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Abstract – Cargo sampling, which indicates the condition of the cargo on the ship, is one of the important 

chemical tanker shipboard operations where human performance is prominent. Any negligence during the 

cargo sampling process can result in loss of human life, environmental disasters and financial losses. 

Therefore, evaluating human performance in the cargo sampling process on chemical tanker ships is vital 

to avoid these. This paper aims to evaluate the contribution of human errors to the cargo sampling process. 

Hence, the Success Probability Index Method (SLIM) is conducted, incorporating Evidential Reasoning 

(ER) approach. While SLIM systematically predicts human error probabilities (HEP) considering 

performance shaping factors (PSFs), ER deals with the uncertain and subjective judgments of experts in 

the step of rating and weighting PSFs. Based on the presented ER-SLIM model, HEP can be estimated by 

aggregating the belief degree of the experts and human performance for the cargo sampling process can be 

evaluated. The outputs of the paper provide a practical contribution to chemical tanker ship owners, health 

safety environment and quality (HSEQ) managers, maritime safety professionals and, chemical tanker 

officers in order to minimize the probability of human error in the cargo sampling process, as well as the 

theoretical background. 
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I. INTRODUCTION 

On chemical tanker ships, the cargo samples 

indicate the condition of the liquid cargo. 

Sometimes liquid cargo may be off specification. 

The source of this situation may be the shore tank, 

the shore pipeline or the ship. Contamination by the 

ship may be due to improper cleaning of cargo tanks 

or cargo lines or improper storage of the cargo. 

However, even if the contamination is caused by the 

shoreside, the ship may encounter a cargo claim. 

Therefore, proper sampling is important to prove 

that cargo contamination is not caused by the ship 

and to avoid exposure to related claims [1]. In 

addition, a failure in the sampling process can cause 

health problems and explosions as well as financial 

losses [1] - [2]. 

In the literature, although there is no research on 

the sampling process on chemical tanker ships, there 

are researches on some specific processes. In these 

papers, subjects such as tank cleaning [3], gas-

freeing [4], cargo loading [5], gas inerting [6], and 

bunkering [7] were examined. On the other hand, 

human error is very effective in accidents that occur 

in maritime transportation [8]. For this reason, some 

studies in the maritime literature have evaluated 

human performance by adopting techniques such as 

Standardized Plant Analysis Risk Human 

Reliability Analysis (SPAR-H) [9], Human Factors 

Analysis and Classification System (HFACS) [10], 

Human Error Assessment and Reduction Technique 
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(HEART) [11], Cognitive Reliability and Error 

Analysis Method (CREAM) [12], Success 

Likelihood Index Method (SLIM) [13]. 

This paper remedies a gap by calculating the 

human error probability (HEP) during cargo 

sampling, one of the critical processes on chemical 

tanker ships. In this context, the paper presents a 

robust methodological framework that combines 

SLIM and Evidential Reasoning (ER). In the paper, 

SLIM quantifies HEP while ER manages the 

uncertainty and subjectivity of expert judgments 

and is applied in the weighting and rating step of 

performance shaping factors (PSFs). Thus, the HEP 

values can be estimated and the operational safety 

level can be increased for the cargo sampling 

process. Accordingly, the paper is organised as 

follows. Section 1 gives the motivation for the 

research including a superficial literature review. 

Section 2 introduces methods and their integrations. 

Section 3 carries out a HEP prediction for cargo 

sampling. Section 4 includes findings and 

discussions. Section 5 concludes the research. 

II. METHODOLOGY 

The theoretical background of the methods and 

their integration are presented in this section.  

A. SLIM 

SLIM is a method developed by Embrey et al. [14] 

for predicting human error probabilities. It is a 

practical technique for calculating human error in 

the domain where lack of error data. In the method, 

HEP is quantified and predicted for specific tasks, 

taking into account the PSFs that significantly affect 

human performance. In SLIM, based on expert 

judgment, experts select a set of appropriate PSFs. 

PSFs are weighted and rated using the knowledge 

and experience of experts. Thus, the Success 

Likelihood Index (SLI) is elicited. The HEP value is 

calculated by calibrating the SLI value with human 

error data [15]. The main steps of the SLIM 

approach are as follows: i.) PSF derivation, ii.) PSF 

rating and weighting, iii.) SLI determination, iv.) 

Converting SLI into HEP [14]. 

B. Evidential Reasoning 

ER based on Dempster-Shafer (D-S) evidence 

theory was first proposed in 1994 [16] – [17]. The 

ER method, which can address the problems of D-S 

theory, has evolved over time [18] – [19]. The 

approach can overcome issues raised by subjectivity 

and uncertainty. It can also produce consistent 

results by aggregating information from different 

evidence. 

Let's assume that L experts carry out the 

evaluation process. Thus, the set of experts is 

denoted as 𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑖 … 𝑒𝐿}. Suppose a set 

of evaluation grades set 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑛, … , 𝐻𝑁} 

make up a model. Accordingly, an expert can 

consider N different evaluation grades. Also, the 

evaluation of ei is mathematically represented as 

follows [18]. 

 
𝑆(𝑒𝑖) =  {(𝐻𝑛 , 𝛽𝑛,𝑖), 𝑛 = 1, … , 𝑁}         𝑖 = 1, … , 𝐿               (1)  

 

where 𝛽𝑛,𝑖 states 𝐻𝑛's belief degree and βn,i ≥ 0, 

∑ β𝑛,𝑖
𝑁
𝑛=1  ≤ 1. In addition, the weight of each piece 

of evidence is considered in the ER and the weight 

set of the evidence is 𝑤 = {𝑤1, 𝑤2, … 𝑤𝑖, … 𝑤𝐿}. 

Consequently, the belief distribution (𝐻𝑛, 𝛽𝑛,𝑖) and 

weight (wi) of the piece of evidence ei are specified 

in the ER [18]. 

C. Integration of Methods 

This section presents how the ER and SLIM 

approaches are integrated to predict HEP. The 

applied approach consists of seven steps: Task 

analysis, scenario definition, PSF derivation, PSF 

rating, PSF weighting, SLI determination, and HEP 

calculation. 

First of all, the tasks of the process under 

consideration are systematically defined. For this, 

hierarchical task analysis (HTA) is conducted, in 

which the main tasks and subtasks of the process are 

determined [20]. Secondly, the scenario is defined 

by expressing the conditions of the operating 

environment. The scenario includes many 

conditions such as morale, weather conditions, 

fatigue, experience, etc. Thus, HEP can be predicted 

sensitively. In the third step, experts derive PSFs 

that affect human performance. PSFs are crucial for 

accomplishing tasks. Ergonomics, time availability, 

workload, and complexity are just a few examples 

of PSFs. In the fourth step, PSFs are evaluated by 

experts on a linear scale of 1-9. When evaluating 

PSFs, experts indicate their belief in values between 

1 and 9 as a percentage. The highest rate is 9 while 

the lowest rate is 1. Different experts may have 

different evaluations of the PSFs rating. Therefore, 

the ER approach is used in the paper to deal with the 

subjectivity and uncertainty of expert judgments 

and to aggregate expert judgments [18]. 
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According to the ER approach, if an expert's (ei)  
degree of belief in 𝐻𝑛 is 𝛽𝑛,𝑖, the basic probability 

mass is as in Equation 2: 

 
𝑚𝑛,𝑖 = 𝑤𝑖β𝑛,𝑖                                                                                  (2) 

 

where wi denotes the experts' weight. Then, the 

belief degrees of the experts are aggregated by 

applying Equations 3-5. 

 
𝑚𝑛,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)(𝑚𝑛,𝐼(𝑖)𝑚𝑛,(𝑖+1) + 𝑚𝑛,𝐼(𝑖)𝑚𝐻,(𝑖+1)

+ 𝑚𝐻,𝐼(𝑖)𝑚𝑛,(𝑖+1))                                        (3) 

 

𝐾𝐼(𝑖+1) = [1 − ∑  

𝑁

𝑡=1

∑ 𝑚𝑡,𝐼(𝑖)𝑚𝑗,𝑖+1

𝑁

𝑗=1,𝑗≠𝑡

]

−1

 𝑖 = 1, … , 𝐿 − 1         (4) 

 

β𝑛 =
𝑚𝑛,𝐼(𝐿)

1 − �̅�𝐻,𝐼(𝐿)

                                                                         (5) 

 

where β𝑛 states the normalized belief degree of 

the nth evaluation degree, KI(i+1) is the normalizing 

factor and mn,I(i+1) is the aggregated basic probability 

mass. After the aggregated belief degrees are 

determined, aggregated ratings (AR) are calculated 

using Equation 6. 

𝐴𝑅 = ∑ 𝑢(𝐻𝑛)β𝑛

𝑁

𝑛=1

                                                                      (6) 

where 𝑢(𝐻𝑛) denotes the utility of 𝐻𝑛. The 

evaluation grade set has nine elements, i.e. 𝐻 =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. There are nine elements in 

the valuation grade set. Accordingly, values from 1 

to 9 are assigned for the nine utility degrees. 

In the fifth step, the PSFs are weighted to 

determine their relative importance. Experts assess 

PSFs on a scale of 0-100 based on their overall 

impact on tasks [14]. ER is also applied in this step 

to aggregate expert opinions. In this context, 

Equations 2-5 apply. In the sixth step, the SLI value 

is computed using Equation 7 [14]. In Equation 7, n 

is the number of PSF. Ri specifies the aggregated 

rating of the PSF. Wi is the weight of PSF. 

𝑆𝐿𝐼 = ∑ 𝑅𝑖𝑊𝑖

𝑛

𝑖=1

                                                                            (7) 

 

Finally, in the seventh step, the SLI values are 

converted to HEP values with Equation 8. In 

Equation 8, a and b are constants [14]. 

 
𝐿𝑜𝑔(𝐻𝐸𝑃) = 𝑎𝑆𝐿𝐼 + 𝑏                                                              (8) 

III. HUMAN ERROR PROBABILITY PREDICTION FOR 

CARGO SAMPLING PROCESS ON CHEMICAL 

TANKERS 

In this section, HEP values are estimated for the 

tasks of the cargo sampling process on chemical 

tanker ships. To achieve this purpose, tasks are 

derived by using company circulars, expert 

opinions, and ship's operation manuals for the 

closed sampling process. Accordingly, Table 1 

provides the HTA for closed sampling on chemical 

tanker ships. 

After determining the tasks for the process, a real-

shipboard scenario was considered. According to 

the scenario, closed sampling from the cargo tanks 

started at 03:00 am after the loading was completed. 

The operation took about an hour. During operation, 

the temperature was about 32 ◦C and the humidity 

was about 80%. The ship's crew were not well 

rested. No non-conformity was identified in the 

inspection conducted by the port state control two 

days ago. 

Table 1. HTA of closed sampling for chemical tanker ship. 

1 Before sampling 

1.1 Ensure the duty officer is ready for the closed 

sampling. 

1.2 Make sure the closed sampling equipment is clean. 

1.3 Make sure the crew taking the sample to wear proper 

and adequate protective gear. 

2 During sampling 

2.1 Connect the closed sampler to the vapour lock 

properly and with the valve fully closed. 

2.2 Make sure that the sampler is earthed before it is 

lowered into the tank. 

2.3 Take the sample following the manufacturer's 

guidelines. 

2.4 Fully close the vapour lock valve, to disconnect the 

sampler. 

3 After sampling 

3.1 Clean the closed sampling equipment. 

3.2 Label each sample and store it in the designated 

compartment. 

 

Then, six PSFs have been derived by experts with 

extensive knowledge and experience in operations 

on chemical tanker ships. PSFs are Task complexity 

(PSF1), Time pressure (PSF2), Training and 

experience (PSF3), Environmental condition 

(PSF4), Working condition (PSF5), and 

Organizational factors (PSF6). Next, five experts 

with extensive knowledge and experience rate the 

PSFs on a scale of 1-9. The evaluation results 

obtained from the experts are aggregated with the 



 

223 
 

ER approach by using Equations 2-6. Table 2 

illustrates the aggregated PSF ratings for all sub-

tasks based on evaluations by marine experts. 

Table 2. Aggregated ratings for all sub-task. 

Task No PSF1 PSF2 PSF3 PSF4 PSF5 PSF6 

1       

1.1 7.37 5.92 7.01 6.16 6.61 7.47 

1.2 7.34 5.17 5.77 4.67 5.46 5.63 

1.3 6.84 4.43 5.07 5.75 6.28 5.39 

2       

2.1 4.73 4.73 4.70 4.65 6.09 6.21 

2.2 4.07 3.50 4.54 4.56 5.07 5.08 

2.3 3.16 2.98 4.19 3.89 4.74 3.88 

2.4 5.66 4.11 5.80 5.51 5.87 6.40 

3       

3.1 4.80 3.37 5.95 4.63 6.40 6.84 

3.2 4.23 3.36 4.92 4.97 7.36 5.35 

 

In the step of weighing the PSFs, experts assess 

the PSFs between 0-100. The values assigned by 

each expert are normalized. The normalized values 

of the five experts are aggregated using Equations 

2-5. The experts' assessments, normalized values 

and aggregated weight of PSFs are shown in Table 

3. 

Table 3. Aggregated weight of PSFs. 

Expert PSF

1 

PSF

2 

PSF

3 

PSF

4 

PSF

5 

PSF

6 

∑ 

1 Assigned 
Weight 

80 80 90 85 70 65 47
0 

Normalize
d Weight 

0.17
0 

0.17
0 

0.19
1 

0.18
1 

0.14
9 

0.13
8 

 

2 Assigned 

Weight 

85 90 85 80 75 70 48

5 

Normalize

d Weight 

0.17

5 

0.18

6 

0.17

5 

0.16

5 

0.15

5 

0.14

4 

 

3 Assigned 

Weight 

75 70 80 70 65 65 42

5 

Normalize

d Weight 

0.17

6 

0.16

5 

0.18

8 

0.16

5 

0.15

3 

0.15

3 

 

4 Assigned 

Weight 

80 85 85 80 75 65 47

0 

Normalize

d Weight 

0.17

0 

0.18

1 

0.18

1 

0.17

0 

0.16

0 

0.13

8 

 

5 Assigned 
Weight 

85 90 95 80 80 85 51
5 

Normalize

d Weight 

0.16

5 

0.17

5 

0.18

4 

0.15

5 

0.15

5 

0.16

5 

 

Aggregated 

Weight  

0.17

2 

0.17

6 

0.18

6 

0.16

7 

0.15

3 

0.14

6 

 

 

Then, using Equation 7, SLI values are computed 

for each subtask of the closed sampling process. 

Finally, the SLI values are transformed into HEP 

values by applying Equation 8. Table 4 lists the SLI 

values and HEP results for each sub-task. 

 

Table 4. Calculated SLI and HEP values for each task. 

Task SLI Log (HEP) HEP 

1    

1.1 6.74 -2.46 3.51E-03 

1.2 5.68 -2.06 8.78E-03 

1.3 5.61 -2.03 9.36E-03 

2    

2.1 5.14 -1.85 1.40E-02 

2.2 4.44 -1.59 2.57E-02 

2.3 3.79 -1.35 4.50E-02 

2.4 5.53 -2.00 1.00E-02 

3    

3.1 5.28 -1.91 1.24E-02 

3.2 4.97 -1.79 1.62E-02 

IV. DISCUSSION 

In the view findings, as shown in Table 4, the 

highest HEP value for the cargo sampling process 

was found as sub-task 2.3 (Take the sample 

following the manufacturer's guidelines). Time 

pressure and complexity are major factors leading to 

high HEP. The manufacturer's instructions should 

be followed when transferring the sample to the 

bottle using closed sampling equipment. This task 

can be complicated for the crew as each ship has a 

different type of sampler. Failure of the task can 

result in the inhalation of toxic cargo vapors and 

poisoning. In addition, failure may cause a 

prolongation of the sampling process. Subtask 2.2 

(Make sure that the sampler is earthed before it is 

lowered into the tank) has the second highest HEP 

during closed cargo sampling. Closed sampling 

equipment must be earthed due to static electricity 

after connections are made. Failure of the task can 

cause an explosion in the cargo tank. Subtask 3.2 

(Label each sample and store it in the designated 

compartment) has the third highest HEP. After the 

samples are taken, they are marked on the sample 

bottle with the necessary information. Samples are 

stowed in the sample locker in the main cargo area 

in accordance with the compatibility chart. Failure 

of the task may result in loss of samples. On the 

other hand, failure may cause financial losses by not 

being able to prove the ship's innocence when faced 

with any problem. 

V. CONCLUSION 

Cargo sampling is considered as one of the critical 

processes performed at every port of call of the ship. 

A failure during sampling may cause serious 

financial losses, poisoning or explosions, depending 
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on the characteristics of the cargo carried. To 

minimize all these negative consequences, this 

paper discusses the role of the human factor during 

the cargo sampling process. Tasks are determined 

for the process and HEP values of each task are 

calculated. To achieve this purpose, SLIM under the 

ER approach is adopted. The findings show that 

sub-task 2.3 (Take the sample following the 

manufacturer's guidelines) has the highest HEP 

value in the cargo sampling process. Subtask 2.2 and 

subtask 3.2 are the other tasks with the highest HEP 

values, respectively. The research's findings 

emphasize the most important tasks that require 

attention. The paper contributes to chemical tanker 

ship owners, health safety environment and quality 

(HSEQ) managers, maritime safety professionals 

and, chemical tanker officers for the process. 
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