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Abstract – This paper investigates the different sequences that can be used in direct sequence division 

multiple access (DS- CDMA) systems. The auto-correlation, cross correlation, the mean square correlation 

measurements ( RAC,  RcC ) and merit factor (MF) are used for evaluating the performance of different 

spreading sequences. The results obtained small set of Kasami sequences is the most effective of binary 

sequences families in terms of correlation measure, but this set suffers from the limited number of 

sequences. Overall among orthogonal category, Orthogonal Gold sequences and Golay complementary 

sequences are a better candidate in synchronous CDMA applications.   

Keywords – Direct Sequence Code Division Multiple Access, Auto-Correlation, Cross Correlation, The Mean Square 

Correlation Measurements, Merit Factor MF, Small Set of Kasami, Orthogonal Gold Sequences, Synchronous CDMA. 

 

I. INTRODUCTION 

In a code division multiple access (CDMA) 
system, a large number of users share a common 
channel to transmit information to a receiver [1]. 
That is can by use of the most commonly used 
methods for the spread spectrum technology wich is 
direct sequence spread spectrum (DS-SS). In a DS-
CDMA system, each user is assigned a unique code 
also known as sequence that allows the user to 
spread the information signal. The receiver uses 
cross correlation to separate the appropriate signal 
from signals meant for other receivers, and 
autocorrelation to reject multipath. Code-selection 
has a large impact on the performance of the system.  

The desirable characteristics of CDMA 
sequences include : (i) availability of large number 
of sequences to support large number of users in the 
system, (ii) the length of the code should be large so 
that the spreaded signal is able to maintain its noise 
like properties (ensure adequate safety of the 
message),(iii) impulsive autocorrelation function to 
ensure a good synchronization at receiver [2],( iv ) 
zero cross-correlation values to eliminate the effect 

of multiple access interference at the receiver [3] and 
(v) ease of generation. 

Sequences that can be used in DS- CDMA 
systems are: Walsh-Hadamard sequences [4], 
orthogonal variable spreading factor (OVSF) 
code[5], orthogonal Gold sequence, Golay 
complementary sequences [6], m-sequences [7], 
Gold sequences[8], Kasami sequences[9], Weil 
sequences [10], Barker  sequences[11], random 
sequences or memory sequences[12], chaotic 
sequences[13], and zero correlation zone (ZCZ) 
sequences[14], [15]. The first four sequences are 
orthogonal i.e.whose mutual CCFs are zero for any 
time shift while the other sequences show cross-
correlation values unequal to zero. 

Ideally, the spreading sequences are designed to 
have highest possible peak ACF value and lower 
correlation peaks (side-lobes) at non-zero shifts and 
very low cross-correlations function (preferably 
zero) (CCF) for all time-shifts. Thus, the spreading 
sequences should be carefully chosen to ensure both 
characteristics simultaneously. 
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In this paper, we will present an evaluation of the 
ACF, CCF properties, aperiodic correlation and 
cross-correlation measurements and merit factor MF 
of the different types of spreading sequences used in 
DS-SS systems. 

The paper is organised as follows. In the next 
section, we show the generation principle of 
defferent spreading sequences. In section III, we 
provide the main caracteristics used for evaluating 
the performance of different spreading sequences. 
The evaluation of correlation characteristics of 
spreading sequences are presented in section IV, and 
finally we conclude the paper. 

II.  CONSTRUCTION OF SPREADING SEQUENCE 

A.  Walsh Hadamard Sequence 

The name of this code comes from the American 
mathematician Joseph Leonard Walsh and the 
French mathematician Jacques Hadamard [4]. 

The Walsh sequences are constructed from the 
Hadamard transform matrix. They are composed of 
 2n binary sequences, each of length 2n, they 
correspond to rows or columns of the orthogonal 
matrix [N × N] constructed recursively as follows: 

H0 = [0] 

 HN = [
HN/2

 
    HN/2

HN/2   HN/2̅̅ ̅̅ ̅̅ ] () 

Orthogonality is the most important property of 

Walsh-Hadamard sequences. Because of this 

orthogonality property, the cross-correlation 

between any two Hadamard-Walsh sequences of the 

same set is zero, when system is perfectly 

synchronized. 

A. Orthogonal variable spreading factor(OVSF) 

OVSF [4-5] sequences were first introduced for 
3G communication systems. OVSF sequences are 
primarily used to preserve orthogonality between 
different channels in a communication system. 
OVSF sequences are defined as the rows of an 𝑁-by-
𝑁 matrix, CN, which is defined recursively as 
follows.  

 CN =

[
 
 
 
 
 
 
 
 
CN(0)

CN(1)

CN(2)

CN(3)
.
.

CN(N − 2)

CN(N − 1)]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

CN/2(0)    CN/2(0)

CN/2(0)    CN/2(0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

CN/2(1)    CN/2(1)

CN/2(1)    CN/2(1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

.

.
CN/2(N/2 − 1)  CN/2(N/2 − 1)

CN/2(N/2 − 1)  CN/2(N/2 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
 
 
 
 
 
 
 
 
 

 () 

Where CN (n) is the row vector of N elements. 

N =  2K (K is a positive integer) and 

CN
2

(
N

2
− 1)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(n)is the binary complement of 

 CN/2(n).  

Note that CN is only defined for N a power of 2. 
These sequences can also be defined recursively by 
a an OVSF tree [16], as shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig 1. Code three of Orthogonal Variable Spreading Factor 

(OVSF) sequences. 

In this figure, the OVSF sequences described as 
CSF,i  where  SF is the spreading factor (length of the 

code) and k is the code number, 0 ≤ i ≤ SF -1. All 
code sequences at the same hierarchical level of the 
tree are the same length (eg, SF = 4 for all sequences 
 C4,k). 

B. Orthogonal Golay complementary sequences 

Golay complementary sequences, often referred 
as Golay pairs, are characterised by the property 
thatthe sum of their aperiodic autocorrelation 
functions equals to zero, except for the zero shift. 

Let A a set of spreading sequences consisting L 
sequences of length N noted Ai. Let RAi,Ai(τ)  denote 
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𝐶8(7) 
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the autocorrelation function of the sequence Ai. 
Clearly, a set of sequences is a complementary [18] 
set if and only if : 

 ∑ RAi,Ai(τ) = NLδ(τ)L
i=1  (3) 

Further, each sequence A is complementary with 
at least one other sequence B with: 

 RA,A(τ) + RB,B(τ) = 2Nδ(τ) (4) 

The orthogonal Golay complementary sequences 
of length N are constructed recursively as follows: 

 HN = [
HN/2 H̃N/2

HN/2 −H̃N/2
] (5) 

where HN is matrix of Golay of dimension N ×
N   (N = 2n, n > 0)  and  H̃N is the permuted matrix 
of  HN, ex., if  HN = [AN BN] where AN and BN are 

matrix of  N ×
N

2
 , so H̃N ≜ [AN −BN]. 

C. M-sequence 

M-sequence or Maximal Length Sequence are, by 
definition, the largest sequences that can generate by 
an n-stage linear feedback shift registers [7] (LFSR) 
as shown in Fig.2. 

 

 

 

 

 

 

Fig 2. Linear feedback shift register of length n. 

The sequence ai is generated according to the 
recursive formula given as: 

 ai = Ciai−1 + C2ai−2 +⋯+ Cnai−n = ∑ Cnai−k
n
k=1

 () 

The first n bits a0, … , an−1  form the initial state 
of the register. 

The feedback coefficients are usually represented 
by a polynomial of degree n, called generator 
polynomial: 

 P(x) = C0x
n + C1x

n−1 +⋯+ Cn−1x + Cn () 

Where: Ci ∈ [0,1] and  C0 = Cn = 1 

The period of the binary sequence generated by 
an LFSR is maximal (2n − 1) when the generator 
polynomial is primitive. 

D. Gold sequence 

One important class of periodic sequences which 
provides larger sets of sequences with good periodic 
crosscorrelation is Gold sequences. A set of Gold 
sequences can be constructed by the XOR of two m-
sequences of the same length 𝑁. 

The set of Gold sequences generated with the two 
preferred pair of m-sequences u and v is given as: 

 G(u, v) =   ሼu, v, u⨁v, u⨁T ∙ v, u⨁T2 ∙
v, … , u⨁TN−1 ∙ vሽ () 

Where ⊕ is the sum modulo-2, T is the cyclic 
shift operator. 

A set of Gold  sequences of period 𝑁 =  2𝑛  −
 1, consists of 𝑁 +  2 sequences, where 𝑛 is the size 
of the LFSR that generated the two m-sequences. 

E. Orthogonal Gold sequence 

These sequences are obtained by modifying 
original Gold sequences generated by a preferred 
pair of m-sequences [8]. Many cross-correlation 
values of Gold sequences are -1. By attaching one 
zero to the original Gold sequences, it is possible to 
make cross-correlation values to 0, with no shift 
between the two sequences. The total number of 
orthogonal Gold sequences of length N, obtained is 
equal to 2n.  

F. Kasami sequences 

Another important type of DS- CDMA code is the 
code of Kasami, which was proposed by professor 
Kasami in 1960[4]. 

There are two classes of Kasami sequences: the 
small set and the large set. 

a. Small Set of Kasami Sequences 

For an m-sequence u, w is obtained by taking 
every qth bit of u and denoted u [q].  w is called a 

decimated sequence of u. By choosing q = 2n/2 +
1, where n is the degree of sequence u, w is periodic 

with period  2n/2 − 1 . By repeating w, q times, such 
that w is of the same length as u, a new sequence is 
obtained . With u and w we form a small set of 
Kasami sequences by adding u and w cyclically 
shifted. 

The small set of Kasami sequence for n even can 
define as: 

𝑎𝑖−1 𝑎𝑖−2 ………… 𝑎𝑖−(𝑛−1) 𝑎𝑖−𝑛 

⨁ ⨁ ⨁ 

⨂ ⨂ ⨂ ⨂ 𝐶1 𝐶2 𝐶𝑛−1 𝐶𝑛 

𝑎𝑖  
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 Ks(u) = {u, u⊕w, u⊕ Tw,… , u⊕ T2
n/2−2w}

 () 

It will generate 2n/2 of small set of Kasami binary 
sequences with period  2n − 1 (where n is even). 

ACF of small set of Kasami sequences is three 
valued and takes on value in the set: ሼ−1, −s(n),
s(n) − 2 ሽ , where :  s(n) = 2n/2 + 1. 

Therefore, the maximum of cross-correlation of 
small set of Kasami sequences is: 

 θmax = s(n) = 2n/2 + 1 () 

b. Large Set of Kasami Sequences 

Large set of Kasami sequences contains both 
small set of Kasami sequences sequences [9]. 

Let u be an m-sequence of period  N = 2n − 1 
generated with a polynomial generator of order n 

even, Find w and v  by decimating   u by 2n/2 + 1 

and by  2(n+2)/2 + 1. 

The family of Kasami sequences is formed by the 
modulo-2 addition of u, v and w with different shifts 
of v and w. The number of such sequences is M =

2
3n

2⁄  if  n = 0(mod 4) or M = 23n/2 + 2n/2 if  n =
2(mod 4). 

If n = 0(mod 4) the large set of Kasami 
sequences is defined as: 

 Kl(u, n, k,m) =

{
  
 

  
 
u                                 , k = −2,m = −1                                   
v                                 , k = −1,m = −1                                   

u⨁Tkv                     , k = 0,… , 2n − 2,m = −1                  

u⨁Tmw                    , k = −2,m = 0,… , 2
n

2 − 2                 

v⨁Tmw                    , k = −1,m = 0,… , 2
n

2 − 2                   

u ⊕ Tkv ⊕ Tmw     , k = 0,… , 2n − 2,m = 0,… , 2n 2⁄ − 2
 () 

In which k and m are the shift parameters for the 
sequences v and w respectively. There are N possible 
circular shift. 

The correlation function for the sequences takes 
on the values ∶ ሼ−t(n),−s(n),−1, s(n) − 2, t(n) −
2ሽ , where: 

t(n) = 1 + 2(n+2)/2           n is even 

And  

 s(n) =
1

2
(t(n) + 1) () 

The maximum of cross-correlation of large set of 
Kasami sequences is: 

 θmax = t(n) = 2n/2 + 1       () 

 

G. Weil sequences 

Weil sequences are a relatively new family of 
binary sequences with very good correlation 
properties. They exist for any length L, where L is a 
prime number. 

Weil sequences are based on Legendre sequences 
and can be obtained by adding (exclusive or) of 
them. Legendre sequences can be generated by 
quadratic residues as follow [19] : 

a. Quadratic residues 

For a prime number L and an arbitrary positive 
integer  a (a < L): we say that a is the quadratic 
residue modulus L if the equation   x^2 mod L =
a  has a solution x. 

That is to say, it can be proved whether a is a 
quadratic residue or not by computing the value of 
the expression: 

 f(a) =  a
(L−1)

2⁄  mod L () 

This expression can only take values +1 and −1, 
and the Legendre sequence is formed as follows: 

 [0 𝑓(1)  𝑓(2)…𝑓(𝐿 − 1)] () 

b. Weil sequences 

Weil sequences "W" is obtained by the XOR addition of 
Legendre sequences u with a shifted replica of itself. They are 
given by: 

•  W(u) = {u⨁Tu⨁T2u,…Tfloor(
L
2⁄ )u} () 

H. barker sequences 

Barker sequences are short length sequences that 
offer good correlation properties. Known Barker 
sequences are tabulated in Table 1. 
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Table 1. List of Known Sequences Barker 

III. CORRELATION CHARACTERISTICS 

A. Auto-Correlation 

Auto-correlation function (ACF) is a measure of 
the similarity between a code c and its time shifted 
replica [20-21-22]. Mathematically, it is defined as: 

 Ri,i[τ] = ∑ ci. ci−τ
N
i=1  () 

Ideally, the spreading sequences must have 
highest possible peak value of ACF and lower 
correlation peaks (side-lobes) at non-zero shifts for 
ensured a good synchronization at receiver [20-21-
22]. 

B. Cross-Correlation 

Cross-correlation function CCF is the measure of 
similarity between two different code ci and cj. We 

obtain the general definition of the cross correlation 
replacing ci−τ by cj−τ in equation x: 

 Ri,j[τ] = ∑ ci. cj−τ
N
i=1  () 

CCF indicates the correlation between the desired 
code sequence and the undesired ones at the receiver. 
Therefore, low cross-correlation value (close to 0 at 
all time shifts) is required in order to eliminate the 
effect of multiple access interference at the 
receiver[20-21-22]. 

C. Mean Square Correlation Measures 

The performance of different PN sequences is 
usually evaluated by mean square aperiodic auto-
correlation RAC (MSAAC) and mean square 
aperiodic cross-correlation RCC (MSACC) 
measures. These correlation measures have been 
introduced by Oppermann and Vucetic [23] 

The discrete aperiodic correlation function is 
defined as [21]: 

𝑟𝑖,𝑗(𝜏) =
1

𝑁
∑ 𝑐𝑖(𝑛). 𝑐𝑗
𝑁−1
𝑖=1−𝑁 (𝑛 + 𝜏)         (19) 

The mean square aperiodic auto-correlation value 
for a code set containing M sequences is given by 
[21]: 

 𝑅𝐴𝐶 =
1

𝑀
∑ ∑ |𝑟𝑖,𝑖(𝜏)|

2𝑁−1
𝜏=1−𝑁,𝜏≠0

𝑀
𝑖=1  () 

The mean square aperiodic cross-correlation 
value is given by: 

 𝑅𝐶𝐶 =
1

𝑀(𝑀−1)
∑ ∑ ∑ |𝑟𝑖,𝑗(𝜏)|

2𝑁−1
𝜏=1−𝑁

𝑀
𝑗=1,𝑗≠𝑖

𝑀
𝑖=1

 () 

D. Merit Factor  

Another important quantitative measure of a code 
sequence's quality is Merit Factor or MF defined by 
Golay [24]. 

It characterizes the difference between the desired 
and actual ACF properties of long binary sequences. 
Itis given, for a binary sequence S of length N, as 
follows: 

 𝑀𝐹(𝑆) =
𝑅𝑆(0)

2

∑ |𝑅𝑆(𝑢)|2𝑢≠0
=

𝑁2

2∑ |𝑅𝑆(𝑢)|2
𝑁−1
𝑢=1

 () 

Where RS(u)
2 is the energy of the uth peak and 

RS(0) is the central peak value of the ACF. The best 
binary sequences are those having the largest MF.  

These four measures have been used as the basis 
for comparing the sequence sets in this paper. 

IV. SIMULATIONS AND RESULTS 

A. Evaluation of Correlation Characteristics 

Different spreading sequences of desired length 
are generated as described in sections II, and the 
characteristics of ACF and CCF of the set family of 
each length are computed.  

Fig.3 and Fig.4 shows the ACF value for different 
spreading sequences of length 8 and 63 bits. 

Length 𝐍 sequence 

2 [1 1] 

2 [-1 1] 

3 [1 1 -1] 

4 [1 1 -1 1] 

4 [1 1 1 -1] 

5 [1 1 1 -1 1] 

7 [1 1 1 -1 -1 1 -1] 

11 [1 1 1 -1 -1 -1 1 -1 -1 1 -1] 

13 [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1] 
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Fig 3. ACF Characteristics of orthogonal sequences of 

length 8. 

It is observed from Fig.3 that the many side-lobes 
have the same value as that of peak ACF value (i.e. 
8) at zero shifts for each two Walsh-Hadamard and 
OVSF sequences. It has been observed that 
orthogonal Gold sequences possess better ACF 
characteristics as compared to Walsh sequences; the 
level of secondary code peaks is much lower 
compared to the peak of ACF at zero shifts. Is clearly 
noticed from same figure that the peak side lobe 
level is 6 dB down compared to the peak of ACF at 
zero shift for complementary Golay sequences. 
Thus, Golay sequences possess better ACF 
characteristics as compared to both Walsh sequences 
as well as orthogonal Gold sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. ACF Characteristics of different pseudo-random 

sequences of length 63 

It has been observed from the Fig.4 that m-
sequences possess ideal impulsive ACF 
characteristics. It means that peak value exists at 
zero time-shift and zero values are present for all 
other time shifts i.e. no side-lobe exists in ACF 
characteristics. From the results, among all other 
sequences, Barker sequence has single peak ACF 
and all side lobes amplitudes are very less. For small 
set of Kasami sequences of length N = 63, ACF 
values are less than Gold and large set of Kasami 
sequences. It is seen from the figure also that none 
of Gold, large set of Kasami and Weil sequences 
possess the ideal 2-valued impulsive characteristics. 
Thus, m-sequence and Barker sequences are the best 
in terms of ACF characteristics. 

In the similar fashion, the cross-correlation 
characteristics are also being plotted in Fig.5. 

It has been observed from the Fig.5 that a large 
set of m-sequences have large cross-correlation. This 
implies that they are harder to be distinguished and 
may cause false synchronization in CDMA based 
systems. Comparing the cross-correlation plots for 
the two Gold and small set  of Kasami sequences, it 
is clear that small set  of Kasami code has lower 
bounds (-9,-l and 7) than that of Gold code, which 
bears 3-level bounds of 31, 15, -I and -17. The peak 
value of cross-correlation function of large set of 
Kasami, is larger than a small set of Kasami 
sequences and, in fact, is the same as for a set of Gold 
sequences. The peak value of cross-correlation 
function of Weil code has lower bounds (-15, 13) 
which is smaller than Gold and Large set of Kasami. 
Thus, small set of Kasami sequences is the most 
effective of binary sequences families mentioned 
above in terms of CCF characteristics. 
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Fig. 5. CCF Characteristics of different pseudo-random 

sequences of length 63 

B. Evaluation of RAC, RCC and MF Properties 

The RAC, RCC and MF values are calculated for 
64-bit length orthogonal sequences. The results are 
tabulated in Table 2. 

Table 2. Aperiodic correlation and cross-correlation 

measurements for orthogonal sequences of length 64 bits. 

 

From the results obtained, it is observed that the 
Walsh-Hadamard code value RAC is very high and 
the MF value is very low. Therefore, the spectre of 
these sequences do not have the characteristic of 
noise. The complementary Golay code takes the 
lowest  RAC values. On the other hand, its MF value 
is very high, which explains why its spectrum is flat 
and is similar to that of noise. So the complementary 
Golay code presents a better performance in 
comparison with the orthogonal Walsh-Hadamard 
and Gold sequences.  

The  RAC, RCC and mf values are calculated for 
other sequences of length 63 bits are given in Table 
3 . 

From the obtained results, it is observed that m-
sequence and Barker sequences have low values of 
 RAC. On the other hand, the value of the MF is very 
high, which implies that the spectra of these 
sequences are flat (the amplitudes of the secondary 
peaks are very low). Small set of Kasami sequence  
have low values of  RAC , thus making the MF of 
these sequences high and therefore the 
corresponding spectra flat. On the other hand, large 
set of Kasami's sequences have  
RCC values that are almost identical to those of 
Gold's sequences.  

Table 3.Aperiodic correlation and cross-correlation 

measurements for sequences of length 64 bits 

V. CONCLUSION  

In this paper, a comparative study is carried out 
to analyze the performance of different spreading 
sequences for a DS-CDMA system. Their 
performances were compared based on ACF, CCF, 
RAC, RCC and MF properties. 

From the results obtained, it is observed that: 

Small set of Kasami sequences is the most 
effective of binary sequences families mentioned 
above in terms of correlation measure(ACF, RAC), 
but this set suffers from the limited number of 
sequences. Large set of Kasami sequences are the 
best in respect of the requirements, and are being 
considered for future CDMA based systems. For 
orthogonal sequences, orthogonal Gold sequences 
are a good alternative in terms of correlation, it 
possess better CCF characteristics as compared to 
all the three sequences Walsh, OVSF and 
complementary Golay sequences. Therefore, it is 
concluded that overall among orthogonal category, 
orthogonal Gold sequences and Golay 
complementary sequences are a better candidate in 
synchronous CDMA applications.  

On the other hand, complementary Golay code 
presents a better performance of  RACin comparison 
with the orthogonal Walsh-Hadamard and Gold 

Sequence   𝐑𝐀𝐂 𝐑𝐂𝐂 MF 

m-sequence  0.4429 ----------

----- 

2.2577 

Barker (13 

bits) 

0.0710 ----------

----- 

14.0833 

Gold 0.9758 0.9849 1.0248 

Small set of 

Kasami  

0.7967 1.0003 1.2552 

Large set of 

Kasami  

0.9671 0.9979 1.0340 

Weil (61bits) 0.9048 0.9815 1.1052 

Sequence   𝐑𝐀𝐂 𝐑𝐂𝐂 MF 

Walsh-

Hadamard  

 10.8621 0.8583 0.0921 

Orthogonal 

Gold  

 1.0259 1.0167 0.9748 

complementary 

Golay 

 0.9758 1.0266 2.6982 
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sequences. Among all other sequence m_sequences 
and Barker sequences have low  RAC values. 
(amplitudes of the secondary peaks are very low). 
Also large set of Kasami sequences have values of 
 RCC that are almost identical to those of Gold's 
sequences. 
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