

1st International Conference on Trends in Advanced Research

March 4-7, 2023 : Konya, Turkey

All Sciences Proceedings <u>http://as-proceeding.com/</u> © 2023 Published by All Sciences Proceedings

S- rGO/Fe₂O₃/PANI nanocomposite Synthesis and Energy Storage Applications

Murat ATES*,1,2

¹Department of Chemistry/Faculty of Arts and Sciences, Tekirdag Namik Kemal University, TURKIYE

²Nanochem Polymer Energy Company/Silahtaraga Mh. University 1st street, Number:13/1 Z102, Tekirdag, Turkey

*(mates@nku.edu.tr) Email of the corresponding author

Abstract – In this study, 3 different materials were combined to form hybrid nanocomposite for SupercapBattery applications. Sulfur doped reduced graphene oxide (S-rGO), iron (III) oxide (Fe₂O₃), and poly(aniline) (PANI) were used as a component of nanocomposites. Electrochemical performances were performed by cyclic voltammetry (CV), galvanostatic charge / discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. EIS measurements were analyzed by Nyquist, Bodemagnitude, Bode-phase, and Admittance plots. Long-term stability tests were obtained by CV method using 1000 charge/discharge performances at a scan rate of 100 mV×s⁻¹. The highest specific capacitance was calculated as C_{sp} = 157.42 F×g⁻¹ at 2 mV×s⁻¹ (electrode weight was obtained as 13.4 mg).

Keywords - Supercapbattery, 2032 Coin Cell, PEDOT, Hybrid Nanocomposite, Energy Storage

I. INTRODUCTION

Both supercapacitors and batteries are used as an energy storage systems [1, 2]. Reduced graphene oxide (rGO) is an electrode material for electric double layer capacitance (EDLCs) due to its high electrical conductivity, high specific area, chemical stability, and mechanical strength, eco-friendly, etc [3]. Graphene has an important material in various areas since it was found in 2004 because of its unique physical and chemical properties [4].

II. MATERIALS AND METHOD

Electrochemical measurements were performed with 2032 coin-type cells. The slurry was obtained by mixing the as-synthesized materials, acetylene black and *N*-methyl-2-pyrrolidone (NMP) as a solvent for materials. Polyvinyl pyrrolidone (PVP) was performed by binder. Then the slurry was pasted onto Al and Cu foils and dried at 60 °C in a vacuum oven for 12 h. The electrolyte was ionic liquid (IL). And the mass loading of electrode of 13.4 mg. Galvanostatic charge/discharge, rate performance and cyclic performances were tested between 0.0 and 0.8 V by using ivium-vertex potentiostat-galvanostat instrument.

ICTAR

A. GO and rGO synthesis

Graphene oxide (GO) was synthesized from graphite powder according to modified Hummers method [5].

B. S-rGO synthesis

In literature, the conductivity of GO increases by doped of S and N elements [6, 7]. As a result, S doped GO have a superior performance compared to other additives (N, B or P) in terms of capacitor performance [8]. 5 ml Na2S was mixed in various sources (0.5 M). It was synthesized in a microwave oven at 180 Watt and 20 min. So, S-GO was obtained by centrifuged 3 times [9].

C. Fe₂O₃ nano-material synthesis

 $FeCl_3 \times 6H_2O(1.5 \text{ g})$ was dissolved in 2 ml of HCl solution (30 ml). This mixture was obtained as pH= 11 adding dropwise to 25% NH₄OH solution

(75 ml) with stirring of solution. Afterwards, 2 ml of HCl was added dropwise until pH=2 and the mixture was stirred for 2h. Then by centrifugation and the collected solid was washed with DI water to remove access NH₄OH. The obtained product was dried at 80 °C for 8 h. Thus, Fe₂O₃ nanomaterials was synthesized [10, 11].

D. PANI synthesis

Aniline (0.2 ml) and sodium dodecyl benzene sulphate (SDBS, 3.3 g) as a surfactant will be mixed with 0.06 ml of H₃PO₄ in 10 ml of DI water in an ice-bath. The resulting ANI/H₃PO₄ salt will be added to the 0.46 g / 5 ml DI water soluble ammonium persulfate (APS) mixture. Polymerization will continue in the ice-bath for 12 h. A green colour solid PANI will be formed. The resulting solid PANI will be dried by DI water and ethyl alcohol [12].

E. Electrochemical performances of SupercapBattery device

S-rGO/Fe₂O₃/PANI nanocomposite were measured by CV, GCD and EIS measurements.

F. CV measurements

CV plots of S-rGO/Fe₂O₃/PANI nanocomposite at different scan rates from 1000 mV×s⁻¹ to 2 mV×s⁻¹ were given in Figure 1.

Fig. 1 CV plots of S-rGO/Fe₂O₃/PANI nanocomposite at different scan rates, a) 75-2 mV×s⁻¹, b) 1000-100 mV×s⁻¹.

The lowest specific capacitance was obtained as C_{sp} = 1.69 F×g⁻¹ at 1000 mV×s⁻¹. However, the highest specific capacitance was found as C_{sp} = 157.42 F×g⁻¹ at 2 mV×s⁻¹. There is a logarithmic decrease by increasing of scan rate due to fast ion movement from one compartment to another compartment (Figure 2).

Fig. 2 C_{sp} vs. Scan rate plot of S-rGO/Fe₂O₃/PANI nanocomposite at different scan rates from 1000 to 2 mV×s⁻¹.

G. GCD measurements

GCD plots of S-rGO/Fe₂O₃/PANI nanocomposite was given at constant current density from 0.1 A×g⁻¹ to 10 A×g⁻¹ as shown in Figure 3. The highest specific capacitance was obtained as C_{sp} = 2.26 F×g⁻¹ at 0.5 mA by GCD measurements.

Fig. 3 GCD plots of S-rGO/Fe₂O₃/PANI nanocomposite at constant current density from a) 0.1 A×g⁻¹ to 1.0 A×g⁻¹, b) 2.0 A×g⁻¹ to 10 A×g⁻¹.

H. EIS measurements

Fig. 4 EIS plots of S-rGO/Fe₂O₃/PANI nanocomposite a) Nyquist plot, b) Bode-magnitude plot, c) Bode-phase plot, d) Admittance plot.

EIS plots of S-rGO/Fe₂O₃/PANI nanocomposite were given in Figure 4. Specific capacitance was obtained as $C_{sp}=0.18 \text{ F}\times\text{g}^{-1}$ from Nyquist plot. Double layer capacitance and phase angle were obtained as $C_{dl}=0.020\text{F}\times\text{g}^{-1}$ and $\theta=33.92^{\circ}$ at 0.0392 Hz from Bode-magnitude and Bode-phase plots, respectively. Admittance plots defined conductivity of nanocomposite material (Y"= 0.00335 S).

İ. Stability tests

The stability graphs of the S-rGO/Fe₂O₃/PANI nanocomposite for 2032 coin cell and SS electrodes were given charge/discharge device performances for 1000 cycles (Fig.5). The first capacitance value after 1000 charge/discharge performances were obtained as 144.7% for the SS electrode in ionic liquid in 2032 coin cell.

Fig. 5 Stability tests of S-rGO/Fe₂O₃/PANI nanocomposite at a scan rate of 100 mV×s⁻¹, 1000 charge-discharge measurements.

The initial capacitance value was exceeded to 100% due to the wettability and electrode activation process depending on the cycle increase [13, 14].

III. RESULTS & DISCUSSION

SupercapBattery device performances were obtained by 2032 coin cell. The highest energy and power densities were obtained as $E= 4.94 \text{ Wh} \times \text{kg}^{-1}$ at 0.1 mA and P= 61.57 W×kg⁻¹ at 0.5 mA. EIS data were also presented as $\theta= 33.92^{\circ}$ at 0.0392 Hz and 144.7% for initial capacitance preservation for 1000 charge-discharge measurements.

IV. CONCLUSION

Our results have demonstrated that S-rGO/Fe₂O₃/PANI nanocomposites will be considered as a promising symmetrical electrode materials for the next generation of supercapacitor applications.

ACKNOWLEDGMENT

The author thanks to Efkan Gul and Fatih Nacak for the contribution of laboratory work. Author also thanks to M. Turkyilmaz, Y. Bayrak and O. Yoruk for the TGA-DTA and BET analysis.

Author thanks to TUBITAK, Teydeb-1512 project for material and device support.

References

- G. Zheng, Q. Lin, J. Ma, J. Zhang, Y.B. He, x. Tang, F. Kang, W. Lv, Q.H. Yang, "Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium ion storage", *InfoMat*, pp.1-10, 2021.
- [2] S. Gong, J. Lee, H.S. Kim, "Development of electrode architecture using Sb-rGO composite and CMC binder for high-performance sodium-ion battery anodes", J. Korean Ceramic Society, vol. 57, pp. 91-97, 2020.
- [3] L Zhao, YJ Qiu, J Yu, XY Deng, CL Dai, XD Bai, "Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density", *Nanoscale*, vol. 5, pp. 4902-4909, 2013.
- [4] KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos, IV Grigorieva, AA Firsov, "Electric field effect in atomically thin carbon films", *Science*, vol. 306, pp. 666-669, 2004.

- [5] Z. Zhang, Z. Wei, M. Won, "Nanostructures of Polyaniline doped with inorganic acids", *Macromolecules*, vol. 35, pp. 5937-5942, 2002.
- [6] XL Ma, GQ Ning, YF Kan, YM Ma, CL Qi, B Chen, YF Li, XY Lan, JS Gao, "Synthesis of S-doped mesoporous carbon fibres with ultra-high S concentration and their application as high performance electrodes in supercapacitors", *Electrochim. Acta*, vol. 150, pp. 108-113, 2014.
- [7] XT Sun, WT Shi, L Xiang, WC Zhu, "Controllable synthesis of magnesium oxysulfate, Nanowires with different morphologies", Nanoscale Res. Lett., vol. 3, pp. 386-389, 2008.
- [8] WJ Si, J Zhou, SM Zhang, SJ Li, W Xing, SP Zhua, "Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications", Electrochim. Acta, vol. 107, pp. 397-405, 2013.
- [9] NHA Rosli, KS Lau, T Winie, SX Chin, CH Chia, "Synergistic effect of sulfur-doped reduced graphene oxide created via microwave-assisted synthesis for supercapacitor applications", Diamond & Related Materials, vol. 120, Article number: 108696, 2021.
- [10] SH Jiang, J Ding, RH Wang, FY Chen, J Sun, YX Deng, XL Li, "Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles / graphene hydrogels as binder free high capacitance anode for supercapacitors", Rare Met., vol. 40, pp. 3520-3530, 2021.
- [11] K Lakshminarayanan, A Parasuraman, M Alam, N Ahmad, B Krishnakumar, A Raja, M Kang, "Perlite impregnated with HPA/α-Fe₂O₃: Magnetically separable catalyst for the synthesis of 3,3,6,6-tetramethyl-9substituted-3,4,6,7-tetrahydro-2-xanthene-1,8-(5H,9H)diones", *Journal of Physics and Chemistry of Solids*, vol. 157, Article number:110192, 2021.
- [12] M. Ates, O. Kuzgun, "Modified carbon black, CB/MnO₂ and CB/MnO₂/PPy nanocomposites synthesized by microwave-assisted method for energy storage devices with high electrochemical performances", *Plastics Rubber and Composites*, vol. 49(8), pp. 342-356, 2020.
- [13] A. Chebil, O. Kuzgun, C. Dridi, M. Ates, "High power density supercapacitor devices based on nickel foamcoated rGO/MnCo₂O₄ nanocomposites", *Ionics*, vol. 26, pp. 5725-5735, 2020.
- [14] F. Lin, M. Yuan, Y. Chen, Y. Huang, J. Lian, J. Qiu, H. Xu, H. Li, S. Yuan, Y. Zhao, S. Cao, "Advanced asymmetric supercapacitor based on molybdenum trioxide decorated nickel cobalt oxide nanosheets and three-dimensional α-FeOOH / rGO", *Electrochim. Acta*, 320, Article number: 134580, 2019.