒𝑟

2 ) 

(2.17) 

Also, for 𝛿𝜖[0,1] and 휀 ≥ 1, then 

𝑏𝑒𝑟2 (∆𝛾(𝐴)) ≤ (1 − 𝛿)‖|𝐴|2𝛾 +

𝛿|𝐴|2(1−𝛾) ‖
𝑏𝑒𝑟

1/
‖𝐴‖𝑏𝑒𝑟

2[𝛾𝛿+(1−𝛿)(1−𝛾)]
.              (2.18) 

 

Proof. If we take T = |A|γ and S = U|A|1−γ and can 

see that TS = |A|γU|A|1−γ = ∆𝛾(𝐴) then by (2.1) 

we have (2.16). 

 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then by the same choice in (2.3) we have 

𝑏𝑒𝑟2 (∆𝛾(𝐴))

≤
1

2
‖

1

𝜌
|𝐴|2𝛾𝜌 +

1

𝜎
|𝐴|2(1−𝛾) 𝜎‖

𝑏𝑒𝑟

+ 𝑏𝑒𝑟 (|𝐴|2(1−𝛾)|𝐴|2𝛾)

≤
1

2
‖

1

𝜌
|𝐴|2𝛾𝜌 +

1

𝜎
|𝐴|2(1−𝛾) 𝜎‖

𝑏𝑒𝑟

+ ‖𝐴‖𝑏𝑒𝑟
2 , 

which proves (2.17). 

For 𝛿𝜖[0,1] and 휀 ≥ 1, then by (2.4) we have 

 

𝑏𝑒𝑟2 (∆𝛾(𝐴))

≤
1

2
‖(1 − 𝛿)|𝐴|2𝛾𝜌

+ 𝛿|𝐴|2(1−𝛾) 𝜎‖
𝑏𝑒𝑟

1

‖𝐴‖𝑏𝑒𝑟
2𝛿𝛾‖𝐴‖𝑏𝑒𝑟

2(1−𝛿)(1−𝛾)
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                        = ‖(1 − 𝛿)|𝐴|2𝛾 +

𝛿|𝐴|2(1−𝛾) ‖
𝑏𝑒𝑟

1/
‖𝐴‖𝑏𝑒𝑟

2[𝛾𝛿+(1−𝛿)(1−𝛾)]
, 

which proves (2.18). 

 

Corollary 2.10. Let 𝐴 ∈ 𝔹(ℋ). Then 

𝑏𝑒𝑟2 (𝐴~) ≤
1

2
(‖

1

𝜌
|𝐴|𝜌 +

1

𝜎
|𝐴|𝜎 ‖

𝑏𝑒𝑟

) 

for 휀 > 0, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 1. 

If 휀 ≥ 1, 𝜌, 𝜎 > 1 with 
1

𝜌
+

1

𝜎
= 1 and 𝜌휀, 𝜎휀 ≥ 2, 

then by (2.17) we have 

𝑏𝑒𝑟2 (𝐴~) ≤
1

2
(‖

1

𝜌
|𝐴|2𝛾𝜌 +

1

𝜎
|𝐴|2(1−𝛾)𝜎 ‖

𝑏𝑒𝑟

+ ‖𝐴‖𝑏𝑒𝑟
2 ). 

 

REFERENCES 

 

[1] A. Alughte, “Some generalized theorems on p-

hyponormal operators,” Integral Equations Operator 

Theory, vol. 24, pp. 497-501, 1996. 

[2] A. Abu-Omar and F. Kittaneh, “A numerical radius 

inequality involving the generalized Alughte transform,” 

Studia Math., vol. 216; no.1,  pp. 69-75, 2013. 

[3] M. Bakherad, “Some Berezin number in equalities for 

operator matrices,” Czeshoslovak Math. J., vol. 68, no. 

143:4, pp. 997-1009, 2018. 

[4] H. Başaran, M. Gürdal and A. N. Güncan, “Some 

operator inequalities associated with Kantorovich and Hö 

lder-McCarthy inequalities and their applications,” 

Turkish J. Math., vol. 43, n0. 1, pp. 523-532, 2019. 

[5] H. Başaran and M. Gürdal, “Berezin number inequalities 

via inequality”, Honam Math. J., vol. 43, no. 3, pp. -523-

537, 2021. 

[6] H. Başaran, M. B. Huban and M. Gürdal, “Inequalities 

related to Berezin norm and Berezin number of 

operators,” vol. 14, no. 2, pp. 1-11, 2022. 

[7] H. Başaran and V. Gürdal, “Berezin radius and Cauchy-

Schwarz inequality,” Montes Taurus J. Pure Appl. Math., 

vol. 5, no. 3, pp. 16-22, 2023. 

[8] F. A. Berezin, “Covariant and contravariant symbols for 

operators,” Math. USSR-Izvestiya, vol. 6, pp. 1117-

1151, 1972. 

[9] M. Cho and K. Tanahashi, “Spectral relations for Alughte 

transform,” Scientiae Mathematicae Japonicae, vol. 55, 

no. 1, pp. 77-83, 2002. 

[10] S.S. Dragomir, “Power inequalities for the numerical 

radius in terms of generalized Alughte transform of 

operators in Hilbert spaces,” RGMIA Res. Rep. Coll., vol. 

26, Art. 26, pp. 1-14, 2023.. 

[11] K. E. Gustafsun and D. K. M. Rao, Numerical Range, 

Springer-Verlag, New York, 1997. 

[12] M. Gürdal and O. Yücel, “Power inequalities for the 

Berezin radius of operators in functional Hilbert spaces,” 

in 1st International Conference on Contemporary 

Academic Research (ICCAR), 2023, paper 14-

Submission, 147, p. 75-78. 

[13] M. Gürdal and H. Başaran, “Advanced refinements of 

Berezin number inequalities,” Commun. Fac. Sci. Univ. 

Ank. Ser. A1 Math. Stat., vol. 72, no. 2, pp. 386-392, 

2023. 

[14] P. R. Halmos, A Hilbert space problem book, 2nd ed. 

New York: Springer; 1982. 

[15] M. B. Huban, H. Başaran and M. Gürdal, “New upper 

bounds related to the Berezin number inequalities,” J. 

Inequal. Spec. Funct., vol. 12, no. 3, pp. 1-12, 2021. 

[16] M. B. Huban, H. Başaran and M. Gürdal, “Some new 

inequalities via Berezin numbers,” Turk. J. Math. 

Comput. Sci., vol. 14, no.1, pp. 129-137, 2022.  

[17]  M. B. Huban, H. Başaran and M. Gürdal, “Berezin 

number inequalities via convex function,” Filomat., vol. 

36, no.7, pp. 2333-2344, 2022.  

[18] M. T. Karaev, “Berezin symbol and invertibility of 

operators on the functional Hilbert spaces,” J. Funct. 

Anal., vol. 238, pp. 181-192, 2006. 

[19] M. T. Karaev, “Reproducing kernels and Berezin 

symbols techniques in various questions of operator 

theory”, Complex Anal. Oper. Theory, vol. 7, pp. 983-

1018, 2013. 


