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Abstract – In this paper, we propose on type of  Dunford integration in the concept of ideal convergence 

This wants to construct a new convergence of functions in Banach space to definite the measurable 

functions. The main result is construction on the type of  Dunford as the Ideal integral. Ideal Dunford 

integral is an application of the convergence ideal in integration but weak integration. For this been followed 

the usual route by first introducing the ideal Dunford integral and demonstrating for the ideal Dunford 

integral the most important statements related to it in the classical case. In this paper, we prove if the 

function f is Dunford integrable then it is ideal Dunford integrable, but conversely, this is not true. This 

gives the meaning of the extension of Dunford integration in our article. We are motivated by this by one 

important example published by Schvabik and Guoju, [20].  

Keywords – Dunford Type İdeal İntegrals, I-Convergence, I-Measurable Function,I-Cauchy Convergence 

I. INTRODUCTION 

This paper was inspired by [ 7 ] and [ 5]  where the 

concepts I-convergence of the sequences of real 

numbers and I-convergence of the function of real 

values. We will often quote some results from [ 5] 

that can be transferred to function in Banah space. 

In [ 7]  it is shown that our I-convergence is, in a 

sense, equivalent to the µ-statistical convergence of 

J. Connor ([15]). The concept of statistical 

convergence is introduced in [9] and [13] and 

developed  [17].  The concept of I-convergence is a 

generalization of statistical convergence and it is 

based on the notion of the ideal I of subsets of the 

set N of a positive integer. 

II. PRELIMINIARES 

 

Definition 1.  

(a) Let Y be a set that is not the empty set, Y. 

Familyℑ(Y) is called the ideal of the set Y if and 

only if that for A, Bℑ it follows that, ABℑ and 

for every Aℑand B  A we will have B ℑ. 

(b) The ideal ℑ is called non-trivia ideal if and only 

if,ℑand yℑ. A non-trivial ideal is called 

acceptable when it contains sets with only one point 

on it. 

Let them (𝑇, Σ, 𝜇) be a space with probabilistic 

measure 𝜇, where T is a random set on a line, Σ-

Borel’salgebra and  is a defined measure. 

I-Convergence of Sequences of Elements in 

Banach Space. 

Definition 2. A sequence 𝑥 = (𝑥𝑛)  ,n∈N of 

elements of X is said to be I-convergent to L∈ 𝑋  if 

and only if for each 𝜀 > 0 the set  𝐴(𝜀) = {𝑛𝜖𝑁 ∶
‖𝑥𝑛 − 𝐿‖ ≥ 𝜀}   belongs to I. The element L is 

called the I-limit of the sequence x = {xn},n∈N.  I-

lim xn =L. 

Definition 3.  A sequence 𝑥 = (𝑥𝑛)  ,n∈N of 

elements of X is said to be I-Caushy if for each 𝜀 >

0 , there exists q ∈ 𝑁 such that {𝑛𝜖𝑁 ∶ ‖𝑥𝑛 − 𝑥𝑞‖ ≥

𝜀} ∈ 𝐼    
Definition 4. A sequence 𝑥 = (𝑥𝑛)  ,n∈N is called 

weakly I-covergent if the sequence 𝑥∗(𝑥𝑛) is I-

convergent for every 𝑥∗ ∈ 𝑋∗. 

http://as-proceeding.com/
mailto:anita_caushi@yahoo.com


 

405 
 

Now, we deals with the generalization of the  Ideal 

convergence of functions on normed space. 

The sequence of functions {fk} contains the 

functions with value in vectorial 

space. 

Definition 4: The function 𝑓: 𝑇 → 𝑋 , where X is a 

vector space is called a simple function according to 

𝜇, if for every family of measurable sets {𝐸𝑖}that has 

no common point ,𝐸𝑖 ⊂ 𝑇 and 𝐸𝑖 ∩ 𝐸𝑗 = ∅, for 𝑖 ≠

𝑗,where𝑇 = ⋃ 𝐸𝑖
𝑛
𝑖=1 and 𝑓(𝑡) = 𝑥𝑖, for 𝑡 ∈ 𝐸𝑖 ,i=1, 

2,…, n.  

As we know before, the simple function is defined 

𝑓(𝑡) = ∑ 𝑥𝑖𝜒𝐸𝑖
𝑛
𝑖=1  , where 𝜒𝐸𝑖is a characteristic 

function of 𝐸𝑖. 

Definition 5: The function 𝑓: 𝑇 → 𝑋 is called ℑ-

measurable on 𝑇 , if for every tT,  𝜀 > 0 and 𝐴 ⊂
ℑ there is a sequence of simple functions 𝑓𝑛: 𝑇 →
𝑋 for which we have 

‖𝑓𝑛(𝑡) − 𝑓(𝑡)‖ < 𝜀 for  𝑛 ∈ ℕ\𝐴. 

Definition  6. The subsequence (𝑓𝑛𝑘)𝑘∈ℕ
of the 

sequence(𝑓𝑛)𝑛∈ℕ
ℑ
→ 𝑓 is called fundamental 

if,for𝐴′ = {𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯}; 𝑓𝑛𝑘
ℑ
→ 𝑓 

for 𝑛 ∈ ℕ\𝐴′ where𝐴′ ⊂ 𝐴. 

Definition 7..Let(𝐼, Σ, 𝜇)be a measurable complete 

space with a non-negative measure. The sequence 

of measured functions (𝑓𝑛)𝑛in 𝐼 is 𝕴-convergent 

according to the measure 𝝁 to the function f, if for 

each ε> 0 and σ> 0 there is an essential 

subsequence(𝑓𝑛𝑘)𝑘
of the sequence(𝑓𝑛)𝑛 such that: 

𝜇{𝑡: ‖𝑓𝑛𝑘(𝑡) − 𝑓(𝑡)‖ ≥ 𝜎} < 𝜀 for 𝑛𝑘 ∈ ℕ\𝐴
′ and  

t I. We denote 𝑓𝑛(𝑡)
ℑ−𝜇
→  𝑓(𝑡). 

Definition  8. The sequence of measured 

functions(𝑓𝑛)𝑛with values in 𝐵𝑎𝑛𝑎ℎ 𝑠𝑝𝑎𝑐𝑒 is 

called ℑ-fundamental according to the measure 

𝜇 , 𝑆 ⊂ ℑ,if there is a natural number (𝜎, 𝑆) ⊂ ℕ\𝐴 

and there is a subsequence (𝑓𝑛𝑘)𝑘
of (𝑓𝑛)𝑛, 𝑖𝑓 ∀𝜀 >

0 and 𝜎 > 0, 𝜇{𝑡: ‖𝑓𝑛𝑘(𝑡) − 𝑓(𝑡)‖ ≥ 𝜎} < 𝜀. 

3.Ideal Dunford integration in Banach space. 

  

Lemma 1. (Dunford) [12] Assume that   𝑓: 𝑇 → 𝑋 

is I-weakly  measurable where  X  normed space 

and for each 𝑥∗ ∈ 𝑋∗  the function 𝑥∗(𝑓): 𝑇 → 𝑅 is 

ideal  (Bohner) integrable (𝑥∗(𝑓) ∈ 𝐿1), then for 

each measurable E  T there exists a unique 𝑥∗∗ ∈

𝑋∗∗ such that 

𝑥𝐸
∗∗ = 𝐼𝐵 − ∫ 𝑥∗(𝑓)

𝐸
 për çdo 𝑥∗ ∈ 𝑋∗.                                 

(1) 

Proof . For a given measurable  E  T we have 

∫ 𝑥∗
𝐸

(𝑓) = ∫ 𝑥∗
𝐸

(𝑓 ∙ 
𝐸
) and we can define  

𝑆𝐸(𝑥
∗) → 𝑥∗(𝑓 ∙ 

𝐸
), 

where 𝑆𝐸  is a  linear map  𝑋∗ into the space 𝐿1  
Lebeg(Bochner) integrable on  T and  

  𝑆𝐸: 𝑥
∗ → ∫ 𝑥∗(𝑓 ∙ 

𝐸
)

𝑇
 ) 

 is a linear function on  𝑋∗ . Assume that 𝑥∗𝑛𝑘 →

𝑥∗ in 𝑋∗ and  𝑆𝐸(𝑥
∗
𝑛𝑘) → 𝑔   in 𝐿1 where 𝑛𝑘 ∈

𝑁 ∖ 𝐴′, 𝑘 → ∞ also ( 𝑥∗𝑛𝑘) and (𝑆𝐸(𝑥
∗
𝑛𝑘) are the  

essential subsequences of the sequences (𝑥∗𝑛 )and 

(𝑆𝐸(𝑥
∗
𝑛 )  , thus lim

𝐾
∫ |𝑥∗𝑛𝑘(𝑓 ∙ 𝐸) − 𝑔|𝑇

=

0  𝑛𝑘 ∈ 𝑁 ∖ 𝐴
′  and k→ ∞. Then  𝑥∗𝑛𝑘(𝑓 ∙


𝐸
)converges for 𝑛𝑘 ∈ 𝑁 ∖ 𝐴

′and  k→ +∞ in 

measure to g and by the Riesz theorem there is a 

subsequence esential {𝑥∗𝑚𝑟}of {𝑥∗𝑛𝑘} such that 

      𝑥∗𝑚𝑟 (𝑓(𝑡) ∙ 𝐸(𝑡)) → 𝑔(𝑡) 𝑚𝑟 ∈ 𝑁 ∖ 𝐴
′ dhe 

r→ +∞ for almost all t∈ 𝑇. Since   𝑥∗𝑛 (𝑓(𝑡) ∙


𝐸
(𝑡)) → 𝑔(𝑡) → 𝑥∗(𝑓(𝑡) ∙ 

𝐸
(𝑡)) for all t ∈ 𝑇, is 

follows  𝑔(𝑡) = 𝑋∗(𝑓(𝑡) ∙ 
𝐸
(𝑡)), for allmost t∈ 𝑇 

and 𝑥∗(𝑓 ∙ 
𝐸
) ∈ 𝐿1 . This means that the graf of 

the linear map  𝑆𝐸: 𝑋
∗ → 𝐿1 is closed and by the 

Banach closed graph theorem the operator    𝑆𝐸   is 

bounded.. Hence  |𝑆𝐸(𝑥
∗)| = |∫ 𝑥∗(𝑓 ∙ 

𝐸
)

𝑇
| ≤

∫ |𝑥∗(𝑓 ∙ 
𝐸
)| = ∫ |𝑆𝐸(𝑥

∗)|
𝑇𝑇

= ‖𝑆𝐸(𝑥
∗)‖𝐿1 ≤

‖𝑆𝐸‖‖𝑋
∗‖ and it follows  |∫ 𝑥∗(𝑡)

𝐸
| ≤

‖𝑆𝐸‖‖𝑥
∗‖ Therefore 

operator

∫ 𝑥∗(𝑡)
𝐸

  is a continuous linear functional on 𝑋∗ 

defining an element 𝑥∗∗ ∈  𝑋∗∗ for wich (1) holds. 

The previous Dunford lemma 1.makes it possible 

to introduce the following definition. 
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Definition.If f :T→ 𝑋  is weakly ideal measurable 

and such that the function 𝑥∗(𝑓): 𝑇 → 𝑅 

is ideal Bochner integrable for each 𝑥∗ ∈  𝑋∗ then 

f is called ideal  Dunford integrable. 

The ideal Dunford integral DI-  ∫ 𝑓
𝐸

 of f over a 

measurable set E T is defined by the element 

𝑥∗∗ ∈  𝑋∗∗ given in Lemma (1) 𝑥∗∗ = 𝐷𝐼 − ∫ 𝑓
𝐸

 

,where 𝑥∗∗𝐸(𝑥
∗) = 𝐵𝐼 − ∫ 𝑥∗(𝑓)

𝐸
  për 𝑥∗ ∈ 𝑋∗.  

For  f ∈ DI we have 𝑥∗(𝑓) ∈ 𝐿1 for all 𝑥∗ ∈ 𝑋∗. Let 

us define 𝑆(𝑥∗) = 𝑥∗(𝑓)  ,  𝑥∗ ∈ 𝑋∗ (2) 

Where 𝑆: 𝑋∗ → 𝐿1   is a linear operator which is 

bounded according to the Banach closed graph 

theorem.Let 𝑆∗: 𝐿∗1 = 𝐿∞ → 𝑋
∗∗  be the adjoint of 

the operator S defined by 

 
 

𝑆∗(𝑔)(𝑥∗) = 𝐵𝐼 − ∫ 𝑔 ∙ 𝑆(𝑥∗

𝑆

)

= 𝐵𝐼 − ∫ 𝑔 ∙ 𝑥∗𝑓 ∈ 𝑅   , 𝑔 ∈ 𝐿∗1
𝑆

= 𝐿∞ 

𝑆∗(𝑔)  is a linear functional on X* for any g ∈
𝐿∞(𝐿

∗
1)  because 

𝐵𝐼 − ∫ 𝑔(𝑎𝑥∗1
𝑆

+ 𝑏𝑥∗2)(𝑓)

= 𝑎∫ 𝑔𝑥∗1(𝑓) + 𝑏 ∫ 𝑔
𝑆𝑆

𝑥∗2(𝑓) 

and it is also bounded because the boundedness of 
the operator S gives 

|𝑆∗(𝑔)(𝑥∗)| = |𝐵𝐼 − ∫ 𝑔𝑇(𝑥∗)
𝑆

|

≤ ‖𝑔‖𝐿∞ ∙ ‖𝑆(𝑥
∗)‖𝐿1

≤ ‖𝑔‖𝐿∞‖𝑆‖‖𝑥
∗‖𝑋∗ 

Hence 𝑆∗(𝑔) ∈ 𝑋∗∗ for every g ∈ 𝐿∞ . 

Assuming 𝑔 = 
𝐸
∈ 𝐿∞, where  E  T is 

measurable, we have 

𝑆 ∗ (𝜒𝐸)(𝑥 ∗) = 𝐵𝐼 − ∫ 𝜒𝐸𝑥 ∗ (𝑓) = ∫𝑥 ∗ (𝑓)
𝐸𝑆

 

Then 𝑆 ∗ (𝜒𝐸) ∈ 𝑋 ∗∗ 
 for every measurable 𝐸 ⊂ 𝑇 

and 𝜈(𝐸) = 𝑆 ∗ (𝜒𝐸) = 𝐷𝐼 − ∫ 𝑓𝐸    

The function 𝜈(𝐸) = 𝐷𝐼 − ∫ 𝑓
𝐸

  defined for all 

measurable E  T ,  is called the indefinite Ideal 

Dunford integral  of f . 

The ideal Dunford integral is not countably 

additive in general.  
The following example modified from a classic 

example.[schvabik]. 

Example. Using the function  

 

𝑓(𝑡) = {
𝑛2

]0,
1

𝑛
[
(𝑡)             𝑛 𝑝𝑟𝑖𝑚

     𝑛
]𝑜,
1

𝑛
[
(𝑡)               𝑛 𝑜𝑡ℎ𝑒𝑟𝑠  

                

f(o)=(0)   

Is easy to see that 

1

0

*( ( ))
k

x f t dt 

{
  
 

  
 

1

2

13
0,

0

1
( )

k

n P n

n t dt
n


 
   



1

13
0,

\0

1
( )

k

n P n

n t dt
n


 
   



=

{
 
 

 
 

1
2

3 3
1

1 1 1k

n n k

n
n k n

 

 

 

1

3 3
1

1 1 1k

n n k

n
n k n

 

 

 

 

We see that 

𝐷𝐼 −∫ 𝑓(𝑡)𝑑𝑡 = (
1

𝑘

1
𝑘

0

,
2

𝑘
,
3

𝑘
, . . . ,

𝜃𝑘
𝑘
, 1.1. . . ) ∈ 𝑙∞ 

Where 

                                                

k 

{
 
 

 
 

2( 1)k

k


        𝑝ë𝑟   𝑘  𝑝𝑟𝑖𝑚

1k

k


          𝑝ë𝑟   𝑡ë 𝑡𝑗𝑒𝑟ë

 

Proposition.   Assume that𝑓: 𝑇 → 𝑋 is Ideal 

Dunford integrable.Then the following assertions 

are equivalent.  
a) The operator 𝑇: 𝑋∗ → 𝐿1 given in formula 

(3) is ideal weakly compact . 
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b) The adjoint operator 𝑇∗: 𝐿∞ → 𝑋
∗∗ is ideal 

weakly compact;  

c) The set {𝑥 ∗ (𝑓) : 𝑥 ∗∈ 𝐵(𝑋 ∗)} ⊂ 𝐿1    

është uniformly integrable,  i.e 

 

𝑙𝑖𝑚
𝜇(𝐸)→0

∫ 𝑥∗(𝑓) = 0
𝐸

,  

   Is uniformly for every 𝑥∗ ∈ 𝐵(𝑋∗)   

d) The indefinite Ideal Dunford integral (E) 

given by (3) is countably additive, i.e if  

𝐸𝑛 ⊂ 𝑇, 𝑛 ∈ ℕ are pairwise disjoint 

measurable sets then 

𝜈 (⋃𝐸𝑛

∞

𝑛=1

) = ∑𝜈(𝐸𝑛)

∞

𝑛=1

, 

in  X** ( the series  ∑ 𝜐(𝐸𝑛)
∞
𝑛=1  is converges on 

the norm in  X** ). 

Proof.  

Lemma.1 The set K  L1 is weakly compact  if 

and only if K is bounded and  the integral is 

countably additive  ∫ 𝑓𝑑𝜇
𝐸

 is uniformly for every f 

 K, i.e  for any sequences of sets are pairwise 

disjoint 𝐸𝑛 ⊂ 𝑆 
measurable sets ,we have 

     𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑑𝜇
𝐸𝑛

 = 

0 

Is uniformly for every f  K 

Proof.: Let us mention that by Gantmacher's 

theorem ( [DS] .VI  .Theorem 4.8.) an operator T is 

weakly compact if and only if its adjoint T* is 

weakly compact and therefore a) and b) are 

equivalent. 

Let us consider the set 

                                              𝑇(𝐵(𝑋 ∗)) =
{𝑥 ∗ (𝑓); 𝑥 ∗∈ 𝐵(𝑋 ∗)} ⊂ 𝐿1  

We have 

‖𝑥 ∗ (𝑓)‖𝐿1 = ∫|𝑥 ∗ (𝑓)|
𝑆

= ‖𝑇(𝑥 ∗)‖𝐿1 ≤ ‖𝑇‖

< +∞ 

for  x*B(X*)
 
because the operator T is bounded. 

Hence the set 𝑇(𝐵(𝑋 ∗)) is bounded. 

By the lemma 1 the set  K  𝐿1 is weakly compact  

if and only if  K is bounded and the integral is 

countably additive  ∫ 𝑓𝑑𝜇 
𝐸

is uniformly for   𝑓 ∈ 𝐾, 

i.e  for any sequences of sets are pairwise disjoint 

𝐸𝑛 ⊂ 𝑆 
measurable sets ,we have 

‖𝑥 ∗ (𝑓)‖𝐿1 = ∫|𝑥 ∗ (𝑓)|
𝑆

= ‖𝑇(𝑥 ∗)‖𝐿1 ≤ ‖𝑇‖

< +∞ 

for  x*B(X*)
 
because the operator T is bounded. 

Hence the set 𝑇(𝐵(𝑋 ∗)) is bounded. 

By the lemma 3.4. the set  K  𝐿1 is weakly 

compact  if and only if  K is bounded and the 

integral is countably additive  ∫ 𝑓𝑑𝜇 
𝐸

is uniformly 

for   𝑓 ∈ 𝐾, i.e  for any sequences of sets are 

pairwise disjoint 𝐸𝑛 ⊂ 𝑆 
measurable sets ,we have 

                                           𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑑𝜇
𝐸𝑛

0 

Uniformly for  𝑓 ∈ 𝐾. 

The set 𝑇(𝐵(𝑋 ∗)) ⊂ 𝐿1is weakly compact ( is 

equivalent to ideal weakly compact according to 

the sequences) if and only if we have    

                                                            

𝑙𝑖𝑚
𝜇(𝐸)→0

∫ 𝑥∗(𝑓)
𝐸

 

uniformly for every 𝑥 ∗∈ 𝐵(𝑋 ∗). 

 This means that c) is equivalent  to  a). Assume 

that c)holds . It is easy to see that 

𝑙𝑖𝑚
𝜇(𝐸)→0

∫ |𝑥 ∗ (𝑓)|
𝐸

= 0 uniformly for  𝑥 ∗∈

𝐵(𝑋 ∗).then for every 𝜂 > 0 there is an 𝜀 > 0  

such that  

     |𝑆 ∗ (𝜒𝐸(𝑥 ∗))| = |∫ 𝑥 ∗ (𝑓)𝐸
| <

𝜂

 
For  𝑥 ∗∈ 𝐵(𝑋 ∗) .If  𝜇(𝐸) < 𝜀 then ‖𝑆 ∗ (𝜒𝐸)‖ <

𝜂. If  𝐸𝑛 ⊂ 𝑆, 𝑛 ∈ ℕ are pairwise disjoint 

measurable sets denote  𝐸 = ⋃ 𝐸𝑛
∞
𝑛=1 ,then    

𝑙𝑖𝑚
𝑛→∞

𝜇(𝐸\

⋃ 𝐸𝑛
𝑁
𝑛=1 ) = 0                                                               
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Consequently 

                                            𝑙𝑖𝑚
𝑛→∞

‖𝜐(𝐸\

⋃ 𝐸𝑛
∞
𝑛=1 )‖𝑋∗∗ = 0. 

Since 

𝐸 = (𝐸\⋃ 𝐸𝑛
𝑁
𝑛=1 ) ∪

⋃ 𝐸𝑛
∞
𝑛=1 , 

we have by the operator finite additivity 

𝑆 ∗ (𝜒𝐸) = 𝑆 ∗ (𝜒𝐸\⋃ 𝐸𝑛
𝑁
𝑛=1

) + 𝑆 ∗ (𝜒⋃ 𝐸𝑛
𝑁
𝑛=1

)

= 𝑆 ∗ (𝜒𝐸\⋃ 𝐸𝑛
𝑁
𝑛=1

) +∑𝑆 ∗ (𝜒𝐸𝑛)

𝑁

𝑛=1

. 

This means that 

𝜈(𝐸) −∑𝜈(𝐸𝑛)

𝑁

𝑛=1

= 𝜈 (𝐸\⋃𝐸𝑛

∞

𝑛=1

) 

 

And 

𝑙𝑖𝑚
𝑁→+∞

‖𝜈(𝐸) −∑𝜈(𝐸𝑛)

𝑁

𝑛=1

‖

= 𝑙𝑖𝑚
𝑁→+∞

‖𝜈 (𝐸\⋃𝐸𝑛

∞

𝑛=1

)‖

= 0 

This means 𝜈(𝐸) is countably additive . 

Assume now that c) does not hold. Then there is a 

𝑘 > 0 and a sequence 𝐸𝑛 ⊂ 𝑆, 𝑛 ∈ ℕ of 

meausurable sets with 𝜇(𝐸𝑛) → 0, 𝑛 → ∞  , 

∫ |𝑥𝑛
∗(𝑓)| > 𝑘

𝐸𝑛
  for some 𝑥𝑛

∗ ∈ 𝐵(𝑋 ∗). 

Since of measures 𝐸𝑛 tend to zero, it is possible to 

take a subsequence of 𝐸𝑚 assuming that for m< n      

we have  ∫ |𝑥𝑛
∗(𝑓)|

𝐸𝑚
<

𝑘

2𝑛+1
. 

 

Take 𝐴𝑛 = 𝐸𝑛\⋃ 𝐸𝑚𝑚≺𝑛 , 𝐴𝑛 ⊂ 𝑆  measurable and  

𝐴𝑛⋂𝐴𝑟 = ∅,𝑚 ≠ 𝑟    and   

∫ |𝑥𝑛
∗(𝑓)|

𝐴𝑛
= ∫ |𝑥𝑛

∗(𝑓)|
𝐸𝑛

− ∫ |𝑥𝑛
∗(𝑓)|

⋃ 𝐸𝑚𝑚≺𝑛
>
𝑘

2
   

Hence there exist  𝐵𝑛 ⊂ 𝐴𝑛, 𝐵𝑛  𝐵𝑛, are pairwise 

disjoint) such that  ∫ |𝑥𝑛
∗(𝑓)|

𝐵𝑛
>
𝑘

4
 

And ‖𝑆 ∗ (𝜒𝐵𝑛)‖ >
𝑘

4
 for every n. Therefore the 

series 

∑𝑆∗(𝐵𝑛)

∞

𝑛=1

= ∑𝜐(𝐵𝑛)

∞

𝑛=1

 

Cannot converge and d) is not satisfied. This gives 

the equivalence of c) and d). 

III. CONCLUSION 

First, we find another applicatation of Ideal Dunford 

integral in Banach space. We proved the same 

results of classic Dunford integral on Banach space 

for the Ideal Bohner integrable wich are more 

general.  
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