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Abstract – The analysis of mechanical buckling of nano-plates by the non-local theory of Reissner Mindlin 

which takes into account the effects of small scales is made in this work. A particular effort is made on the 

various parameters which influence the buckling load of the nano-plates, such as: the number of modes, the 

geometric parameters and the mechanical parameters. 
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I. INTRODUCTION 

Nanostructures have attracted considerable 

attention in the scientific communities of 

researchers for micro-electromechanical (MEMS) 

and nano-electromechanical (NEMS) systems. 

Several analytical and numerical analyzes for the 

mechanical behaviors of nanostructures have been 

published in the literature as molecular and 

mechanical dynamic simulations of continuous 

media. To cite, Sakhaee-pour et al [1] who, using 

atomistic modeling, studied the frequency 

characteristic of a single layer of graphene sheet 

with different boundary conditions. 

Moreover, the elastic buckling behavior of a single 

layer of graphene sheet is studied by the same 

modeling [2]. 

In addition, Behfar and Naghdabadi [3] used the 

continuum model based on the study of vibrational 

behavior of multilayer graphene sheets embedded in 

an elastic medium. 

The calculations of molecular mechanics 

simulations are very demanding, and classical 

theories do not admit the intrinsic size dependence 

in the elastic solutions of micro-nanometric 

materials and structures. 

Therefore, the nonlocal elasticity theory is 

formulated to modify the model of classical 

elasticity theory by considering the small-scale 

effect of nanostructures of materials by Eringen [4]. 

A non-local plate continuum model was 

formulated for the first investigation of the small-

scale influence on micro-nanometer circular plate 

buckling by Duan and Wang [5] who found that the 

deflection became larger than the classic plate 

continuum model. 

  Among the many challenges, buckling analysis 

of nanoplates is more important for understanding 

the stability response under compressive loads for 

nanoscale plates than micro-electromechanical and 

nano-electromechanical components. 

The buckling behavior of biaxially compressed 

single-layer graphene sheets is investigated based 

on the nonlocal plate continuum model [6]. The 

results showed that they have a depreciating effect 

on the buckling load. 

http://as-proceeding.com/
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Pradhan [7] studied the high-order theory of shear 

strain using Eringen's nonlocal constitutive 

differential relations. 

II. Theoretical formulations 

 

1 Analysis of nano-plates by the theory of non-local 

elasticity 

 

Unlike the local theory, the non-local theory 

assumes that the stress at a point depends not only 

on the strain at that point, but also on the strains at 

all other points in the body. Eringen [8] proposed a 

differential form of the nonlocal constitutive 

relation as follows [9]: 

  

( )( ) ( )011 22

0 ijij

nl

ij cae  =−  

 

With: 
 

( )20ae : Parameter not local. 

nl

ij  : Tensor of non-local stresses. 

ijc   : Constant elastic 

ij   : Strain tensor. 

2  : Laplacian operator. 

 

In this work the graphene sheet nano-plate is 

modeled as a nano-plate of length L  , width b and 

thickness h , subjected to bi-axial compressive 

loads in a coordinate system ( )zyx ,,  , see figure1. 

 

 
 

Figure 1 Mindlin nano-plate geometry and properties. 

 

2 Elasticity of a solid 

 

A solid is said to be elastic if it returns to its 

original state when the external forces that deformed 

it are removed. This return to the starting state is due 

to internal constraints. 

For small deformations, it has been observed 

experimentally that the deformations of a solid are 

linearly proportional to the stresses applied to it. 

When the deformations are more important, this 

relation becomes nonlinear but the solid returns to 

its initial state when the constraints are removed. On 

the other hand, when the deformations increase and 

exceed a certain limit, these deformations are no 

longer elastic. 

 

After this elastic limit, the solid deforms in a 

permanent way (plastic deformation) and finally it 

breaks. Figure II.2 shows the interdependence 

between stresses and strains as a function of stress 

intensity. 

 

In the hypothesis of small strains, there is a one-

to-one relationship between stress and strain [10]. 

 

 
  

Figure 2 Typical relationship between stresses and strains in a 

solid [10]. 

 

3 Displacement field 
 

3.1 First order shear strain theory (FSDT) 
 

The first-order shear deformation theory extended 

the classical plate theory by taking into account the 

transverse shear effect. In this case, the stresses and 

strains are constant through the thickness of the 

plate, which requires the introduction of a shear 

correction factor [11]. 

 

2.3.2 Reissner-Mindlin assumptions [12] 
 

The behavior of the material is elastic. The 

relationship between the stress tensor and the strain 

tensor is given by Hooke's law. This translates a 

state of stress constantly proportional to the state of 

deformation. 

Reissner Mindlin's assumptions are as follows: 

1- A point of the mean plane has a movement in 

this plane; membrane stress may therefore appear in 

the middle sheet. 
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2- The state of stress is a state of plane stress; 

stresses normal to the mean sheet are neglected. 

3- A straight section, normal to the average sheet 

in the initial configuration, is not necessarily normal 

after deformation. 

4- The rotational inertia of the straight sections is 

taken into account. 

To introduce the effect of transverse shearing, the 

kinematic assumption is adopted: the normal 

remains straight but not perpendicular to the average 

surface (because of the effect of transverse shearing) 

in the deformed configuration (Figure 3) 

. 

 
 

Figure 3 Reissner-Mindlin kinematics [12] 

 

The field of displacement of the plate of Reissner-

Mindlin is written in the following way: 
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With : 

yx uu , and Zu : Displacement components. 

wvu ,, 00 : Membrane displacements of the normal 

of the mean plane (z = 0) of the nano-plate. 

 

 ( ) ( )yxyx yx ,,,    : The transverse rotations 

around the axes x et y; respectively. 

 

4 Deformation field 

 

The general form of the deformations according 

to displacements can be expressed as follows: 
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Or: 
 

yyxx  , : The components of normal deformations. 

yzxzxy  ,,  : Components of shear strains. 

 

5 Non-local constitutive equations 
 

By the use of the theory of nonlocal elasticity; 

Equation (1) gives the non-local constitutive 

relations of the graphene nano-sheet as follows: 
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With : 
 

( )vEG += 12/  
 

E  : Young's modulus. 

G    : Shear modulus. 

  : Poisson coefficient. 

 

6 Equations of motion 
 

Let us use Hamilton's principle to obtain the 

equations of motion. This principle is given by the 

following analytical form [13]: 

 

( ) )05(0
0

=+
t

dtWU  

 

 

Or : 
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: Index of variation with respect to x and y; 

respectively. 

:U    Strain energy 

:W    Potential energy. 

• The deformation energy of the nano-plate can be 

given by: 
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By replacing equations (3) and (4) in equation (6) 

and integrating through the thickness of the plate, 

the strain energy is written as follows: 
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The resulting forces and moments are defined by: 
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With : 

 

xxN , yyN  and xyN : The normal forces. 

 

xxM  and yyM : Bending moments. 

xyM   : The torque. 

xxQ and: Shear forces. 

 

By replacing the equations (3) and (4) in the 

equation (8) and by integrating through the 

thickness of the plate, one obtains the expressions of 

the forces and the moments according to 

displacements: 
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• The potential energy of the applied charges can be 

expressed by: 
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q  : The transverse distribution effort. 

xymymxm NNN ,,   : Compressive loads. 

 

     By replacing the expressions of equations (7) and 

(10) in equation (5) and then integrating by parts, 

the equations of motion of the nano-plate theory are 

obtained: 
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For this analysis, the nano-plate is subjected to a 

bi-axial compressive load defined as follows: 

)12(0,, ==== qNPNPN xymymxm    
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  With : 

 

 P   : Loading in the plane per unit length. 

    : Lateral load parameter. 

 

By using the relations (9) and (11), we obtain the 

following equations of motion: 
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7 Solution by the Navier approach 

 

For the resolution of the differential equations 

(13) we use the approach of Navier. 

 

The boundary conditions of a simply supported 

nano-plate are written as follows: 
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The expressions of displacements are chosen to 

satisfy the boundary conditions: 
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With : 
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By substituting the equations (15) in the equations 

(13) we obtain: 

)16(

0

0

0

000

000

001

653

542

321

















=

















































+

















mn

mn

mn

mnmn

Y

X

W

LP 







 

With : 

( ) ( ) 22222

0 ;1  +=++= mnmn Lae  

( )

( )

( )

( )

)17(

12112

12112

12112

2
3

2

2

3

6

3

2

3

5

2
3

2

2

3

4

3

2

22

1





















−−
−

−=

−
−

−=

−−
−

−=

−=

−=

+−=

Gh
GhEh

GhEh

Gh
GhEh

Gh

Gh

Gh























 

By solving the equation (16) and we obtain the 

following critical buckling load: 
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III. Analysis of results 

 

We have studied the buckling behavior of square 

nano-plates simply supported by Mindlin's non-

local theory. The differential equations of motion of 

this theory are given in equations (13). 

 

When we put ( ) 0
2

0 =ae  in the equations (13), we 

obtain the expressions of the local Mindlin plate 

theory. These differential equations are the same 

expressions given by Hashemi et al [13]. 

 

1 Physical parameter of the model 

 

The material used for the present study is an 

isotropic material (graphene sheet); The following 

table shows the geometric and mechanical 

characteristics: 
Table 1: Geometric and mechanical characteristics of the 

material used [7]: 
 

Features 

Nano plate thickness ( )h  0.34 nm 

Modulus of elasticity ( )E  1.02 TPa 

Poisson coefficient ( )  0.3 

 

The buckling load ratio is defined as the ratio of 

the buckling loads obtained by the non-local 

elasticity theory crP  to those obtained by the local 

elasticity theory 0P  when ( ) 0
2

0 =ae  . 

So we have: 
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 )19(0PPRap cr=  

 

2 Effects of mode number on nano-plate buckling 

load ratio of graphene sheet 

         First, and based on the mathematical 

formulations, a computer program is developed to 

study the buckling behavior of the 

 

nano-plates using non-local first-order shear 

strain theory. 

 

Figure 4a represents the buckling load ratio 

variation of a nano-plate subjected to bi-axial 

compression for different buckling modes ( nm = ) 

and for a single non-local parameter value 

( ) 22

0 2 nmae =  , while for Figure 4b, we have 

chosen different buckling modes of type ( nm  ). It 

is found that the buckling load ratio decreases with 

increasing buckling modes and increases with 

increasing nanoplate length (L). 

 

  
Figure 4a Variation of the buckling load ratio as a function of 

the length of a square nano-plate for different buckling modes 

nm = . 

  
Figure 4b Variation of the buckling load ratio as a function of 

the length of a square nanoplate for different buckling modes 
nm  . 

3 Effects of different parameters on nano-plate 

buckling load ratio of graphene sheet 

 

The buckling load ratio variations for the first 

mode ( 1== nm ), the third mode ( 3== nm  ) and 

the fifth mode ( 5== nm ) are presented 

respectively in figures 5a, 5b and 5c as a function of 

variations in the percentages of different parameters 

such as graphene sheet length, thickness, non-local 

parameter and modulus of elasticity. These figures 

show that the buckling load ratio decreases with 

increasing nonlocal parameter and increases with 

increasing nano-plate length. Otherwise, there is an 

insignificant effect of the modulus of elasticity and 

the thickness on this ratio. The comparison between 

the three figures shows that the increase in the 

number of modes causes a decrease in the buckling 

load ratio. 

  

Figure 

5a Variation of the buckling load ratio as a function of the 

percentage variation of the different parameters 

( ( )20,,, aeLhE  ) for 1== nm . 

 
 

Figure 5b Variation of the buckling load ratio as a function of 

the percentage variation of the different parameters 

( ( )20,,, aeLhE  ) for 3== nm  . 
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Figure 5c Variation of the buckling load ratio as a function of 

the percentage variation of the different parameters 

( ( )20,,, aeLhE  ) for 5== nm  . 

 

VI. CONCLUSION 

The non-local theory of first-order deformation 

shear is used for the buckling analysis of nano-

plates. 

  The present theory takes into consideration the 

effect of the scale which is based on the differential 

equations of nonlocal and the constitutive relation 

of Eringen, which led to obtain the equations of 

motion; using Hamilton's principle. 

Analytical buckling load solutions are developed 

for simply supported plates. 

  The numerical examples show the effects of 

different parameters which influence the buckling 

load such as the effect of the scale, the number of 

modes, the geometric parameters and the 

mechanical parameters. 

This study can be useful for the design of electronic 

nano-devices such as atomic dust detectors and 

biological probes. 
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