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Abstract – The present work deals with buckling load behavior of nanocomposite beams by considering 

the agglomeration effect of single-walled carbon nanotubes (CNTs) and different patterns CNTs in 

polymeric matrix. The material properties of nanocomposite beams are estimated using the Eshelby–Mori–

Tanaka approach based on an equivalent fiber. The equations of motion are derived based on refined beam 

strain gradient theory, employing Hamilton’s principle and using Differential Quadrature Finite Element 

Method (DQFEM) derived from the differential quadrature method (DQM). The results are compared with 

analytical results in the literature. It is remarked that mechanical properties and therefore critical buckling 

loads of nanocomposite beam are seriously affected by CNTs agglomeration. 
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I. INTRODUCTION 

Carbon nanotubes (CNTs) have been accepted as 

an excellent candidate for the reinforcement of 

polymer composites due to their high elastic 

modulus, tensile strength and low density. 

Assessing the material properties of a CNTRC is 

of utmost importance, however using the traditional 

homogenization schemes for particle-reinforced 

composites might lead to an over estimation of the 

material properties, since CNTs tend to bundle 

together forming inclusions within polymeric 

matrices, which affects the mechanical properties of 

the resulting CNTRC, usually in a non-desirable 

manner. This phenomenon occurs due to their high 

aspect ratio, van der Waals forces and their low 

bending stiffness values. Wan et al. [1] investigated 

the effective moduli of the CNT-reinforced polymer 

composite with emphasis on the influence of CNT 

length and CNT matrix interphase on the stiffening 

of the composite. Some contributions have been 

provided to investigate the benefits of using aligned 

CNT reinforced polymer composites ([2], [3], [4], 

[5], [6], [7], [8], [9], [10]–[11]) determined the 

elastic properties of CNTRCs using a finite element 

investigation. 

Wuite and Adali [12] found that the stiffness of 

CNTRC beams can be improved significantly by the 

homogeneous dispersion of a small percentage of 

CNTs. Vodenitcharova and Zhang [13] investigated 

the pure bending and bending-induced local 

buckling of CNTRC beams. However, the 

experimental and numerical studies concerning 

CNTRCs have shown that distributing CNTs 

uniformly as the reinforcements in the matrix can 

only achieve moderate improvement of the 

mechanical properties ([14]–[15]). This is mainly 

due to the weak interface between the CNTs and the 

matrix where a significant material property 

mismatch exists. 

There are a few studies on the mechanical behavior 

of the CNTRC beams in the open literature. For 

example, Yas and Samadi [16] proposed free 
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vibration and buckling of FG-CNTR beams 

reinforced by aligned CNTs employing rule of 

mixture (ROM) and generalized differential 

quadrature (GDQ) method. Their results indicated 

that suitable distribution for CNTs could improve 

the free vibration and buckling characteristics of the 

CNTRC beams. Based on Reissner’s mixed 

variational theorem and using ROM model, Wu and 

Chang [17] developed a unified formulation of finite 

layer methods for the three-dimensional buckling 

analysis of simply supported FG-CNTR plates with 

surface-bonded piezoelectric actuator and sensor 

layers and under biaxial compressive loads. They 

compared the buckling characteristics of three 

different types of CNTs distribution that were 

uniformly distributed (UD), FG rhombus, and X-

type variations through the thickness coordinate. 

 Kolahchi et al. [18] studied the dynamic response 

of cylindrical shells submerged in an 

incompressible fluid subjected to earthquake, 

thermal, and moisture loads. Several parametric 

studies were carried out accounting the influences 

of the fluid, boundary condition, thermal load, 

moisture changes, structural damping parameter, 

length to thickness aspect ratio, CNTs volume 

fraction, and agglomeration state on the dynamic 

deflections of the structure. The results revealed that 

when considering the agglomeration effect the 

deflections increased. Recently, Tornabene et al. 

[19] investigated recovery of through-the-thickness 

transverse normal and shear strains and stresses in 

statically deformed FG doubly curved sandwich 

shell structures and shells of revolution using the 

generalized zigzag displacement field and the 

Carrera Unified Formulation. 

In the present study, the buckling of the CNTRC 

beams is investigated using the DQFEM method. 

The Mori–Tanaka approach is employed to 

calculate the effective elastic moduli of the beam. 

New solutions of buckling loads based on refined 

beam strain gradient theory are presented and 

discussed in details. Different parameters effect, 

which have considerable impact on the numerical 

solutions, are also investigated.  

II. MATERIALS AND METHOD 

This section is divided in two main sub-sections, 

a first one where the two-parameter agglomeration 

model using the Eshelby–Mori–Tanaka approach is 

used for properties’ prediction purpose and the 

second one devoted to the model development based 

on a refined beam strain gradient theory. 

A. Properties of the equivalent fiber 

The equivalent fiber for SWCNT with chiral index 

of (10, 10) is a solid cylinder with diameter of 1.424 

nm. ROM is used inversely for calculating material 

properties of equivalent fiber are listed in Table 1. 

[20] 

 

𝐸11 = 𝜂1𝑉𝑐𝑛𝑡𝐸11
𝑐𝑛𝑡 + 𝑉𝑝𝐸

𝑝 (1a) 

𝜂2

𝐸22
=

𝑉𝑐𝑛𝑡

𝐸22
𝑐𝑛𝑡 +

𝑉𝑝

𝐸𝑝
 

(1b) 

𝜂3

𝐺12
=

𝑉𝑐𝑛𝑡

𝐺12
𝑐𝑛𝑡 +

𝑉𝑝

𝐺𝑝
 

(1c) 

 

where 𝐸𝐿𝐸𝐹, 𝐸𝑇𝐸𝐹, 𝐺𝐸𝐹, 𝜗𝐸𝐹, 𝐸𝐿𝐶, 𝐸𝑇𝐶, 𝐺𝐶, 𝜈𝐶, 𝐸𝑀, 

𝐺𝑀, 𝜈𝑀, 𝑉𝐸𝐹, and 𝑉𝑀 are respectively longitudinal 

modulus of equivalent fiber, transverse modulus of 

equivalent fiber, shear modulus of equivalent fiber, 

Poisson’s ratio of equivalent fiber, longitudinal 

modulus of composites, transverse modulus of 

composites, shear modulus of composites, Poisson’s 

ratio of composites, modulus of matrix, shear 

modulus of matrix, Poisson’s ratio of matrix, 

volume fraction of the equivalent fiber, and volume 

fraction of the matrix. 𝐸𝐿𝐶,𝐺𝐶 and 𝐸𝑇𝐶 are obtained 

from multiscale FEM or molecular dynamics (MD) 

simulations, respectively. 

Table 1. Material properties of equivalent fiber and matrix  

Mechanical properties 
Equivalent 

fiber 

Matrix 

phase 

Young’s modulus   _ 2.1 

Longitudinal Young’s 

modulus (GPa) 
649.12 _ 

Transverse Young’s 

modulus (GPa) 
11.27 _ 

Longitudinal shear 

modulus (GPa) 
5.13 _ 

Poisson’s ratio 0.284 0.34 

Density (kg/m3) 1400 1150 

 

The agglomeration model based on the Eshelby–

Mori–Tanaka homogenization scheme considers 

that the CNTs are randomly dispersed along the 

matrix, but some of them are known to be bundled 

together forming clusters. Those clusters or 

inclusions are modelled according to the Eshelby 

inclusion model, considering these inclusions will 

assume a spherical shape [21], as schematically 

represented in Figure 1. 
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The total volume of CNT reinforcement in the 

representative volume element (RVE) is denoted by 

𝑉𝑟 and is divided in 𝑉𝑟
𝑐𝑙𝑢𝑠𝑡𝑒𝑟  , which is the volume 

of CNTs inside a cluster, and 𝑉𝑟
𝑚, which is the 

volume of CNTs dispersed in the matrix and the 

outside the clusters. Note that from now on, the 

subscripts r and m will stand for the reinforcing 

phase and for the matrix, respectively, thus one can 

express the total CNT volume fraction in the RVE 

according to 

𝑉𝑟 = 𝑉𝑟
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑉𝑟

𝑚 (2) 

 

The two parameters used to describe the 

agglomeration are defined as 

 

𝜇 =
𝑉𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑉
, 𝜂 =

𝑉𝑟
𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑉𝑟

0 ≤ 𝜂, 𝜇 ≤ 1 
(3) 

Where V is the volume of RVE, 𝑉𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the 

volume of clusters in the RVE. 𝜇  is the volume 

fraction of clusters with respect to the total volume 

of the RVE and 𝜂 is the volume ratio of the CNTs 

inside the clusters over the total CNT inside the 

RVE. 

 

 

Fig. 1 Representation of the Eshelby inclusion model with 

spherical CNTs spherical inclusion 

The effective bulk modulus 𝐾𝑖𝑛 and shear modulus 

𝐺𝑖𝑛 of the cluster and the effective bulk modulus 

𝐾𝑜𝑢𝑡 and shear modulus 𝐺𝑜𝑢𝑡 of the equivalent 

matrix outside the cluster can be calculated as [22] 

𝐾𝑖𝑛 = 𝐾𝑚 +
𝑓

𝑟
𝜂(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3(𝜇 − 𝑓
𝑟
𝜂 + 𝑓

𝑟
𝜂𝛼𝑟)

 
(4) 

𝐾𝑜𝑢𝑡 = 𝐾𝑚 +
𝑓𝑟(1 − 𝜂)(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3[1 − 𝜇 − 𝑓𝑟(1 − 𝜂) + 𝑓𝑟(1 − 𝜂)𝛼𝑟]
 (5) 

𝜂3

𝐺12
=

𝑉𝑐𝑛𝑡

𝐺12
𝑐𝑛𝑡 +

𝑉𝑝

𝐺𝑝
 

(6) 

𝐺𝑜𝑢𝑡 = 𝐺𝑚 +
𝑓𝑟(1 − 𝜂)(𝜂𝑟 − 2𝐺𝑚𝛽𝑟)

2[1 − 𝜇 − 𝑓𝑟(1 − 𝜂) + 𝑓𝑟(1 − 𝜂)𝛽𝑟]
 (7) 

 

In equations (5)–(7), the mechanical 

terms 𝛼𝑟, 𝛽𝑟, 𝛿𝑟 and 𝜂𝑟 can be formulated in the 

following form 

𝛼𝑟 =
3(𝐾𝑚 + 𝐺𝑚)+𝐾𝑟 − 𝑙𝑟

3(𝐺𝑚 + 𝐾𝑟)
 

(8) 

𝛽
𝑟

=
1

5
{

4𝐺𝑚+2𝐾𝑟+𝑙𝑟

3(𝐺𝑚+𝐾𝑟)
+

4𝐺𝑚

𝐺𝑚+𝑃𝑟

+

2[𝐺𝑚(3𝐾𝑚+𝐺𝑚)+𝑚𝑟(3𝐾𝑚+7𝐺𝑚)]

𝐺𝑚(3𝐾𝑚+𝐺𝑚)+𝑚𝑟(3𝐾𝑚+7𝐺𝑚)
}  

(9) 

𝛿𝑟 =
1

3
[𝑛𝑟 + 2𝑙𝑟 +

(2𝐾𝑟+𝑙𝑟)(3𝐾𝑚+2𝐺𝑚−𝑙𝑟)

𝐺𝑚+𝐾𝑟

]  (10) 

𝜂
𝑟

=
1

5
[
2

3
(2𝜂

𝑟
− 𝑙𝑟) +

8𝐺𝑚𝑝𝑟

𝐺𝑚+𝑝𝑟

+

8𝑚𝑟𝐺𝑚
(3𝐾𝑚+4𝐺𝑚)

3𝐾𝑚(𝑚𝑟+𝐺𝑚
)+𝐺𝑚(7𝑚𝑟+𝐺𝑚

)
+

2(𝐾𝑟−𝑙𝑟)(2𝐺𝑚+𝑙𝑟)

3(𝐺𝑚+𝐾𝑟)
]  

(11) 

 

The subscripts m and r stand for the quantities of the 

matrix and the reinforcing phase, Km and Gm are 

the bulk and shear moduli of the matrix, 

respectively, and 𝑘𝑟, 𝑙𝑟, 𝑚𝑟, 𝑛𝑟, and 𝑝𝑟 are the Hill’s 

elastic moduli for the reinforcing phase (CNTs), 

which can be found from the equality of two 

following matrices 
𝐶𝑟

=

[
 
 
 
 
 
𝑛𝑟 𝑙𝑟 𝑙𝑟 0 0 0
𝑙𝑟 𝑘𝑟 + 𝑚𝑟 𝑘𝑟 − 𝑚𝑟 0 0 0
𝑙𝑟 𝑘𝑟 − 𝑚𝑟 𝑘𝑟 + 𝑚𝑟 0 0 0
0 0 0 𝑝𝑟 0 0
0 0 0 0 𝑚𝑟 0
0 0 0 0 0 𝑝𝑟]

 
 
 
 
 

 

 

 

(12) 

𝐶𝑟 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸𝐿
−

𝜈𝑇𝐿

𝐸𝑇
−

𝜈𝑍𝐿

𝐸𝑍
0 0 0

−
𝜈𝐿𝑇

𝐸𝐿

1

𝐸𝑇
−

𝜈𝑍𝑇

𝐸𝑍
0 0 0

−
𝜈𝐿𝑍

𝐸𝐿
−

𝜈𝑇𝑍

𝐸𝑇

1

𝐸𝑍
0 0 0

0 0 0
1

𝐺𝑇𝑍
0 0

0 0 0 0
1

𝐺𝑍𝐿
0

0 0 0 0 0
1

𝐺𝐿𝑇]
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

 

 

 

 

 

(13) 

 

where  𝐸𝐿, 𝐸𝑇, 𝐸𝑍, 𝐺𝑇𝑍, 𝐺𝑍𝐿, 𝐺𝐿𝑇, 𝜈𝐿𝑇 are material 

properties of the equivalent fiber, which can be 

determined from the inverse of the ROM. It must be 

noticed that before the use of the ROM, material 

properties of nanoscale RVE of nanocomposite 

must be obtained from multiscale FEM analysis or 

MD simulations. 

The effective bulk modulus K and the effective 

shear modulus G of the composite can be 

determined using the following expressions: 

𝐾 = 𝐾𝑜𝑢𝑡 [1 +
𝜇 (

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡
− 1)

1 + 𝛼(1 − 𝜇) (
𝐾𝑖𝑛

𝐾𝑜𝑢𝑡
− 1)

] 

(14) 
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𝐺 = 𝐺𝑜𝑢𝑡 [1 +
𝜇 (

𝐺𝑖𝑛

𝐺𝑜𝑢𝑡
− 1)

1 + 𝛽(1 − 𝜇) (
𝐺𝑖𝑛

𝐺𝑜𝑢𝑡
− 1)

] 

(15) 

in which 

𝜈𝑜𝑢𝑡 =
(3𝐾𝑜𝑢𝑡 − 2𝐺𝑜𝑢𝑡)

2(3𝐾𝑜𝑢𝑡 + 𝐺𝑜𝑢𝑡)
 

(16) 

𝛼 =
(1 + 𝜈𝑜𝑢𝑡)

3(1 − 𝜈𝑜𝑢𝑡)
 

(17) 

𝛽 =
2(4 − 5𝜈𝑜𝑢𝑡)

15(1 − 𝜈𝑜𝑢𝑡)
 

(18) 

 

Finally, the effective Young’s modulus E and 

Poisson’s ratio 𝜈 of the CNTRC are given according 

to 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
 (19) 

𝜈 =
3𝐾 − 2𝐺

6𝐾 + 2𝐺
 (20) 

 

Consider a straight CNTRC beam with length L 

and rectangular cross section 𝑏 × ℎ, with 𝑏 being 

the width and ℎ being the height. The beam is made 

of polymeric matrix reinforced with single walled 

CNT (SWCNT), as shown in Fig. 2a. In this study, 

the beams are assumed to have four different 

patterns of reinforcement over the cross sections as 

shown in Fig. 2b. The functions that model the 

considered distributions are presented in the Table 

2, where UD stands for uniformly distributed and 

FG stands for functionally graded. 

 

Table 2. CNTs volume fraction distributions considered 

CNTs Distributions 

UD-Beam 𝑓
𝑟

= 𝑓
𝑟
∗ 

O-Beam 𝑓𝑟 = 2(1 − 2
|𝑧|

ℎ
) 𝑓𝑟

∗  

X-Beam 𝑓𝑟 = 4
|𝑧|

ℎ
𝑓𝑟

∗  

V-Beam 𝑓𝑟 = (1 + 2
𝑧

ℎ
) 𝑓𝑟

∗  

 

The coordinate in the thickness direction varies 

within the interval [−
ℎ

2
,
ℎ

2
] , where ℎ is the thickness 

of the beam and 𝑓𝑟
∗ is expressed by 

 

𝑓
𝑟
∗ =

𝑊𝑟

𝑊𝑟 + (𝜌
𝑟

𝜌
𝑚

⁄ )(1 − 𝑊𝑟)
 

(21) 

 

where 𝑊𝑟 is the mass fraction of CNTs. 

 

Fig. 2 Geometry of a CNTRC beam (a); and cross sections of different 

patterns of reinforcement (b) 

B. Formulation and theories 

B.1 Refined parabolic beam theory 

In this section, refined parabolic beam theory is 

introduced in order to derive the kinematic relations 

of the beam. The displacement fields of the beam 

can be presented as follows 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝑑𝑤𝑏

𝑑𝑥
− 𝑓(𝑧)

𝑑𝑤𝑠

𝑑𝑥
 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) 

(22) 

 

Where 𝑢0(𝑥, 𝑡),𝑤𝑏(𝑥, 𝑡) and 𝑤𝑠(𝑥, 𝑡) are, 

respectively, the in-plane displacement in x-

directions, bending and shear components of the 

transverse displacement of points on the neutral axis 

of the beam; and 𝑓(𝑧) is a shape function. The 

nonzero strains of the beam can be written as 

𝜀𝑥𝑥 =
𝑑𝑢0

𝑑𝑥
− 𝑧

𝑑2𝑤𝑏

𝑑𝑥2
− 𝑓(𝑧)

𝑑2𝑤𝑠

𝑑𝑥2
,   

𝛾
𝑥𝑧

= 𝑔(𝑧)
𝑑𝑤𝑠

𝑑𝑥
  

 

(23) 

where  

𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
 (24) 

Using the linear elastic constitutive law, the normal 

stress 𝜎𝑥 and shear stress 𝜏𝑥𝑧 are given by 

𝜎𝑥(𝑧) = 𝑄
11

(𝑧) 𝜀𝑥 

𝜏𝑥𝑧(𝑧) = 𝑄
55

(𝑧) 𝛾
𝑥𝑧

 

(25) 

In which 

𝑄
11
(𝑧) =

𝐸(𝑧)

1 − 𝜈2
, 𝑄

55
(𝑧) =

𝐸(𝑧)

2(1 + 𝜈)
 

(26) 

The element strain energy resulted from the 

foundation deformation is of the form 

𝑈𝑒
𝐵 =

1

2
∫ {

𝜎𝑥

𝜏𝑥𝑧

}
𝑇

{
𝜀𝑥

𝛾
𝑥𝑧

}
𝑉𝑒

𝑑𝑉 
(27) 

𝑈𝑒
𝐵 =

1

2
𝑏 ∫ [(𝐼1

𝑑2𝑢0

𝑑𝑥2
+ 2𝐼2

𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑏

𝑑𝑥2
+

𝑙

0

2𝐼3
𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑠

𝑑𝑥2
+ 2𝐼4

𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐼5

𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑏

𝑑𝑥2
+

𝐼6
𝑑2𝑤𝑠

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐼7

𝑑𝑤𝑠

𝑑𝑥

𝑑𝑤𝑠

𝑑𝑥
)] 𝑑𝑥  

(28) 
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Where 𝑉𝑒 is the volume of the 

element; 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7 are the beam rigidities, 

defined as 

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6) =

𝑏 ∫ 𝐸(𝑥, 𝑧){1, 𝑧, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑧2 , 𝑓2(𝑧)}
ℎ

2

−
ℎ

2

𝑑𝑧  

𝐼7 = 𝑏 ∫ 𝐺(𝑥, 𝑧)𝑔2(𝑧)
ℎ

2

−
ℎ

2

𝑑𝑧  

 

 

(29) 

The kinetic energy of the beam can be expressed as 

𝑇𝑒 =
1

2
∫ 𝜌

𝑓𝑉𝑒
(𝑢2̇ + 𝑤2̇)𝑑𝑉  

𝑇𝑒 =
1

2
𝑏 ∫ [𝐽

1
(𝑢2̇

0 + �̇�𝑏
2

+ �̇�𝑠
2

+
𝑙

0

2�̇�𝑏�̇�𝑠) − 2𝐽
2
�̇�0

𝑑�̇�𝑏

𝑑𝑥
− 2𝐽

3
�̇�0

𝑑�̇�𝑠

𝑑𝑥
+

2𝐽
4

𝑑�̇�𝑏

𝑑𝑥

𝑑�̇�𝑠

𝑑𝑥
+ 𝐽

5
(

𝑑�̇�𝑏

𝑑𝑥
)

2

+ 𝐽
6
(

𝑑�̇�𝑠

𝑑𝑥
)

2

] 𝑑𝑥  

(30a) 

 

 

(30b) 

 

Where an over dot denotes the derivative with 

respect the time variable t, and the mass 

moments  𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6  are defined as 

( 𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6) =

𝑏 ∫ 𝜌(𝑥, 𝑧){1, 𝑧, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑧2, 𝑓2(𝑧)}
ℎ

2

−
ℎ

2

𝑑𝑧  

(31) 

B.2 Differential quadrature finite element 

formulation 

Differential quadrature rules approximate the 

derivatives of a function using a weighted linear 

sum of field variables along a line passing through 

the point. For polynomial basis functions DQ, a set 

of Lagrange polynomials are employed as the test 

functions. (Cuiyun, et al., 2016). 

Thus, for a field variable 𝑓(𝑥) its derivative of order 

n in a discrete point 𝑥𝑖 can be expressed as: 

𝜕𝑛𝑓(𝑥;𝑡)

𝜕𝑥𝑛
= ∑ 𝐴𝑖𝑗

(𝑛)𝑁
𝑗=1 𝑓(𝑥𝑗, 𝑡)     (𝑖 =

1,2,3, . . . , 𝑁)  

(32) 

Where 𝐴𝑖𝑗
(𝑛)

 is the weighting coefficient related to 

the derivative of order n, and the weighting 

coefficient is obtained as follows if 𝑛 = 1, so 

𝐴𝑖𝑗

(1)
=

𝑀(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀(𝑥𝑗)
     𝑖 ≠ 𝑗, 𝑗 = 1,2, . . . , 𝑁  

𝐴𝑖𝑖

(1)
= − ∑ 𝐴𝑖𝑗

(1)𝑛
𝑗=1,𝑗≠𝑖    𝑖 = 1,2, . . . , 𝑁  

(33) 

With 

𝑀(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)

𝑁

𝑘=1,𝑘≠𝑖

 

𝑀(𝑥𝑗) = ∏ (𝑥𝑗 − 𝑥𝑘)

𝑁

𝑘=1,𝑘≠𝑖

 

 

 

(34) 

 

If n > 1, secondary and higher order derivatives, the 

weighting coefficients are determined using the 

following simple recurrence relationship: 

𝐴𝑖𝑗

(𝑛)
= 𝑛 (𝐴𝑖𝑗

(1)
∗ 𝐴𝑖𝑖

(𝑛−1)
−

𝐴𝑖𝑗
(𝑛−1)

(𝑥𝑖−𝑥𝑗)
)      𝑖 ≠

𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝑁, 𝑛 > 1  

(35) 

𝐴𝑖𝑖
(𝑛)

= −∑ 𝐴𝑖𝑗
(𝑛)𝑁

𝑗=1,𝑗≠𝑖      𝑖 = 1,2, . . . , 𝑁  

The differential quadrature finite element method 

was developed by (Xing and Liu, 2009), whose 

differential quadrature rules and Gauss-Lobatto 

quadrature are used to discretize the system 

energies. Assuming that the deflection function is 

𝑢(𝑥) = ∑ 𝐿𝑖(𝑥)𝑢𝑖
𝑁
𝑖=1   

𝑤(𝑥) = ∑ 𝐿𝑖(𝑥)𝑤𝑖
𝑁
𝑖=1   

(36) 

With 𝐿𝑖 is the Lagrange polynomial, and 𝑢𝑖 =
𝑢(𝑥𝑖), 𝑤𝑖 = 𝑤(𝑥𝑖) are the displacements of the 

Gauss Lobatto quadrature points or the DQ nodal 

displacements of the beam finite element. 

The matrices for the entire system are obtained 

according to the MEF rules for assembling 

elementary matrices, 

[𝑀] {

�̈�0(𝑡)

�̈�𝑏(𝑡)

�̈�𝑠(𝑡)

} + [𝐾] {

𝑢0(𝑡)

𝑤𝑏(𝑡)

𝑤𝑠(𝑡)

} = [0] 
(37) 

By applying Lagrange’s equations to the system 

discretised by the DQFEM method, we obtain the 

following system of differential equations: 

[𝑀]{�̈�} − 𝑁0[𝐺]{q} + [𝐾]{q} = [0] (38) 

Where: 

 [𝑀]and [𝐾] are respectively the total matrices 

after assembly matrices of mass and stiffness. 

 {�̈�} and {q} are respectively the global 

acceleration and displacement vectors suitable 

for DQFEM connectivity. 

 𝑁0 axial force which is applied through the 

centroid. [G] is the geometric matrix. 

The programming language used is MATLAB, in 

order to program these solving method using the 

DQFEM methods. 

III. RESULTS AND DISCUSSION 

For buckling analysis of CNTRC beams, the present 

solutions based on refined higher-order beam theory 
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agree well with the buckling results available in the 

literature [8], [25] as shown in Table 3. 

Table 3. Comparisons of critical loads for CNTRC beams 

𝐿 ℎ⁄ = 10 𝑉𝑐𝑛𝑡
∗

= 0.12 

Source UD O 
Nuttawit  0.0984 00576 

Samadi 0.0986 0.0588 

present 0.09845 0.05762 

 

Table 4 compares the critical buckling loads of 

UD, X, O, V Beams with 𝜇 = 𝜂 = 0.5 and S_S 

boundary conditions and various thickness ratios 

L h⁄ . As observed, as a result of changing the 

thickness ratios L h⁄ =10, 15, 20 the critical buckling 

loads decreases with increasing the value of L h⁄ . It 

is also observed that buckling loads of X-Beam are 

higher than V and UD-Beam. This is because X-

Beam makes better use of CNT with more CNTs 

distributed in high bending stress regions and much 

less CNTs in low stress regions close to the neutral 

axis. Its bending stiffness, therefore, is larger than 

V-Beam and UD-Beam. 

Table 4. Comparison of critical loads for different types of CNTRC beam 

for different boundary conditions with various thickness ratios L h⁄  (μ =

η = 0.5,  𝑓𝑟
∗ = 0.3 ). 

Type of 

CNT 

distribution 

L/h  

 

10 15 20 

UD 0.0637 0.0287 0.0162 

FG-O 0.0353 0.0157 0.0088 

FG-X 0.1053 0.0484 0.0275 

FG-V 0.0690 0.0311 0.0176 

 

 

 

Fig. 3 Dimensionless critical buckling loads for different patterns CNTRC 

distribution and various thickness ratios  (μ = η = 0.5, 𝑓
𝑟

∗
= 0.3, C-C ). 

Figure 3. As the length-to-thickness increases, the 

buckling load experiences a notable decline. The X-

Beam is the strongest beam that carries the largest 

buckling load and followed by the UD-Beam and O-

Beam. 

 

Fig. 4 Variation of critical buckling loads �̅� beam with various thickness 

ratios and at various agglomeration parameters ( 𝐿 ℎ⁄ = 10, 𝑓
𝑟

∗
= 0.3, C-C  

and X-Beam) 

Figure 4 displays the 3-D bar graph variation of 

critical buckling loads �̅� versus the volume ratio of 

the CNTs inside (𝜂) and outside (𝜇) the clusters for 

CNT volume fraction   𝑓𝑟
∗ = 0.3 and C-C boundary 

condition. It can be seen that the magnitude of 

buckling load �̅�changes nonlinearly for variation of 

the (𝜂) and (𝜇) and is maximum at η = 0.5 and 𝜇 =
0.75 and are lowest at = 1 , and 𝜇 = 0.1. 

IV. CONCLUSION 

In this study the buckling analysis of CNTRC 

beams was investigated based on refined higher-

order beam theory and by applying Lagrange’s 

principle and DQFEM method. The beams are 

reinforced with various volume fraction of CNT 

distributions in the polymeric matrix by considering 

agglomeration effect of carbon nanotubes. The 

Eshelby-Mori-Tanaka approach are employed to 

model beam and estimate materials properties. The 

results are compared with results in the literature. 

The numerical results in this work led us to conclude 

that: 

 It is found that the X-Beam is the strongest 

among different types of CNTRC beams in 

resisting buckling loads while the O-Beam is 

the weakest.  

 The fact that mechanical properties and 

therefore free vibrations of CNTRC beams 

are seriously affected by CNTs 

agglomeration. 

 Two parameter model of agglomeration is 

used to determined material properties. It is 

clearly shown that the agglomeration of 

CNTs exerts a significant weakening effect 

in CNT-reinforced composites. It is seen that 

in the case where all nanotubes are dispersed 

uniformly, one has μ = η, the effective 

Young’s modulus has the maximum value 
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 The DQFEM method have the advantages of 

a simple mathematical principle, a fast 

convergence speed, low computation 

quantity, high computational accuracy and 

lower memory requirements, etc. According 

to the results obtained in this work. 
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