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Abstract – Exponential Collocation Genetic Algorithm (ECGA) approach has been developed and analyzed 

for fast computation of hyperbolic sine nonlinear Troesch’s problem which arises in the confinement of 

plasma. The governing equation is converted to an optimization problem by formulating the Fitness 

function in terms of an exponential basis. The problem is solved for three scenarios of  Troesch’s parameters 

of 0.5, 1, and 2 respectively. The stability of the solutions has been investigated for multiple independent 

runs. The results obtained in this work are in good agreement with the already published with enhanced 

stability and fast convergence. The developed technique is a simple and reliable method for the solution of 

hyperbolic sine nonlinear Troesch’s problem. 
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1. Introduction 

Troesch’s Problem (TP) itself is a sensitive, 

unstable, hyperbolic nonlinear, and singular 

boundary value problem. Originally appear while 

examining the confinement of plasma by radiation 

pressure and in the theory of gas porous electrodes [ 

1, 2]. The dimensionless form of TP is given as: 

 𝑦′′(𝑥) − 𝑛 𝑆𝑖𝑛ℎ(𝑛𝑦) = 0 (1) 

Constrained by, 𝑦(0) = 0       𝑦(1) = 1 (1a) 

The hyperbolic sine nonlinearity and the 

presence of singularity make it highly difficult to 

solve analytically. The closed-form solution of 

Troesch’s problem in terms of the Jacobian elliptic 

function was given by  Roberts et al. 1976: 

 𝑦(𝑥) =
2

𝑛
𝑆𝑖𝑛ℎ-1{

𝑦′(0)

2
𝑆𝑐(𝑛𝑥|1 −

1

4
(𝑦′(0))2)} (12) 

Where 𝑦′(0) = 2√1 − 𝑚, and constant m satisfies the solution of the transcendental equation 

 𝑆𝑖𝑛ℎ(
𝑛
2)

√1 − 𝑚
= 𝑆𝑐(𝑛|𝑚) (13) 

Over there, the Jacobian elliptic function 𝑠𝑐(𝑛|𝑚)is defined by 𝑠𝑐(𝑛|𝑚) = 𝑡𝑎𝑛ϕ, where 𝜙,𝑛, and 𝑚 are related 

by the integral 

 
𝑛 = ∫

1

√1 − 𝑚𝑆𝑖𝑛2𝜃

𝜙

0

𝑑𝜃 (14) 

Therefore, it’s evident that there is a singularity located at a pole of 𝑆𝑐(𝑛|𝑚) or nearly at [3] 

 
𝑥𝑠 =

1

𝑛
𝑙𝑛 (

8

𝑦′(0)
 (15) 

This indicates that at 𝑦′(0) > 8𝑒−𝑛, the singularity 

lies within the integration range. The presence of 

singularity in Troesch’s equation makes the 

problem more challenging to be solved numerically. 

The problem with this equation is the convergence 

of the approximations on the boundaries as 𝑛 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

59 
 

increases. The convergence problem to the exact 

solution at the upper boundary was only partially 

solved by using a combination of different 

numerical approaches. These methods are the sinc-

collocation method [4], the modified homotopy 

perturbation method [ 5], a discontinuous Galerkin 

finite element method [6], smart nonstandard finite 

difference method [7], a hybrid asymptotic finite-

element method [8], variational iteration method 

[9]. However, all the methods mentioned above are 

deterministic, serial in nature, and computationally 

costly.  

The stochastic methods are relatively less 

exploited for the hyperbolic nonlinear systems 

having singularity. Artificial neural networks 

optimized with Genetic Algorithm (GA) have been 

tested for solving TP include [10-12]. However, due 

to the complexity of the neural network architecture 

and its weights, these stochastic solvers are hybrid 

with local search algorithms based on sequential 

quadratic programming for fast computation and to 

achieve quick convergence. A genetic Algorithm is 

a powerful stochastic search and optimization 

method based on the mechanics of natural selection. 

The idea of GA optimization is effectively applied 

to nonlinear differential equations for optimized 

solutions [13-16].  Through reviewing the literature, 

it can be seen that collocation method has not been 

applied to the Troesch’s equation. Therefore, we are 

motivated to apply collocation method hybrid with 

the artificial intelligence techniques to determine 

the solution of this Troesch’s boundary value 

problem. Furthermore, GA hybrid with exponential 

collocation can find an excellent solution for 

nonlinear differential equations with quick 

convergence [17] for complete input interval. 

The present work aims at solving a nonlinear 

Troesch’s problem by using an Exponential 

collocation Genetic Algorithm (ECGA). In this 

work, the nonlinear dynamics of Troesch’s Problem 

are studied for the two cases of the step size h= of 

h=0.05 and 0.1 by taking the three scenarios of 

Troesch’s parameter (n). The three scenarios have 

the value of n to be 0.5, 1, and 2 respectively. The 

prominent features of the proposed method are as 

follows: 

• The exponential collocation is hybridized 

with GA to find the solution to Troesch’s 

problem. 

• Simulations have been conducted to find the 

best set of operators for the solution to 

Troesch’s Problem. 

• Exactness and stability analysis is conducted 

by using results of Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), 

and Standard Deviation (SD) respectively. 

• Finally, compared the obtained solution to 

Troesch’s Problem with the existing 

techniques. 

The graphical abstract of the proposed method is 

shown in figure 1. The rest of the article is organized 
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as The proposed methodology is in section 2 and the 

results are discussed in section 3.  Finally, the 

conclusion is given in section 4. 

1.1.Troesch’s Problem in Plasma Physics 

Troesch’s problem inherently is a sensitive, 

unstable, and highly non-linear two-point 

boundary value problem. The confinement of 

plasma by radiation pressure and in the theory of 

gas porous electrodes is given by Troesch’s 

equation [Weibel, 1959].  

 

Fig. 1. The Proposed methodology for Troesch’s Problem  
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 1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝐸0

𝑑𝑟
)+(𝑤2 −

𝑒2𝑁

𝑀
−

𝑒2𝑛

𝑚
)𝐸0 =

0 

(2) 

 1

𝑟

𝑑

𝑑𝑟
(𝑟𝐸𝑟)= 𝑒(𝑁 − 𝑛) (3) 

 
𝐸𝑟 = −

𝑑𝑢

𝑑𝑟
 (4) 

 

Where above equation represents the radial electrostatic field due to charge separation. 

 
𝑛(𝑟) = 𝑛0exp (

𝑒𝑈

𝐾𝑇
−

𝑒2

4𝑚𝑤2𝑘𝑡
      (5) 

 𝑁(𝑟) = 𝑁𝑒𝑥𝑝(−
𝑒𝑈

𝐾𝑇
-

𝑒2𝐸0
2

4𝑀𝑤2𝐾𝑇
) (6) 

Here, N and n are taken as ion and electron densities 

as a function of r. 𝐸 = 𝐸𝑟(𝑟) is the electric field and 

𝐸0(𝑟)𝑐𝑜𝑠𝑤𝑡) corresponds to the applied electric 

field plus the applied electric field due to the plasma 

current and T is the temperature; Furthermore, Ion 

and electron temperatures are assumed equal and 

constant. When 𝐸0 is assumed to be negligibly 

small, then the system reduces to 

 𝑑𝐸

𝑑𝑟
= 𝑁(𝑟) − 𝑛(𝑥) (7) 

 
𝐸𝑟 = −

𝑑𝑢

𝑑𝑟
 (8) 

 𝑛(𝑥) = 𝑛0𝑒𝑥𝑝(𝜆𝑈) (9) 

 𝑁(𝑥) = 𝑁0𝑒𝑥𝑝(−𝜆𝑈) (10) 

Substituting Equations (8) to (10) into Equation (7), a second-order nonlinear ordinary differential equation is 

obtained as: 

 𝑑2𝑈

 𝑑𝑥2
=𝑁0𝑒𝑥𝑝((−𝜆𝑈)𝑛0𝑒𝑥𝑝(𝜆𝑈) (11) 

Now, applying the simplifying assumption 𝑁0 = 𝑛0 

= 𝑁∗and setting 𝑈 = −𝑦  

Thus Equation (11) simplifies Troesch’s problem. 

The equation in new variables can be written as 

Equation (1).  



International Journal of Advanced Natural Sciences and Engineering Researches 

 

62 
 

2. The proposed Methodology 

Troesch’s problem with the hyperbolic sine 

nonlinearity is converted to an optimization 

problem by  proposing the solution in the form of 

exponential basis functions as [17]: 

 

y(x) = c0 + ∑ 𝑐𝑛𝑒𝛾𝑛𝑥 , 0 ≤  x ≤  1

𝑏

𝑛=1

 (16) 

 

y(x)′′ = ∑ 𝑐𝑛𝛾𝑛
2𝑒𝛾𝑛 𝑥 

𝑏

𝑛=1

 (17) 

Where for 𝑏 = 5 , the exponential basis set is given 

by {𝑒𝛾1 𝑥,  𝑒𝛾2 𝑥,  𝑒𝛾3 𝑥 , 𝑒𝛾4 𝑥, 𝑒𝛾5 𝑥} and 

(𝑐0,𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝛾1, 𝛾2, 𝛾3 , 𝛾4  𝑎𝑛𝑑 𝛾5) are 

unknown coefficients respectively. We have 

discretized the input domains using the equally 

spaced collocation points. 

2.1.Collocation Based Discretization  

The discretization procedure involves the 

transformation of the proposed solution into an 

algebraic system of interrelated equations to 

formulate the fitness function. Equation (16) is 

converted into a set of algebraic equations in the 

form of exponential basis functions with 

constants 𝑐0,𝑐1,  𝑐2, 𝑐3, 𝑐4, 𝛾1, 𝛾2, 𝛾3, 𝛾4, and 𝛾5.  The 

transformation is attained by putting the 

𝑦(𝑥) 𝑎𝑛𝑑 y(x)′′in Eq. (16).  

2.2. Fitness Function Formulation 

The fitness function requirements are the residual 

equations that are made by the discretization 

procedure as discussed above together with the 

residual equations at the boundary points. The 

residual equation for discretized input domain is 

obtained from Equation (16), and it is given as

 

 𝑅 = ∑ 𝑐𝑛 𝛾𝑛
2𝑏

𝑛=1 𝑒𝛾𝑛𝑥𝑖 − 𝑠𝑖𝑛ℎ𝑛(𝑐0 + ∑ 𝑐𝑛
𝑏
𝑛=1 𝑒𝛾𝑛𝑥𝑖 ) (18) 

Where 𝑥𝑖 = 𝑥0 + ℎ for different step sizes of 0.05, and 0.1, respectively. The residual equations at the boundary 

points are given as follows: 

 

𝑅(0) = ∑ 𝑐𝑖

5

𝑖=1

 (19) 

 𝑅(1) = 1 − 𝑐0 − ∑ 𝑐𝑖
5
𝑖=1 𝑒𝛾𝑖 (20) 
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The fitness function is formulated in terms 

of the overall residual error 𝑂𝑅 . The norm of the 

whole input domain in terms of residues is used to 

define the overall residual function in the form of 

least square sense given as: 

 

𝑂𝑅 =  √𝑅(0)2 + ∑ (𝑅(𝑥𝑖))
2

𝑖=1−ℎ

𝑖=ℎ

+ 𝑅(1)2 
(21) 

In this way the original hyperbolic sine 

nonlinear problem is reduced to an equivalent 

optimization problem Now the task is the 

minimization of the fitness function 𝑂𝑅  so such that 

the errors of each equation decrease to achieve the 

zero value of the  𝑂𝑅. For that purpose, we will 

exploit the strength of the Genetic Algorithm as the 

global search optimization technique. 

• Case One: In case one the input domain of 

Troesch’s problem is discretized by taking 

21 collocation points with the step size of 

h=0.05. Troesch's parameter (n) is taken to 

be n=0.5, 1, and 2.  

• Case Two: In case two the input domain of 

Troesch’s problem is discretized by taking 

11 collocation points with the step size of 

h=0.1. Troesch's parameter (n) is taken to be 

n=0.5, 1, and 2. 

2.4 Genetic Algorithm (GA) 

Genetic Algorithm (GA) is a Global search 

algorithm centered on an evolutionary technique, 

where natural evolution and survival of the fittest 

are counterfeited to do a random search to get the 

best solution to a problem. Genetic Algorithm 

usually starts with an initial population of entities 

produced at random. [18] The basics of GA 

parameters include initial population size, crossover 

probability, mutation probability, and termination 

criteria. Simply, each candidate in the population 

represents a potential solution to the problem under 

consideration. Individuals evolve through 

successive iterations, called generations. During 

each generation, each candidate in the population is 

evaluated using some measure of fitness. Genotype 

is an individual’s group of chromosomes, while 

phenotype is a set of values corresponding to a given 

genotype. The initial matrix (𝑝 ×  𝑟) of 𝑝 number 

of chromosomes (solution set) of the GA is created 

by randomly bound numbers containing genes equal 

to several unknown variables 𝑟 in the operation of 

the residual function. Here each chromosome 

represents the discretization points of the 

collocation scheme. The basic operators of the 

genetic algorithm are election, crossover, and 

mutation.  
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• Selection: A process in which randomly 

selected individuals as parents based on their 

fitness evaluation. Selection is key to finding 

the best offspring from the initial population 

for crossover.  

• Crossover: This function does the crossover 

between the two parent solutions according 

to the given fraction so that a new population 

can be formed.  

• Mutation: This function induces diversity 

in the population by randomly generating 

new traits in the chromosomes. 

 

3. Results and Discussion 

In the current work, the Exponential Collocation 

Genetic Algorithm (ECGA) approach is applied to 

tackle the hyperbolic nonlinearity and singularity in 

Troesch’s problem. The operators and the parameter 

settings for both cases are provided in Tables 1 and 

2 respectively.  

3.1. Simulations Results of Case One: 

The approximate solutions obtained via ECGA for 

three scenarios together with the Mean Absolute 

Error (MAE) and the fitness value for 30 

independent runs at the step size of h=0.05 are 

shown in Figure 2. 

Table 1: Operators Used In ECGA For All Cases 

 

 

 

 

An essential characteristic of the 

optimization technique is that its result should 

maintain stability with an increasing number of 

runs. The ECGA executes a sequence of 

computations on the existing population at each 

iteration to create a new population. Each 

succeeding population is called a new generation. 

The fitness value of an individual is the value of the 

fitness function for that individual. The solution to 

Troesch’s problem is showing moderate fitness as 

shown in Figure 2 (c). The fitness value is in the 

range of 10-3 to 10-1 and there is negligible 

fluctuation. The reproduction operators are wisely 

chosen to attain this fitness value. The reproduction 

operators are selected on a hit-and-trial basis, and as 

a final point, those are used for which the fitness 

value is minimum and fewer fluctuations occurred. 

The fitness value achieved at a population size of 

200 for the three case scenarios varies from 

0.0000199179 to 0.0000153761, 0.00409793 to 

0.00307365, and 0.0369404 to 0.0569097 

respectively. There is negligible fluctuation for the 

Scheme Operator Setting 

ECGA 

Selection  Stochastic uniform 

Crossover  Heuristic 

Mutation  Adaptive feasible 
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three scenarios that depict the stability of the ECGA 

for the hyperbolic nonlinear Troesch’s problem. 

Table 2: Parameters Setting for ECGA for all cases 

Parameter Setting 

Population Size 200 

Mutation fraction 0.85 

Fitness limit 10-15 

Elite count 12 

No of Variables 11 

Generations 300 

Function Tolerance 10-9 

Stall Generation limit 100 

Nonlinear-constraint tolerance 10-9 

Migration interval 25 

Migration fraction 0.2 

 

The performance of the ECGA approach is 

precisely evaluated in terms of MAE. The small 

values of the MAE in the range of 10-6 to 10-2 as 

shown in Figure 2(b) precisely depicts the 

performance of the proposed ECGA for the 

hyperbolic nonlinearity. In Table 3 the performance 

of the ECGA solution is assessed by comparing the 

results with the mean solution of 30 independent 

runs and the exact solution values. The convergence 

is achieved statistically based on the number of runs 

scored from data of 30 successful runs. 

 

(a) 

 

(b) 
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(c) 

Fig. 2. (a) Solution of Troesch’s problem case one, (b) Mean Absolute Error (MAE), (c) Fitness value for 30 independent runs 

 

 

Table 3: Result of the exact solution of case one, GA solution, and GA mean of 30 independent runs for all case scenarios for 

h=0.05 

x 

values 

n=0.5 n=1 n=2 

Exact 

Solution 

ECGA 

Solution 

ECGA 

Mean 

Solution 

Exact 

Solution 

ECGA 

Solution 

ECGA 

Mean 

Solution 

Exact 

Solution 

ECGA 

Solution 

ECGA 

Mean 

Solution 

0.0 0.00000 0.00000 0.00000 0.00000 1E-15 1.7E-16 0.00000 0.00000 0.00000 

0.1 0.09594 0.09594 0.09594 0.08466 0.08465 0.08465 0.05220 0.05213 0.05218 

0.2 0.19212 0.19212 0.19212 0.17017 0.17016 0.17016 0.10651 0.10628 0.10653 

0.3 0.28879 0.28879 0.28879 0.25739 0.25738 0.25739 0.16514 0.16481 0.16515 

0.4 0.38618 0.38618 0.38618 0.33673 0.34722 0.34722 0.23052 0.23025 0.23051 

0.5 0.48454 0.48454 0.48454 0.44059 0.44061 0.44061 0.30550 0.30544 0.30549 

0.6 0.58413 0.58413 0.58413 0.53853 0.53854 0.53854 0.39356 0.39374 0.39358 

0.7 0.68520 0.68520 0.68520 0.64212 0.64213 0.64213 0.49917 0.49943 0.49923 

0.8 0.78801 0.78801 0.78801 0.75260 0.75260 0.75260 0.62846 0.62855 0.62850 

0.9 0.89285 0.89285 0.89285 0.87136 0.87135 0.87135 0.79049 0.79036 0.79045 

1.0 1.00000 1.00000 1.00000 1.0000 1.00000 1.00000 1.0000 1.00000 1.00000 

 

The exactitude and stability of the designed ECGA 

are further validated in terms of the Root Mean 

Square Error (RMSE) and Standard Deviation (SD), 

as given in Table 4. The small values of these 

statistical performance indicators show the validity 

of the ECGA method.  
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Table 4: Results of statistical operators based on 30 independent runs of ECGA case one for three scenarios of n=0.5, 1 and 2  

x 

values 

n=0.5 n=1 n=2 

MAE RMSE SD MAE RMSE SD MAE RMSE SD 

0.0 5E-16 1.2E-15 5.21E-30 5E-16 9.4E-16 1.92E-30 0 1.25E-15 5.21E-30 

0.1 4.74E-07 8.69E-07 1.82E-12 0.00286 0.00285 2.15E-08 0.0001 8.69E-07 1.82E-12 

0.2 7.07E-07 1.49E-06 6.67E-12 0.005636 0.00563 5.34E-08 0.0002 1.49E-06 6.67E-12 

0.3 7.38E-07 1.75E-06 9.27E-12 0.008226 0.00822 5.83E-08 0.0001 1.75E-06 9.27E-12 

0.4 9.34E-07 1.78E-06 7.32E-12 0.010497 0.01049 1.37E-07 0.0001 1.78E-06 7.32E-12 

0.5 8.07E-07 1.51E-06 6.31E-12 0.012264 0.01226 2.04E-07 0.0001 1.51E-06 6.31E-12 

0.6 5.79E-07 1.03E-06 3.21E-12 0.01327 0.01326 1.57E-07 0.0001 1.03E-06 3.21E-12 

0.7 4.77E-07 9.75E-07 2.24E-12 0.01316 0.01316 8.96E-08 9.1E-05 9.75E-07 2.24E-12 

0.8 6.39E-07 1.17E-06 3.1E-12 0.011435 0.01143 1.44E-07 6.2E-05 1.17E-06 3.1E-12 

0.9 4.94E-07 7.9E-07 1.24E-12 0.007386 0.00738 7.47E-08 4.5E-05 7.99E-07 1.24E-12 

1.0 4.33E-16 9.82E-16 2.97E-30 7.33E-16 2.5E-15 3.02E-29 0 9.82E-16 2.97E-30 

Furthermore, there are minute fluctuations 

in both the RMSE and SD values as shown in Figure 

3. The RMSE values vary from a minimum 10-6 to a 

maximum 10-2 indicating the stability of the 

designed scheme for various independent runs. 

(a) (b) 

Fig. 3. (a) Standard Deviation (SD), (b) Root Mean Square Error (RMSE) for three scenarios for case one
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3.2. Simulations Results of Case Two: 

The approximate solutions obtained via ECGA for 

three scenarios together with the Mean Absolute 

Error (MAE) and the fitness value for 30 

independent runs at the step size of h=0.05 are 

shown in Figure 4. The fitness values as shown in 

Figure 4(c) vary in the range of 0.0000667153 to 

0.000050541, 0.000561028 to 0.00524705, and 

0.0177713 to 0.0500459 for the three scenarios 

respectively. The fitness values are smaller for case 

two than for the previous case due to the lesser 

number of collocation points. Furthermore, the 

fitness values show negligible variation for all three 

scenarios of Troesch’s parameter. The MAE values 

are found to be overlapping in the order of 10-4 for 

the three scenarios as shown in Figure 4 (b). 

(a) 
(b) 

(c) 

Fig.4. (a) Solution of Troesch’s problem case 2 (h=0.1), (b) Mean Absolute Error (MAE), (c) Fitness value for 30 independent runs 

for case two 

The results ECGA mean solution for the 30 

runs for case two are given in Table 6. It is observed 

that the values of ECGA and ECGA mean are quite 

close to the exact values indicating the higher 
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stability of the proposed approach with an accuracy 

of up to five decimal places. The results and 

statistical analysis for the 30 runs of ECGA are 

given in Table 7. For the values of x=0 and x=1, the 

values of MAE, RMSE, and SD are very small due 

to the exact value of the solution being known at 

boundary points. MAE values are obtained to be 

4.79E-7 to 4.99E-7, 0.0028 to 0.0073, 0.0001 to 

4.59E-5 for n=0.5, 1, and 2 respectively. Similarly, 

RMSE and SD values are obtained in the range of 

8.69E-7 to 8.82E-7, 0.0028 to 0.0073, 0.0001 to 

5.67E-5and 1.8E-12 to 1.24E-12, 2.69E-8 to 8.51E-

08, and 1.48E-08 to 4.8E-09 as shown in Figure 5. 

 

Table 6.  Result of the exact solution, GA solution, and GA mean solution of 30 independent runs for case two 

x 

values 

n=0.5 n=1 n=2 

Exact 

solution 

ECGA 

solution 

ECGA 

Mean 

solution 

Exact 

solution 

ECGA 

solution 

ECGA 

Mean 

solution 

Exact 

solution 

ECGA 

solution 

ECGA 

Mean 

solution 

0.0 0.00000 0.00000 0.00000 0.00000 1E-15 1.66E-16 0.00000 0.00000 0.00000 

0.1 0.09594 0.09594 0.09594 0.08466 0.08464 0.08465 0.05220 0.05226 0.05218 

0.2 0.19212 0.19212 0.19212 0.17017 0.17015 0.170166 0.10651 0.10658 0.10653 

0.3 0.28879 0.28879 0.28879 0.25739 0.25738 0.257393 0.16514 0.16516 0.16515 

0.4 0.38618 0.38618 0.38618 0.33673 0.34723 0.347229 0.23052 0.23048 0.23051 

0.5 0.48454 0.48454 0.4845 0.44059 0.44061 0.440611 0.30550 0.30543 0.30549 

0.6 0.58413 0.58413 0.58413 0.53853 0.53855 0.53854 0.39356 0.39351 0.39358 

0.7 0.68520 0.68520 0.68520 0.64212 0.64213 0.64213 0.49917 0.49917 0.49923 

0.8 0.78801 0.78801 0.78801 0.75260 0.75260 0.75260 0.62846 0.62848 0.62850 

0.9 0.89285 0.89285 0.89285 0.87136 0.87135 0.87135 0.79049 0.79047 0.79045 

1.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 7. Results of statistical operators based on 30 independent runs of ECGA for case two 

x 

values 

n=0.5 n=1 n=2 

MAE RMSE SD MAE RMSE SD MAE RMSE SD 

0.0 5E-16 1.2E-15 5.2E-30 5E-16 1.2E-15 5.2E-30 0 0 0 

0.1 4.79E-7 8.69E-7 1.8E-12 0.0028 0.0028 2.69E-8 0.0001 0.0001 1.48E-8 

0.2 7.09E-07 1.49E-06 6.67E-12 0.0056 0.0056 5.91E-08 0.0002 0.0002 1.03E-07 

0.3 7.39E-07 1.75E-06 9.27E-12 0.0082 0.0082 4.65E-08 0.0001 0.0003 2.57E-07 

0.4 9.33E-07 1.78E-06 7.32E-12 0.0104 0.0104 1.49E-07 0.0001 0.0003 3.55E-07 

0.5 8.06E-07 1.51E-06 6.31E-12 0.0122 0.0122 2.43E-07 0.0001 0.0003 3.17E-07 

0.6 5.71E-07 1.03E-06 3.21E-12 0.0132 0.0132 1.96E-07 0.0001 0.0002 1.83E-07 

0.7 4.78E-07 9.75E-07 2.24E-12 0.0131 0.0131 6.79E-08 9.18E-05 0.0001 5.65E-08 

0.8 6.31E-07 1.17E-06 3.1E-12 0.0114 0.0114 1.35E-07 6.23E-05 6E-05 3.33E-09 

0.9 4.99E-07 8.82E-07 1.24E-12 0.0073 0.0073 8.51E-08 4.59E-05 5.67E-05 4.8E-09 

1.0 4.33E-16 9.82E-16 2.9E-30 7.3E-16 0 4E-30 0 0 0 

The optimized value of the constants 

(𝑐0,𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝛾1, 𝛾2, 𝛾3 𝛾4 𝛾5) achieved at the 

best fitness value for both cases are shown in figure 

6. It can be seen that the values of the constants are 

smaller for case two with a lesser number of 

collocation points. The small values of the constants 

indicate the small solution space for the less number 

of collocation points is small as compared to the 

larger collocation points. Therefore, the ECGA 

computation is fast and converges more quickly to 

the solution for case two with the smaller fitness 

value. 

(a) (b) 

Fig. 5. (a) Standard Deviation (SD), (b) Root Mean Square Error (RMSE) for three scenarios of case 2 (h=0.1) 
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 (a)   

(b) 

Fig. 6.  Constant values achieved for best fitness of ECGA for (a) case one (b) case two for all the scenarios of Troesch’s parameter 

The performance of the collocation genetic 

algorithm approach is precisely evaluated. The 

comparison with the other method is shown in Table 

5. Here we compare our results with the 

deterministic and stochastic methods, including the 

Decomposition Method (DM) [19], Modified 

Homotopy perturbation method (MHPM) [5], and 

Unsupervised Neural Network (UNN) hybrid with 

GA [11] at two different step sizes. The 

deterministic methods do not yield a good 

approximation because the nonlinear term will not 

be analytic for Troesch’s parameter greater than 

n=1. Furthermore, these methods require a large 

number of series terms for an accurate solution at 

the expense of computational cost. Whereas the 

stochastic previously applied to solve Troesch’s 

problem is hybridized with the interior point method 

(IPM), and pattern search (PS) to achieve quick 

convergence to an accurate solution. Whereas, the 

ECGA approach is simple and precise in the entire 

input domain without the aid of local search 

algorithms with fast computation and quick 

convergence to the optimal solution. 
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Table 5. Comparison of the results from different methods for Troesch’s problem n=0.5 

 

x 

values 

Exact 

Solution  

DM [19] 

Solution 

MHPM [5] 

Solution 

UNN [11] 

Solution 

ECGA 

Solution 

0.1 0.0959443493 0.0959383534 0.09593956 0.095944354 0.095944349 

0.2 0.1921287477 0.1921180592 0.19211932 0.192128746 0.19212874 

0.3 0.2887944009 0.2887803297 0.28878069 0.288794397 0.28879440 

0.4 0.3861848464 0.3861687095 0.38616754 0.386184855 0.386184846 

0.5 0.4845471647 0.4845302901 0.4845274183 0.4845471933 0.484547165 

0.6 0.5841332484 0.5841169798 0.5841127822 0.584133285 0.584133248 

0.7 0.6852011483 0.6851868451 0.6851822495 0.6852011710 0.685201148 

0.8 0.7880165227 0.7880055691 0.7880018367 0.7880165165 0.788016523 

0.9 0.8928542161 0.8928480234 0.8928462193 0.8928541967 0.892854216 

1.0 1.0000000000 0.9999999988 1.0000000000 1.0000000000 1.000000000 

 

 

4. Conclusions 

 

We have developed an Exponential collocation 

Genetic Algorithm (ECGA) technique to solve 

nonlinear Troesch’s problem. We have compared 

obtained results with the exact and numerical 

solution already given. The following conclusions 

can be drawn from the current study. 

• Fitness values achieved are in the range of 

10-3 to 10-6 for the two case scenarios. 

•  A substantially large number of runs to 

verify that the solution does not deviate or 

behave unusually. Our results have shown 

that the ECGA solutions are very stable and 

even after multiple runs, generate good 

stability.  

• The statistical error indices are of the order 

of 10-6 and have slight variations.  

• The research work shows the potent ability 

of the ECGA approach to search for the 

optimal solution from amongst a very large 

set of candidate solutions. Therefore, 

Genetic Algorithms are a good choice for 

solutions to highly nonlinear problems. 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

73 
 

Acknowledgement 

Rubina Nasir and Noman Yousaf would like to 

acknowledge the support of the Higher Education 

Commission (HEC) of Pakistan through project No. 

10120/Federal/NRPU/R&D/HEC/2017. 

References 

 1. Weibel, E.S. (1959) On the confinement of plasma 

by magnetostatic fields. The Physics of Fluids,. 2(1): 

52-56. 

 2. Gidaspow, D., and Baker, B.S. (1973) A model for 

discharge of storage batteries. Journal of the 

Electrochemical Society, 120(8): 1005. 

 3. Roberts, S., and Shipman, J. (1976) On the closed 

form solution of Troesch's problem. Journal of 

Computational Physics, 21(3): 291-304. 

 4. El-Gamel, M., (2013) Numerical solution of 

Troesch’s problem by sinc-collocation method. 

Applied Mathematics, 4(4): 707-712. 

 5.Feng, X., Mei, L., and He, G. (2007) An efficient 

algorithm for solving Troesch’s problem. Applied 

Mathematics and Computation, 189(1): 500-507. 

 6.Temimi, H., (2012) A discontinuous Galerkin finite 

element method for solving the Troesch’s problem. 

Applied Mathematics and Computation, 219(2): 521-

529. 

 7. Erdogan, U., and Ozis, T. (2011) A smart 

nonstandard finite difference scheme for second 

order nonlinear boundary value problems. Journal of 

Computational Physics, 230(17): 6464-6474. 

 8. Chin, R., and Krasny, R. (1983) A hybrid 

asymptotic-finite element method for stiff two-point 

boundary value problems. SIAM Journal on 

Scientific and statistical Computing, 4(2): 229-243. 

 9. Momani, S., Abuasad, S., and Odibat, Z. (2006) 

Variational iteration method for solving nonlinear 

boundary value problems. Applied Mathematics and 

Computation, 183(2): 1351-1358. 

 10. Raja, M. A. Z., Shah, F. H., Tariq, M., & Ahmad, 

I. (2018)  Design of artificial neural network models 

optimized with sequential quadratic programming to 

study the dynamics of nonlinear Troesch’s problem 

arising in plasma physics. Neural Computing and 

Applications, 29(6): 83-109. 

 11. Raja, M.A.Z., (2013) Unsupervised neural 

networks for solving Troesch's problem. Chinese 

Physics B,. 23(1): 018903. 

           12.  Majeed, K., Masood, Z., Samar, R., & Raja, M. A. 

Z. (2017). A genetic algorithm optimized Morlet 

wavelet artificial neural network to study the 

dynamics of nonlinear Troesch’s system. Applied 

Soft Computing, 56 : 420-435. 

 13. Raja, M. A. Z., Zameer, A., Khan, A. U., and 

Wazwaz, A. M. (2016). A new numerical approach to 

solve Thomas–Fermi model of an atom using bio-

inspired heuristics integrated with sequential 

quadratic programming. SpringerPlus, 5(1): 1-22. 

 14. Gutierrez-Navarro, D., and Lopez-Aguayo, S. 

(2018). Solving ordinary differential equations using 

genetic algorithms and the Taylor series matrix 

method. Journal of physics communications, 2(11): 

115010. 

 15. Sabir, M. M. (2018) Electrohydrodynamic flow 

solution in ion drag in a circular cylindrical conduit 

using hybrid neural network and genetic 

algorithm. Kuwait Journal of Science, 45(1). 

 16. Sabir, Z., Wahab, H. A., and Guirao, J. L. (2022). 

A novel design of Gudermannian function as a neural 

network for the singular nonlinear delayed, 

prediction and pantograph differential 

models. Mathematical Biosciences and 

Engineering, 19(1): 663-687. 

           17. Yousaf, N., uz Zaman, W., Zameer, A., Mirza, S. 

M., & Nasir, R. (2022). Computational heuristics for 

solving nonlinear singular Thomas–Fermi equation 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

74 
 

with genetic exponential collocation algorithm. The 

European Physical Journal Plus, 137(7): 782. 

             18. Haldurai, L., Madhubala, T., & Rajalakshmi, R. 

(2016). A study on genetic algorithm and its 

applications. International Journal of Computer 

Sciences and Engineering, 4(10), 139. 

         19.   Deeba, E., Khuri, S. A., and Xie, S. (2000). An 

algorithm for solving boundary value 

problems. Journal of Computational Physics, 159(2): 

125-138. 

 

 

 

  


