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Abstract – The physical quantities in real-life can be measured by using devices called sensors. These 

devices are not perfect/ideal devices which have the properties called sensitivity and resolution. As the 

sensors became more sensible with a higher resolution the current/real physical data can be obtained. 

However even by using the best possible sensor, the sensor still under the measurement noise. Therefore, 

it is natural to have noise in engineering problems. To solve these engineering problems the noise should 

be considered in the calculations. In Multiobjective optimization this noise can be added to the objectives 

and called noise Multiobjective optimization problems. To solve these problems the most common method 

is called re-sampling which is the calculation the objectives many times and taking the average of their 

values. The dynamic re-sampling is a method for efficient with respect to the computational source. In this 

research a new dynamic re-sampling method is proposed and named as oscillation-based linear dynamic 

sampling method. This method is integrated into four different Multiobjective optimization algorithms and 

applied to eight benchmark problems. The results showed that the proposed method gives acceptable results 

with relatively small number of additional function evaluation. 
 

Keywords – Optimization, Multiobjective, Computational Optimization, Noise, Decomposition 

 

I. INTRODUCTION 

The multiobjective optimization algorithms are 

composed of objective functions more than one, and 

for this reason unlike single objective optimization 

problems not a single solution but a set of solutions 

are obtained from the problems. In noise 

Multiobjective optimization the noise is added to all 

objectives as defined in Equation 1. 

 

𝐹𝑛𝑜𝑖𝑠𝑦(𝑥) = 𝐹(𝑥) + 𝑟     (1) 

 

where noise vector (r) is added/summed with each 

objective value (F), where Normal distribution with 

zero mean and 0.15 standard deviation is added as 

the noise. The decision variables (x) are defined 

inside and range with upper and lower boundary. 

The best solution is known as Pareto set and the 

shape of the objective values of the Pareto set is 

called the Pareto front. From the optimization 

algorithms it is expected to generate solutions which 

are close to the Pareto front and distributed among 

it. 

One of the possible solutions for the noisy 

optimization problems is called averaging or re-

sampling method [7,8,9]. In this method the 

objective functions are evaluated more than one and 

the average of this calculation is taken as the 

objective value. Therefore, the effect of the noise 

decreases. There are two types of the re-sampling 

method exists which are static and dynamic re-

sampling methods. In static method for each 

iteration same number of functions are evaluated. 

This method needs more computations resources 

and calculates unnecessary function evaluations. 

Because at the initial iterations it is expected from 

the optimization algorithm to explore the search 

space. Therefore, noisy objective may help the 

algorithm. To reduce and using the computational 

resources efficiently, dynamic re-sampling is a good 

method for noisy optimization problems.  
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Table 1. IGD values for the proposed method for a = 2 

Problem M D NMPSO DMOEAeC MOEAD NSGAII 

BT1ND 2 30 

3.4835e+0  

(1.40e-1) - 

2.3256e+0  

(6.40e-1) = 

3.5405e+0  

(1.46e-1) - 

2.6123e+0  

(3.80e-1) 

BT2ND 2 30 

1.2463e+0  

(2.07e-1) - 

2.6078e-1  

(2.27e-1) + 

8.0586e-1  

(1.18e-1) - 

3.4036e-1  

(6.92e-2) 

BT3ND 2 30 

3.3255e+0  

(5.84e-1) - 

3.5528e-1  

(2.34e-1) + 

3.0282e+0  

(4.72e-1) - 

7.7404e-1  

(3.65e-1) 

BT4ND 2 30 

2.9905e+0  

(5.03e-1) - 

3.0392e-1  

(8.49e-2) + 

2.7558e+0  

(2.44e-1) - 

5.3633e-1  

(2.30e-1) 

BT5ND 2 30 

3.3144e+0  

(2.54e-1) - 

1.9186e+0  

(2.59e-1) + 

3.5002e+0  

(1.77e-1) - 

2.3792e+0  

(3.03e-1) 

BT6ND 2 30 

1.3101e+0  

(4.33e-1) - 

4.5562e-1  

(9.73e-2) = 

3.2381e-1  

(7.96e-2) + 

5.2458e-1  

(1.24e-1) 

BT7ND 2 30 

1.4979e+0  

(6.38e-1) - 

6.5944e-1  

(1.37e-1) - 

4.8487e-1  

(1.33e-1) = 

3.7472e-1  

(9.32e-2) 

BT8ND 2 30 

3.6347e+0  

(1.38e+0) - 

5.0775e-1  

(2.23e-1) = 

2.1622e+0  

(5.97e-1) - 

4.2716e-1  

(2.13e-1) 

+/-/= 0/8/0 4/1/3 1/6/1   

 

In this study a new dynamic re-sampling method 

is proposed which is named as Oscillation-based 

Linear Dynamic Sampling Allocation method. In 

this method sample size is detected by using the 

current number of function evaluation and oscillated 

manner to get/select the sample size. By this way the 

exploration property of the optimization algorithm 

is supported by this proposed method therefore with 

a relatively small number of additional function 

calculations better results will be obtained. 

This paper is organized beginning with the 

introduction section. After the introduction section 

at the material and method section the proposed 

dynamic re-sampling method with the brief 

explanations of the optimization algorithms and 

benchmark functions with performance 

measurement metrics are explained. After the 

implementation section the conclusion is given as 

the final section. 

 

II. MATERIALS AND METHOD 

In this section the proposed dynamic re-sampling 

method is explained. Next the optimization 

algorithms are explained briefly. The reader gets 

detailed information from the reference of 

algorithm. Finally, the benchmark problems and 

performance measurements used in this research is 

presented. 

 

A. Dynamic Re-sampling 

The static re-sampling methods needs more 

evaluations of the objective functions when 

compared with dynamic re-sampling methods. In 

this research a new re-sampling method is proposed 

and named as oscillation-based linear dynamic 

sampling method. The mathematical description of 

the method is given in Equation 2. 

 

𝑆 = 𝑐𝑒𝑖𝑙 [𝑎 + 2𝑠𝑖𝑛 (
2𝜋𝐹𝐸

𝐹𝐸𝑚𝑎𝑥
)]                    (2) 

where S is the dynamic sampling size, a is the 

parameter which is the mean of the sample size, FE 

is the current function evaluation and FEmax is the 

maximum number of function evaluation. The 

sample size is changes with respect to the number of 

function evaluations. The oscillation-based 

behaviour of the sample size is demonstrated in 

Figure 1 and mathematically in Equation 2. 

 
Figure 1. Distribution of the Sample Size for Dynamic Re-

sampling Method for a=5 
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Table 2. IGD values for the proposed method for a = 3 

Problem M D NMPSO DMOEAeC MOEAD NSGAII 

BT1ND 2 30 

3.4451e+0  

(1.35e-1) - 

2.0536e+0  

(8.09e-1) = 

3.4935e+0  

(1.35e-1) - 

2.2783e+0  

(5.42e-1) 

BT2ND 2 30 

1.0420e+0  

(1.52e-1) - 

2.1593e-1  

(4.63e-2) + 

8.0180e-1  

(9.52e-2) - 

3.6940e-1  

(6.07e-2) 

BT3ND 2 30 

2.9863e+0  

(5.36e-1) - 

3.1375e-1  

(2.44e-1) = 

3.0206e+0  

(3.07e-1) - 

4.5466e-1  

(3.19e-1) 

BT4ND 2 30 

2.6691e+0  

(4.04e-1) - 

3.2220e-1  

(2.24e-1) = 

2.3993e+0  

(3.83e-1) - 

4.3195e-1  

(2.40e-1) 

BT5ND 2 30 

3.2634e+0  

(1.95e-1) - 

1.5749e+0  

(2.63e-1) + 

3.4708e+0  

(2.69e-1) - 

2.1045e+0  

(2.98e-1) 

BT6ND 2 30 

1.7098e+0  

(6.22e-1) - 

3.7629e-1  

(1.25e-1) = 

2.8445e-1  

(6.53e-2) = 

3.9662e-1  

(1.56e-1) 

BT7ND 2 30 

7.4348e-1  

(4.43e-1) - 

4.7945e-1  

(2.52e-1) = 

4.0315e-1  

(1.04e-1) = 

3.9032e-1  

(1.58e-1) 

BT8ND 2 30 

4.3367e+0  

(8.93e-1) - 

4.1427e-1  

(3.21e-1) = 

2.2907e+0  

(6.60e-1) - 

3.6586e-1  

(9.03e-2) 

+/-/= 0/8/0 2/0/6 0/6/2   

 

B. Optimization Algorithms 

In this research four optimization algorithms are 

selected to compare the performance of the 

proposed dynamic re-sampling method. Therefore, 

four optimization algorithms are selected for a fair 

comparison. In this subsection these algorithms 

explained briefly especially the distinguish 

properties of the algorithms. 

 

Particle swarm optimization with a balanceable 

fitness estimation (NMPSO [1]): 

NMPSO is a PSO-based multiobjective 

optimization algorithm. Initially the algorithm 

begins with the randomly assigned -position- 

members. Then their objective values are evaluated 

and based on the domination idea the global best 

member and the personal best member which is the 

same position at the first iteration. Then the position 

and velocities are updated, and personal best 

members updated. By using the reference vectors 

and the perpendicular distance to the reference 

vectors the population is updated to the next 

iteration. 

 

A multiobjective evolutionary algorithm based on 

decomposition (MOEAD [2]): 

In this research two decomposition-based 

algorithms are applied to the problems. The best 

known is the MOEAD algorithm which is the first 

algorithm to propose decomposition as the selection 

operator in the genetic operator. In the algorithm 

crossover and mutation is applied to get a set of new 

population from SBX crossover and polynomial 

mutation methods. In addition, the neighbourhood 

matrix with the weight vector for the reference 

points are recorded and updated at each iteration. 

Based on the neighbouring matrix and weight 

vectors, the Tcbycheff method is applied as 

decomposition -aggregation- method. If a solution 

is better than it is survived to the next generation.  

 

Decomposition-based multiobjective evolutionary 

algorithm with the e-constraint framework 

(DMOEAec [3]): 

DMOEAeC is a decomposition-based 

optimization algorithm like MOEAD. In MOEAD 

the problem is divided into many subproblems by 

using the scalarizing function. However, in 

DMOEAeC only one objective is selected and other 

objectives as the constraint. In DMOEAeC, an 

upper bound vectors are generated with dividing 

objective axis into many equal spaces. Then 

solution-to-subproblem matching is applied which 

is based on calculating the Euclidean distance and 

minimum distance to certain subproblem to solution 

is matched. Finally with the dynamic resource 

allocation so that computational effort allocation to 

different subproblems with different difficulties. 
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Table 3. IGD values for the proposed method for a = 4 

Problem M D NMPSO DMOEAeC MOEAD NSGAII 

BT1ND 2 30 

3.1170e+0  

(2.64e-1) - 

1.7740e+0  

(8.60e-1) + 

3.5920e+0  

(1.81e-1) - 

2.0915e+0  

(3.24e-1) 

BT2ND 2 30 

9.1336e-1  

(1.26e-1) - 

3.2365e-1  

(1.39e-1) = 

6.8339e-1  

(3.87e-2) - 

3.7746e-1  

(7.92e-2) 

BT3ND 2 30 

2.2321e+0  

(6.05e-1) - 

5.1183e-1  

(5.00e-1) = 

2.2177e+0  

(7.94e-1) - 

3.3765e-1  

(2.23e-1) 

BT4ND 2 30 

2.2881e+0  

(5.49e-1) - 

2.0526e-1  

(8.38e-2) = 

2.0057e+0  

(3.89e-1) - 

2.2339e-1  

(1.23e-1) 

BT5ND 2 30 

3.0749e+0  

(2.97e-1) - 

1.5188e+0  

(3.74e-1) + 

3.4555e+0  

(2.44e-1) - 

1.9475e+0  

(4.54e-1) 

BT6ND 2 30 

1.4672e+0  

(7.64e-1) - 

3.6664e-1  

(9.99e-2) = 

3.3627e-1  

(6.53e-2) = 

3.9591e-1  

(1.28e-1) 

BT7ND 2 30 

4.9460e-1  

(3.11e-1) = 

5.7539e-1  

(1.45e-1) - 

4.9973e-1  

(1.56e-1) - 

2.9319e-1  

(1.19e-1) 

BT8ND 2 30 

3.4343e+0  

(1.24e+0) - 

5.7170e-1  

(3.55e-1) - 

1.8182e+0  

(6.20e-1) - 

3.1723e-1  

(1.73e-1) 

+/-/= 0/7/1 2/2/4 0/7/1   

 

Nondominated Sorting Genetic Algorithm (NSGA-

II [4]): 

Nondominated sorting is the well-known method 

to categorize the solution candidates with respect to 

the dominance idea so that the population is divided 

into different fronts. In NSGA-II algorithm the best 

members beginning with the first front survives to 

the next generation. For the remaining members the 

crowding distance is calculated, and more sparse 

members are selected to be in the next generation. 

Since this algorithm presents good results especially 

for two and three objective problems, it is selected 

to compared with other algorithms. 

C. Benchmark Problems and Performance 

Measurements 

The benchmark problems are the function who are 

defined to compare and test the optimization 

algorithms since their solution is known it is easy to 

compare the algorithms. However, the simple 

problems are not help to distinguish the 

performance of the optimization algorithms since all 

the algorithms may solve the problems. For this 

reason, a new set of benchmark problems proposes 

in the literature. Among them in [5] a set of 

problems called BT are proposed the difference of 

this algorithm is to use biases on the objective 

functions make them harder to solve. Unlike the 

single objective optimization algorithms, the 

solution of the Multiobjective optimizations is not a 

single value but a set of value that succeeded each 

objective. Since it is not easy to compare these sets, 

the functions are defined for performance 

measurements that called metrics. In this study to 

get the numerical value for how the solutions are 

close to the Pareto front is calculated from inverted 

generalized distance (IGD) [6]. In this metric the 

average of the Euclidean distance between obtained 

solution set and the Pareto front is calculated. The 

smaller value is expected for a good solution set. 

III. IMPLEMENTATION AND RESULTS 

The proposed method as dynamic re-evaluation 

method is integrated into four optimization 

algorithms are these algorithms are applied to the 

BT benchmark problems. Each problem has two 

objectives with 30-dimensional decision space. The 

implementations run for 100 population size and 

2x105 maximum number of function evaluation. In 

addition, the implementations are repeated 10 times 

and statistical properties of the IGD metric, mean 

and standard deviation is reported into tables. Also, 

statistically rank sum test results reported on the 

tables. As given in Equation 2 as the parameter a 

gets different value the total number of additional 

function evaluation increases. The parameters are 

selected as [2,3,4,5] and corresponding additional 

function calculations are [4998,6998,9894,10998], 

respectively. Therefore maximum 5% and 

minimum 2.5% additional function are evaluated. 
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Table 4. IGD values for the proposed method for a = 5 

Problem M D NMPSO DMOEAeC MOEAD NSGAII 

BT1ND 2 30 3.0751e+0  

(2.49e-1) - 

1.6989e+0  

(1.06e+0) = 

3.6125e+0  

(1.24e-1) - 

1.9107e+0  

(2.43e-1) 

BT2ND 2 30 8.6731e-1  

(8.69e-2) - 

2.5084e-1  

(1.26e-1) + 

7.0676e-1  

(5.72e-2) - 

3.5848e-1  

(6.16e-2) 

BT3ND 2 30 1.9144e+0  

(5.66e-1) - 

5.4437e-1  

(4.59e-1) = 

2.3839e+0  

(6.72e-1) - 

4.1266e-1  

(3.32e-1) 

BT4ND 2 30 1.9250e+0  

(3.46e-1) - 

1.6711e-1  

(8.48e-2) = 

1.8389e+0  

(3.96e-1) - 

1.9968e-1  

(8.30e-2) 

BT5ND 2 30 3.0413e+0  

(2.43e-1) - 

1.3306e+0  

(2.60e-1) + 

3.3503e+0  

(2.33e-1) - 

1.9905e+0  

(1.99e-1) 

BT6ND 2 30 1.1381e+0  

(6.31e-1) - 

3.3843e-1  

(4.72e-2) = 

3.4019e-1  

(4.68e-2) = 

3.2993e-1  

(1.16e-1) 

BT7ND 2 30 5.9555e-1  

(2.77e-1) - 

5.6290e-1  

(1.77e-1) - 

4.7423e-1  

(1.09e-1) - 

2.4403e-1  

(7.52e-2) 

BT8ND 2 30 3.5638e+0  

(9.10e-1) - 

4.3507e-1  

(1.61e-1) = 

1.7019e+0  

(5.20e-1) - 

3.3425e-1  

(7.31e-2) 

+/-/=   0/8/0 2/1/5 0/7/1  

 

Table 1 gives the results for a=2. Four 

optimization algorithms are compared, and the 

results showed that DMOEAeC algorithm gives 

be4st result among all the algorithms even NSGA-

II which presents good results especially for two 

objective problems. However statistical rank sum 

test indicates that the performance of DMOEAeC 

and NSGA-II algorithms are similar for BT1, BT6 

and BT8 problems. For other problems DMOEAeC 

clearly gives better results. 

Table 2 gives the results for a=3. Still the best 

results get from the DMOEAeC algorithm. 

However, for this time statistically it is much like 

NSGA-II performance which are approximately 

same in BT1, BT3, BT4, BT6, BT7 and BT8 

problems, only different in BT2 and BT5 problems. 

When the results are compared with the first table, 

as the number of additional calculations of function 

increases the performance of the result also 

increases. 

In Table 3, the results for a=4 are presented. For 

this case NSGA-II gets better but still DMOEAeC is 

the best algorithm for this case although statistically 

they are much closer to each other. When these 

results are compared with the first and second tables 

it is possible to comment that more than half of the 

problems in Table 3 the better results can be found 

than other previous tables. 

Table 4 gives the higher number of additional 

calculations for a=5. The results support the results 

obtained in Table 3 so that DMOEAeC gives better 

or similar results with the NSGA-II algorithm. The 

other algorithms fall behind these two algorithms. 

The results in Table 4 can be compared with other 

tables and it can be concluded that the more than 

half of the benchmark problems the proposed 

dynamic method gives better results with relatively 

lower number of additional function evaluations. 

 

IV. CONCLUSION 

The aim of this research is to present a new 

method based on an oscillation/sinusoidal signal. 

The idea is to change sample size with respect to the 

iteration based on the maximum number of 

iterations. The proposed dynamic re-sampling idea 

is discussed on four different optimization 

algorithms and eight benchmark problems. Also, 

four different parameters the implementations are 

repeated. The results indicate that among all 

optimization algorithms DMOEAeC gives the best 

result with te NSGA-II algorithm. The proposed 

method calculates additional functions evaluations 

however only 2.5-5% of the total function 

evaluations which is relatively small. In addition, as 

the parameter increases the impact to the overall 

performance of the solution also increases. 
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