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Abstract – In engineering problems, variables such as temperature, speed, location are noisy variables that 

are included in the system, and they become objective function variables. Because these variables are noisy, 

the objective functions are also noisy. Because there is more than one objective in multi-objective 

optimization problems, these variables may not affect each objective. Not all variables may be included for 

each objective function as variables. Therefore, in multi-objective optimization problems, it may be known 

to know both the noisy and noiseless states of one or more purposes. In this case, noise of the objective 

function may be extracted. In this case, the noise of other objective functions can be reduced by using the 

statistical properties of the known noise signal. The aim of this study is to reduce the noise in the objective 

functions as explained by using the statistical properties of the noise. For this purpose, two optimization 

algorithms and eight test problems will be used. In addition, statistical properties will be obtained from the 

data recorded with different window sizes. 
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I. INTRODUCTION 

The Multiobjective optimization problems have 

more than one objective which is needed to optimize 

simultaneously. The problems may have some 

constraints which are the equivalent or non-equal 

functions that needed to be succeeded by the 

algorithms. In this research un-constraint problems 

are considered with the decision variable 

boundaries. The objectives may be contaminated 

with the noise and become noisy Multiobjective 

optimization problems. The source of the noise is 

generally the disturbance and/or the measurement 

noise which are inherent in engineering problems. 

Generally, the noise will be in the decision variables 

and since the noise is in decision variables, they 

have an influence on the objective functions. 

However, it is possible to know both noisy and 

noiseless data in engineering problems for example 

at the output of the controller in control system it is 

possible to know the exact controller output from 

the microcontroller and the noise is influenced on 

this signal and the noisy variable is obtained. The 

noise Multiobjective optimization problem is given 

in Eq. 1 and 2, for Multiobjective and noisy 

Multiobjective problems. 

 
𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑀}   (1) 

𝐹𝑛 = {𝑓1 + 𝑛1, 𝑓2 + 𝑛2, … , 𝑓𝑀 + 𝑛𝑀}                 (2) 

where F is the objective function f set with M 

number of objectives and n is the additive noise so 

that at each objective a different value is added with 

the same properties. The best solution of the 

Multiobjective optimization is called the Pareto set 

and the values of the pareto set on the objective 

space is called the Pareto Front [7,8,9]. 

The noise from one of the objectives can be 

obtained or known, by this way the statistical 

properties of the noise can be obtained. The question 

is how these properties help to reduce the noise at 

other objectives is the main motivation of this study. 

For this purpose, two and three objective benchmark 
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problems are considered and noise data from one 

objective value is used to extract the statistical 

properties. Two optimization algorithms are used 

for this purpose which are NSGA-II and MOEAD 

algorithms.  

This paper is organized into five sections. After 

the introduction the techniques and tools are given 

with the statistics of the noise data follows that. In 

this subsection the solution method with 

optimization algorithms and the performance 

measurement function is presented. Then the 

implementation results and discussion of the 

solutions are given. Finally, the conclusion of these 

results is presented as the final section. Also, in that 

section the future study issues are discussed. 

II. TECHNIQUES AND TOOLS 

In this research, the semi-noisy multiobjective 

optimization problem is considered so that at least 

one (for this research just one objective is 

considered however two or more noiseless 

objectives case leases as future study) objective is 

recorded both noisy and noiseless data. Since both 

data is already known it is easy the get the noise data 

as e(n)=v(n)-s(n). However, unlike the speech 

signal or an image or video signals, the amount of 

data at optimization problem is limited and equals 

to the number of generations. For this reason, it is 

not easy to get a true statistical property of the error 

since the whole error data is not available. 

Therefore, a sliding-window-based error recording 

method looks applicable for this problem. In this 

section this idea and optimization problems with the 

algorithms are briefly explained. 

III. STATISTICS OF THE NOISE DATA 

The issue related to the extracting of the statistical 

features of the error data is the size of the error data. 

When compared to other digital signal processing 

applications like speech processing, the data 

considered on this problem is limited, therefore the 

windows size is more important. For this reason, the 

window size for this research needs to be 

determined by empirical studies. This is another 

motivation of this research. Figure 1 gives the 

graphical demonstration of the error data package. 

There are N number of data in the array. When a 

new generation in constructed a new error data is 

received and the windows given in Figure 1 shifts. 

 
Figure 1. The graphical demonstration of the window size 

 

The size of data N is the case study of this 

research. This size is selected as 

N={5,10,15,20,25}. However, for all cases the 

windows are shifted at Case 1. In this case, until the 

generation is reached to N, the statistical properties 

of the noise signal are not extracted. For Case 2, all 

the constructed error data is recorded, and statistical 

properties are extracted from the data hence the size 

of error data is same as the generation. Two 

statistical properties are mean and standard 

deviation of the data which are mathematically 

given in Equation 3, and 4. 

 

𝑒𝑚 =
1

𝑁
∑ 𝑒(𝑖)𝑁

𝑖=1    (3) 

𝑒𝑠𝑡𝑑 = √
1

𝑁
∑ (𝑒(𝑖) − 𝑒𝑚)2𝑁

𝑖=1   (4) 

The windows size is critical to get a suitable 

statistical property. After the statistics of the error 

noise is getting a random number is generated and 

subtracted from the other objective values. As the 

performance measurement IGD metric will be used 

and it is explained and mathematically given in the 

following sub-section. The performance of the 

proposed method is compared with each other. 

A. Benchmark Problems 

In this research, two types of benchmark problem 

set will be considered to give a hint about the effect 

of number of objective functions. The first set of 

problems are two objective benchmark problems. 

For this problem the ZDT benchmark problems 

(ZDT1,2,3, and 4) are selected [1]. The 

mathematical formulations for the ZDT problems 

are given in Eqs. 5-8 for ZDT1-4, respectively. 

 

𝑓1 = 𝑥1, 𝑓2 = 1 − √
𝑥1

𝑔
, 𝑔 = 1 +

9

𝑛−1
∑ 𝑥𝑖

𝑛
𝑖=2   (5) 

𝑓1 = 𝑥1, 𝑓2 = 1 − (
𝑥1

𝑔
)

2
, 𝑔 = 1 +

9

𝑛−1
∑ 𝑥𝑖

𝑛
𝑖=2   (6) 

𝑓1 = 𝑥1, 𝑓2 = 1 − √
𝑥1

𝑔
−

𝑥1

𝑔
𝑠𝑖𝑛(10𝜋𝑥1), 𝑔 = 1 +

9

𝑛−1
∑ 𝑥𝑖

𝑛
𝑖=2 (7) 

𝑓1 = 𝑥1, 𝑓2 = 1 − √
𝑥1

𝑔
, 𝑔 = 1 + 10(𝑛 − 1) + ∑ (𝑥𝑖

2 −𝑛
𝑖=2

10𝑐𝑜𝑠(4𝜋𝑥𝑖)) (8) 
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Table 1. The IGD+ metric for the noisy ZDT and noisy three objective DTLZ problems 

Problem M D NSGAII MOEAD Problem M D NSGAII MOEAD 

ZDT1N 2 30 

3.4141e-2 

(3.33e-2) 

3.5933e-2 

(2.23e-2) DTLZ1N 3 7 

4.6330e+0 
(2.31e+0) 

9.1942e-1 
(6.27e-1) 

ZDT2N 2 30 

4.2504e-1 

(2.77e-1) 

4.7480e-1 

(1.04e-1) DTLZ 2N 3 12 

4.2049e-5 
(1.17e-4) 

3.3360e-6 
(1.05e-5) 

ZDT3N 2 30 

3.3528e-2 

(4.01e-2) 

7.0719e-3 

(8.36e-3) DTLZ 3N 3 12 

4.5827e+1 
(2.15e+1) 

3.0768e+1 
(8.55e+0) 

ZDT4N 2 10 

1.4857e+0 

(7.51e-1) 

2.2543e+0 

(6.25e-1) DTLZ 4N 3 12 

5.5457e-3 
(1.74e-2) 

1.4010e-4 
(4.43e-4) 

 

Table 2. The IGD+ metric value for the Case 1 with different window size for ZDT benchmark problems 

  N=10 N=20 N=30 

Problem M NSGAII MOEAD NSGAII MOEAD NSGAII MOEAD 

ZDT1C1 2 

5.3357e-3 

(5.64e-3) 

6.7384e-3 

(8.32e-3) 

2.1883e-2 

(3.33e-2) 

6.7833e-3 

(1.08e-2) 

9.7891e-3 

(5.71e-3) 

1.3866e-3 

(1.58e-3) 

ZDT2C1 2 

8.9576e-2 

(9.08e-2) 

8.5592e-2 

(7.94e-2) 

1.9427e-1 

(1.82e-1) 

5.8424e-2 

(6.24e-2) 

1.7730e-1 

(1.17e-1) 

8.1422e-2 

(7.13e-2) 

ZDT3C1 2 

2.9771e-2 

(1.78e-2) 

1.3458e-2 

(1.59e-2) 

3.1115e-2 

(3.04e-2) 

1.1194e-2 

(9.95e-3) 

3.7169e-2 

(2.66e-2) 

1.4082e-2 

(1.33e-2) 

ZDT4C1 2 

2.3571e-1 

(1.80e-1) 

4.0586e-1 

(3.72e-1) 

1.4476e-1 

(1.59e-1) 

3.6844e-1 

(2.43e-1) 

2.6531e-1 

(2.26e-1) 

2.5861e-1 

(1.87e-1) 

 

These benchmark problems are selected since the 

first objective of these problems is the first decision 

variable x1. This supports the motivation of the 

research so that it may be possible to get both noisy 

and noiseless data from the first objective. For this 

reason, it is assumed that for ZDT problems, the 

noisy and noiseless values of the first objective 

function are known. 

The second class of benchmark problems are 

selected from the DTLZ problem set [2, 3]. The 

DTLZ problem set is defined so that it is possible to 

generate different number of objective functions. In 

this research DTLZ problem set is generated as three 

objective problems set. To evaluate DTLZ1-4 are 

selected as the second class of the benchmark 

problems with three objectives. The mathematical 

description of the DTLZ benchmark problems is 

given in Eqs. 9-12 for DTLZ1, Eqs. 13-16 for 

DTLZ2, Eqs. 17-20 for DTLZ3, and Eqs. 21-24 for 

DTLZ4 problems. 

 

 
𝑓1 =

1

2
𝑥1𝑥2(1 + 𝑔(𝑥3))    (9) 

𝑓2 =
1

2
𝑥1(1 − 𝑥2)(1 + 𝑔(𝑥3))   (10) 

𝑓3 =
1

2
(1 − 𝑥1)(1 + 𝑔(𝑥3))    (11) 

 

𝑔(𝑥3) = 100 [|𝑥3| + ∑ ((𝑥𝑖 − 0.5)2 − 𝑐𝑜𝑠(20𝜋(𝑥𝑖 − 0.5)))](12) 

𝑓1 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
𝜋

2
) 𝑐𝑜𝑠 (𝑥2

𝜋

2
)  (13) 

𝑓2 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
𝜋

2
) 𝑠𝑖𝑛 (𝑥2

𝜋

2
)  (14) 

𝑓3 = (1 + 𝑔(𝑥3))𝑠𝑖𝑛 (𝑥1
𝜋

2
)    (15) 

𝑔(𝑥3) = ∑(𝑥𝑖 − 0.5)2    (16) 

𝑓1 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
𝜋

2
) 𝑐𝑜𝑠 (𝑥2

𝜋

2
)  (17) 

𝑓2 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
𝜋

2
) 𝑠𝑖𝑛 (𝑥2

𝜋

2
)  (18) 

𝑓3 = (1 + 𝑔(𝑥3))𝑠𝑖𝑛 (𝑥1
𝜋

2
)    (19) 

𝑔(𝑥3) = 100 [|𝑥3| + ∑ ((𝑥𝑖 − 0.5)2 − 𝑐𝑜𝑠(20𝜋(𝑥𝑖 − 0.5)))](20) 

𝑓1 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
100 𝜋

2
) 𝑐𝑜𝑠 (𝑥2

100 𝜋

2
)  (21) 

𝑓2 = (1 + 𝑔(𝑥3))𝑐𝑜𝑠 (𝑥1
100 𝜋

2
) 𝑠𝑖𝑛 (𝑥2

100 𝜋

2
)  (22) 

𝑓3 = (1 + 𝑔(𝑥3))𝑠𝑖𝑛 (𝑥1
100 𝜋

2
)   (23) 

𝑔(𝑥3) = ∑(𝑥𝑖 − 0.5)2    (24) 
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Table 3. The IGD+ metric value for the Case 1 with different window size for DTLZ benchmark problems 

  N=10 N=20 N=30 

Problem M NSGAII MOEAD NSGAII MOEAD NSGAII MOEAD 

DTLZ1C1 3 

1.3478e+0  

(8.19e-1) 

6.3445e+0  

(2.37e+0) 

1.4341e+0  

(7.90e-1) 

7.9848e+0  

(2.93e+0) 

1.3264e+0  

(4.02e-1) 

7.7789e+0  

(2.93e+0) 

DTLZ2C1 3 

3.7030e-5  

(7.12e-5) 

2.1669e-5  

(4.05e-5) 

1.3248e-4  

(2.12e-4) 

6.6505e-5  

(1.44e-4) 

1.4546e-5  

(3.02e-5) 

5.9132e-5  

(1.30e-4) 

DTLZ3C1 3 

3.3537e+1  

(1.42e+1) 

1.4989e+2  

(7.28e+1) 

2.4253e+1  

(7.73e+0) 

1.4435e+2  

(3.78e+1) 

3.2369e+1  

(1.27e+1) 

1.4856e+2  

(3.40e+1) 

DTLZ4C1 3 

2.9749e-3  

(8.27e-3) 

8.2865e-3  

(9.59e-3) 

5.9227e-3  

(1.43e-2) 

1.8167e-2  

(1.18e-2) 

8.3742e-3  

(1.98e-2) 

1.1042e-2  

(1.24e-2) 

 

Table 4. The IGD+ metric value for the Case 2 for ZDT and DTLZ benchmark problems 

Problem M NSGAII MOEAD Problem M NSGAII MOEAD 

ZDT1C2 2 

1.2493e-2  
(1.64e-2) 

2.9025e-3  
(4.23e-3) DTLZ1C2 3 

8.8797e-1  
(6.36e-1) 

8.4269e+0  
(2.95e+0) 

ZDT2C2 2 

3.0498e-1  
(1.47e-1) 

8.1500e-2  
(8.16e-2) DTLZ2C2 3 

7.7965e-5  
(2.01e-4) 

5.2514e-5  
(8.78e-5) 

ZDT3C2 2 

2.9601e-2  
(2.22e-2) 

1.6433e-2  
(1.50e-2) DTLZ3C2 3 

3.2280e+1  
(1.16e+1) 

1.5678e+2  
(3.73e+1) 

ZDT4C2 2 

2.7074e-1  
(2.53e-1) 

4.3763e-1  
(3.17e-1) DTLZ4C2 3 

2.4240e-2  
(4.00e-2) 

2.0613e-2  
(1.95e-2) 

 

Unlike ZDT problems, in DTLZ problems set the 

final objective function contains single variable 

multiplication. Therefore, in DTLZ problems it is 

assumed that the noiseless value of the last objective 

is known. As brief, in this research four benchmark 

problems with two objectives and four benchmark 

problems with three objectives are selected as test 

problems. A Gaussian noise with zero mean and 

0.15 standard deviations are added to all the 

objective functions. However, among them only one 

of the objective’s noiseless objective function 

values is known. Therefore, it is possible to get 

noise data from this objective. 

 

B. Optimization Algorithms 

In this research two Multiobjective optimization 

algorithms are considered for the given problem 

definition. The first algorithm which is called as 

NSGA-II, proposed by Deb et al. in 2002 [5]. The 

algorithm is based on the nondominated sorting of 

the solution candidates on the objective space. The 

algorithm is composed of three genetic operators’ 

crossover (SBX is preferred), mutation (polynomial 

mutation is used) and selection operators. As the 

selection operator population (both parents and 

offspring) are distributed to the ranks with respect 

to the nondominated sorting algorithm. The smaller 

ranked members survive the next generation. The 

remaining members are compared with each other 

with a method called crowding distance. By this 

way the more spread distributed members will be in 

the solution set. 

The second optimization algorithm is called 

MOEAD which is proposed by Zhang et al. in 2007 

[6]. This algorithm is another algorithm which 

implemented genetic operators same as NSGA-II. 

However, the selection operator is different than 

NSGA-II. In this algorithm the decomposition 

method, which is an aggregation method, is used to 

select the best members for the next generation. In 

addition to the decomposition-based selection 

operator the neighbourhood is recorded with the 

weight vector of the decomposition method. 

Thebycheff is selected as the aggregation function. 

Based on the competition with respect to the weight 

vector, the best members are selected. After the 

selection operator is terminated if nadir point is used 

for aggregation, it is updated based on the new 

position of the solutions on the objective space. 

C. Performance Measurement 

In this research the performance measurement 

metric modified inverted generational distanced 
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(IGD+) metric which was proposed by Ishibuchi et 

al. in 2015, is used as performance indicator. The 

difference between IGD and IGD+ metric is the 

definition of the distance between Pareto set and the 

obtained approximate solution set. In IGD metric 

the distance is calculated as the Euclidean distance. 

However, in IGD+ the weak Pareto compliant is 

preferred with is the positive square summation 

calculation which is given in Eq. 25. 

 

𝑑 = √∑(𝑚𝑎𝑥{𝑟𝑘 − 𝑜𝑘 , 0})2  (25) 

where r is the sampled data from Pareto front and 

o is the data from obtained solution set. The 

difference between data in the Pareto front and the 

obtained solution is calculated. If this calculation 

gives negative value than it is rounded to zero, else 

the square of this value is calculated and summing 

of all the data and square root of this summation is 

given as the metric (IGD+) for this research. 

 

IV. IMPLEMENTATION 

In this research the statistical properties of the 

known noise signal are extracted to reduce the noise 

at the objectives. For this purpose, two 

Multiobjective optimization algorithms are 

implemented on eight benchmark problems and 

their performance is measured by using the IGD+ 

metric. All algorithms are implemented with 100 

population size, 105 maximum number of function 

evaluation and 10 independent runs.  

Initially, the noise is added to the objective 

functions with 0.15 standard deviation and zero 

mean Gaussian noise. The zero mean is selected 

because at the calculation of the mean of the 

collected data there will be an additional bias at the 

data which increases the complexity of the problem. 

Table 1 presents the performance of the noise 

benchmark problems. 

First, as explained in section “Statistics of the 

Noise Data,” the different size of windows for 

calculating the mean and standard deviation is 

compared with each other. The windows sizes are 

selected as 10, 20, and 30 for this research. Table 2 

gives the performance metric values for the given 

algorithms with respect to the windows size. When 

Table 2 is compared with Table 1, the proposed 

method increases the performance and reduces the 

noise effect almost x10, which shows the effect of 

the proposed methodology. 

Table 3 gives the same implementation Case 1 for 

three objective DTLZ problems. When the results in 

Table 3 compared with Table 1, the performance of 

the proposed noise reduction methods falls behind 

the noise problems. This is one of the important 

conclusions of the research. Because for three 

objective cases the selection objective function has 

a noise with not very effective to reduce noise at 

other objectives. Even if the noise is zero mean, the 

extracted statistical feature has a value for a mean. 

That decreases the impact of the reduction method, 

on the contrary it increases the effect of the noise. 

Finally, for Case 2, the whole noise data is 

recorded, and statistical features are calculated. 

Similar results are obtained from Table 4. For ZDT 

problems the same performance improvement is 

obtained, however the performances are very close 

to each other. For DTLZ the same performance is 

still reached but still worse than the noisy data given 

in Table 1. 

V. CONCLUSION 

In this research, it is assumed that one of the 

objective’s noise data is known and by extracting its 

statistical properties like mean and standard 

deviation, the inverse noise is generated and 

subtracted from the noisy objective functions. To 

measure the performance of this proposed method, 

two Multiobjective optimization and eight 

benchmark problems are considered. These 

benchmark problems have two and three objectives. 

Also, the statistical properties are extracted from the 

constant data size where different sizes are 

considered. This is considered the first case. As the 

second case all the error data is recorded until end 

of the generations, as Case 2. When all these 

implementations are investigated, it can be 

concluded that as the number of objectives increase 

the improvement by extracting the noise feature 

does not help reduce the noise. But for two objective 

cases it is increased the performance of the noisy 

objectives with respect to the noise reduction.  As 

the future study the many objective problems may 

be considered and different types of the noise should 

be considered to get a general conclusion for this 

methodology. However, it can be indicated that 

more advanced digital signal processing methods 

may be implemented to reduce the noise. 
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