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Abstract – The main goal of this work is to study some properties of eigenvalues and corresponding 

eigenfunctions of a new type boundary value problems consisting of three-interval Sturm-Liouville 

equation  

 

𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢 = 𝜆𝑢,   𝑥 ∈ [𝑎, 𝜉1) ∪ (𝜉1, 𝜉2) ∪ (𝜉2, 𝑏] 
 

subject to  parameter-dependent boundary conditions (which we call parameter-dependent periodic 

boundary conditions), given by  

                                                        𝑢(𝑎) = 𝛼𝑢(𝑏),   𝑢′(𝑎) = 𝛽𝑢′(𝑏)   
                                   

and additional  impulsive conditions at the common endpoints 𝜉1,  𝜉2, given by 

 

                             𝑢(𝜉𝑖 − 0) = 𝛼𝑢(𝜉𝑖 + 0),  𝑢
′(𝜉𝑖 + 0) = 𝛽𝑢

′(𝜉𝑖 + 0) ,  i=1,2     

                                

where  𝑞(𝑥)  is real-valued functions which continuous on each of the intervals  [𝑎, 𝜉1),
(𝜉1, 𝜉2)  and   (𝜉2, 𝑏]  and has a finite one-hand limits  𝑞(ξ𝑖 ± 0) = lim

𝑥→ξ𝑖
±
𝑞(𝑥),  α≠0 and β≠0 is a real 

parameter,  𝜆 is a complex eigenvalue  parameter. 

   In the special case when α= β=1, 𝑞(ξ𝑖 + 0) = 𝑞(𝜉𝑖 − 0)(𝑖 = 1,2)  the problem under consideration is 

reduced to classical periodic Sturm-Liouville problems, so the results obtained in this paper extend and 

generalize the corresponding classicals results. Note that the problem under consideration is not 

selfadjoint in the classical Hilbert space of square integrable functions. By using a new approaches we 

obtained some important properties of eigenvalues and eigenfunctions.  
 

Keywords – Sturm-Liouville  Problems, Impulsive Conditions, Eigenvalue, Eigenfunction. 
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I. INTRODUCTION 

Many important problems appearing in physics and 

other branches of natural science are described by 

second order ordinary lineer differential equations, 

which can be presented in a self-adjoint form 

known as Sturm-Liouville equation (SLE). SLEs 

fisrt appeared in the context of the separation of 

variables method for partial differential equations 

of various types. This and related methods continue 

to generate Sturm-Liouville problems that model 

phenomena such as seismic behaviour, sonar 

propogation in water stratified by different 

densities, heat and mass transfer, large-scale waves 

in the atmosphere, etc. (see, for example, [4], [7], 

[12]). 

 The  history of periodic spectral theory 

begins with studies of Sturm and Liouville on the 

spectral analysis odf second order differential 

equations with some boundary conditions, now 

called Sturm-Liouville problems (SLPs).  

The spectral analysis of SLPs required the study of  

various spectral properties, such as discretenes of 

the spectrum, asymptotic behaviour of eigenvalues 

and corresponding eigenfunctions, completeness  

of eigenfunctions, location of zeros of the 

eigenfunctions, oscillation of the solutions so on. 

There is  now an extensive literature on Sturm-

Liouville theory and its applications  (see, for 

example, [1], [8]-[10], [12]). In recent years, SLEs 

with periodic boundary conditions have become an 

important area of applied and theoritical 

mathematics, because the needs of modern physics 

and technology (see, for example, [2], [3], [5], [6]) 

and refences, cited therein.  

 In this work we will consider Sturm-Liouville 

equation defined on three non-intersecting intervals 

together with paramater-dependent periodic boundary 

conditions and additional transmission conditions 

specified at the internal points of interaction.  This type 

of problem will be called three-interval Sturm-Liouville 

boundary-transmission problem (3-SLBTP, for short). 

Note that boundary value problems with additional 

impulsive conditions often arise in various fields of 

physics and tecnology. For example, in electrostatics 

and magnetostatics, in free oscillations of Earth, in heat 

transfer through an infinitely conducting layer, in 

hydraulic fracturing etc. (see, for example, [4], [7], 

[13]). 

II. MAIN RESULTS 

Consider a Sturm-Liouville equation  

 

   𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥),        (1)  
𝑥 ∈ [𝑎, 𝜉1) ∪ (𝜉1, 𝜉2) ∪ (𝜉2, 𝑏] , defined on three 

non-intersecting intervals [𝑎, 𝜉1), (𝜉1, 𝜉2)   and  
  (𝜉2, 𝑏] subject to  parameter-dependent boundary 

conditions given by  

 

       u(𝑎) = αu(b),   u′(𝑎) = βu′(b)         (2)  

 

(so called parameter-dependent periodic boundary 

conditions), and additional  impulsive conditions at 

the points of interaction 𝑥 = 𝜉1 and  𝑥 = 𝜉2 given 

by 

          u(ξ1 − 0) = αu(ξ1 − 0)                 (3) 

               u′(ξ1 + 0) = βu
′(ξ1 + 0)             (4) 

           u(ξ2 − 0) = αu(ξ2 − 0)              (5) 

            u′(ξ2 + 0) = βu
′(ξ2 + 0)             (6) 

where  𝑞(𝑥)  is real-valued function which  

continuous on each of the intervals  𝛺1 = [𝑎, 𝜉1),
𝛺2 = (𝜉1, 𝜉2)  and   𝛺3 = (𝜉2, 𝑏] and have a finite 

limits  𝑞(𝜉𝑖 ± 0)= lim
𝑥→𝜉𝑖±

𝑞(𝑥), α≠0 and β≠0 are  real 

parameters,  𝜆 is a complex spectral  parameter. 

Let us denote by ⨁ 𝐶𝑘(Ω𝑖)
3
𝑖=1   the function 

space consisting of all functions 𝑓:∪𝑖=1
3 Ω𝑖 → 𝑅 , 

that are continuously differetiable up to K-th 

order the each intervas Ω𝑖, and  by ⋃ 𝐶𝑘(Ω𝑖)
3
𝑖=1  the 

function space consisting of all functions 

𝑓:∪𝑖=1
3 Ω𝑖 → 𝑅, that are continuously differetiable 

up to K-th order an each intervas Ω𝑖 and have finite 

limit values 𝑓(𝑠)(ξ𝑖 ± 0) for 𝑠 = 1,2, … , 𝐾. 

Lemma 1. If  

𝑢, 𝑣 ∈ (⊕𝑖=1
3 𝐶2(𝛺𝑖)) ∩ (⊕𝑖=1

3 𝐶1(Ω𝑖)) 

then: 
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∫ (𝓋L(u) − uL(𝓋))dx

ξ1−0

𝑎

+ ∫ (𝓋L(u) − uL(𝓋))dx

ξ2−0

ξ1+0

+∫ (𝓋L(u) − uL(𝓋))
b

ξ2+0

dx 

 

=W(u,𝓋; x)|𝑎
b − JW(u, v)|ξ1 − JW(u, v)|ξ2    (7) 

 

where  𝐽𝑓|𝑥0 = 𝑓(𝑥0 + 0) − 𝑓(𝑥0 − 0) is the 

jump function. 

 

 

Proof.   Integrating by parts over the intervals Ω𝑖 

(i=1,2) we have  

 ∑ ∫ 𝓋(Lu)dx
Ωi

3
i=1  

    =∑ ∫ (𝓋 ′u′ + quv)dx
Ωi

3
i=1 − u′v|𝑎

b 

       −J(u′v)|ξ1 − J(u
′v)|ξ2             (8) 

Now, by symmetri we see that   

 

∑ ∫ u(L𝓋)dx
Ωi

3
i=1 =∑ ∫ (u′𝓋 ′ + quv)dx

Ωi

3
i=1   

 

                              −𝓋 ′u|a
b − J(uv′)|ξ1 

 

                                  −J(uv′)|ξ2        (9) 

 

Subtracting (9) from (8) we obtain (7).  

 

Definiton 2. A number λ ∈ 𝐶  is said to be an 

eigenvalue for the three-interval Sturm-Liouville 

boundary-transmission problem (1)-(6) if there 

exists a function  

 

u ∈ (⊕i=1
3 C2(Ωi)) ∩ (⊕i=1

3 C1(Ωi)) 

 
such that 𝑢 is not identically zero and satisfies the 

three-interval Sturm-Liouville equation  (1) and 

boundary-transmission conditions (2)-(6). The 

solution 𝑢(𝑥)  is called an eigenfunction 

corresponding to the eigenvalue and the pair (𝜆, 𝑢)  

is called an eigenpair.  

Theorem 3. Let (𝜆, 𝑢(𝑥))  be an eigenpair of the 3-

SLBTP (1)-(6). If αβ=1, then the eigenvalue 𝜆 is 

real. 

Proof. Since α, β are real numbers and 𝑞(𝑥)  is 

real-valued function we get the following equalities 

upon taking complex conjugate of  Sturm-Liouville 

equation  (1) and boundary-transmission conditions 

(2)-(6) 

                            Lu ̅ = λ̅u ̅,                                   (10)  
 

      u ̅(𝑎) = αu ̅(b),   u ̅′(𝑎) = βu ̅′(b)                (11) 

 

             u ̅(ξ1 − 0) = αu ̅(ξ1 − 0)           (12) 

             u ̅′(ξ1 + 0) = βu ̅
′(ξ1 + 0)           (13) 

       u ̅(ξ2 − 0) = αu ̅(ξ2 − 0)             (14) 

       u ̅′(ξ2 + 0) = βu ̅
′(ξ2 + 0)            (15) 

 

The equalities (10)-(15) means that  (�̅�, 𝑢 ̅(𝑥)) is 

also an eigenpair for the 3-SLBTP (1)-(6). 

From (1) it follows that 

 

∑∫ 𝑢 ̅𝐿𝑢𝑑𝑥
Ωi

3

𝑖=1

= λ∑∫ |𝑢(𝑥)|2𝑑𝑥     
Ωi

(16)

3

𝑖=1

 

 

Similarly from (10) we have  

 

∑∫ 𝑢𝐿𝑢 ̅𝑑𝑥
Ωi

3

𝑖=1

= λ̅∑∫ |𝑢(𝑥)|2𝑑𝑥           (17)
Ωi

3

𝑖=1

 

 

Subtracting (16) from (17)  yields   

          ∑ ∫( 𝑢𝐿(𝑢 ̅) − 𝑢 ̅𝐿(𝑢))𝑑𝑥

𝛺𝑖

3

𝑖=1

 

                = (𝜆 − �̅�)⊕𝑖=1
3 ∫|𝑢(𝑥)|2𝑑𝑥      

𝛺𝑖

           (18) 

Applying Lemma 1 we get 

 

(λ − λ̅)∑∫ |u(x)|2dx  
Ωi

3

i=1

 

 

     = W(u, u ̅; x)|𝑎
b  

 

         −JW(u, u ̅; x)|ξ1 − JW(u, u ̅; x)|ξ2            (19) 
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From (2) and (11) 

 

W(u, u ̅; 𝑎) = u(𝑎)u′(𝑎) − u′(𝑎)u(𝑎) 
 

                   = αβ (u(b)u′(b) − u′(b)u(b)) 

 

                    =W(u, u ̅; b)                                      (20) 
 
Similarly, we have  
 

 W(𝑢, 𝑢 ̅; ξi + 0)= W(𝑢, 𝑢 ̅; ξi − 0) (i=1,2)       (21) 

 

By virtue of  (20)-(21) the right hand side of  (18) 

is zero. But since  𝑢(𝑥)  is eigenfunctions, this 

means that 𝜆 − �̅� = 0, that is the eigenvalue  𝜆 is 

real. 

 

Theorem 4. If αβ=1, then every eigenvalue has 

real-valued eigenfunction. 

Proof. Let (𝜆, 𝑢(𝑥))  be any eigenpair of the 3-

SLBTP (1)-(3). Let  𝑢(𝑥, 𝜆)  = 𝓋(𝑥, 𝜆) +
𝑖𝓌(𝑥, 𝜆),  where 𝓋 and 𝓌 are real-valued 

functions.Since (�̅�, 𝑢 ̅(𝑥)) is also eigenpair and 𝜆 is 

a real number it is follows that the function 

�̅�(𝑥, 𝜆)  = 𝓋(𝑥, 𝜆) − 𝑖𝓌(𝑥, 𝜆)  is also an 

eigenfunction corresponding to the same 

eigenvalue 𝜆. Obviously  both real-valued 

functions  

 

𝓋(𝑥) =
𝑢(𝑥)+𝑢(𝑥)

2
   and   𝓌(𝑥) =

𝑢(𝑥)−𝑢(𝑥)

2𝑖
 

  
satisfy the 3-SLBTP (1)-(3). Obviously at least  

one of them is not identically zera and, therefore, is 

also an real-valued eigenfunction corresponding to 

the same eigenvalue 𝜆. The proof is complete.   

 

Theorem 5. If αβ=1, then the eigenfunctions of a  

the 3-SLBTP (1)-(3) corresponding to distinct 

eigenvalues are orthogonal, that is, if (𝜆1, 𝑢1)  and 

(𝜆2, 𝑢2)  are two eigenpairs with 𝜆1 ≠ 𝜆2, then  

 

   ∑  ∫ 𝑢1(𝑥)𝑢2(𝑥)𝑑𝑥 = 0Ωi

3
𝑖=1                  (22) 

 

Proof.  Writing down the equations satisfied by the 

eigenfunctions 𝑢1(𝑥)  and 𝑢2(𝑥)  and multiplying 

the equation for 𝑢1(𝑥) with 𝑢2(𝑥) and vice versa, 

we have  

 
−𝑢1′′(𝑥) 𝑢2(𝑥) + 𝑞(𝑥)𝑢1(𝑥)𝑢2(𝑥) = 𝜆1𝑢1(𝑥) 𝑢2(𝑥) 

 

−𝑢2′′(𝑥) 𝑢1(𝑥) + 𝑞(𝑥)𝑢2(𝑥)𝑢1(𝑥) = 𝜆2𝑢2(𝑥) 𝑢1(𝑥) 
 

Taking the difference of these equalities, we get  

 

−
d

dx
 W(𝑢1, 𝑢2; x)=(𝜆2 − 𝜆1)𝑢1(x)𝑢2(x)      (23) 

 

Integrating the last equality, yields 

 

(λ2 − λ1)∑ ∫ u1(x)u2(x)Ωi

3
i=1  = −W(u1, u2; x)|𝑎

b 

 

  −JW(u1, u2; x)|ξ1 − JW(u1, u2; x)|ξ2         (24) 

 

Reasoning in exactly the same way as in the proof  

of Theorem 3, we find that the right hand side of th 

last equality is equal to zero. Since 𝜆1 ≠ 𝜆2, we get 

the desired (22). 

Theorem 6. Suppose that αβ=1, then for any 

eigenpair (𝜆, 𝑢(𝑥) )   of 3-SLBTP (1)-(6) the 

equality 

 

      𝜆 =  
∑ ∫ (|u′(x)|2 + q(x)|u(x)|2) dxΩi

3
i=1

∑ ∫ |u(x)|2Ωi

3
i=1 dx

          (25) 

 
holds.  

Proof.  Appliying  the identity (5) we obtain  

 

𝜆 ∑ ∫ |u(x)|2
Ωi

3
i=1 =∑ ∫ u ̅L(u)dx

Ωi

3
i=1  

 

  −u′(x)v(x)|𝑎
b − J(u′(x)v(x))|ξ1 

 

      −J(u′(x)v(x))|ξ2 

 

    +∑ ∫ (|u′(x)|2 + q(x)|u(x)|2)dx
Ωi

3
i=1             (26) 

 

Since αβ=1 and 𝑢 and  𝑢 ̅ satisfy the boundary-

transmission conditions (2)-(6) then  we have  

 

                 u′(b)u(b)=u′(𝑎)u(b)                         (27) 

and 

 

    J(u′(x)u(x))|ξ1= J(u′(x)u(x))|ξ2 = 0          (28) 

 
Subsitung  (27) and (28)  into (26) yields the 

desired (25) . 

 

Corollary 7. Let (𝜆, 𝑢(𝑥)) be any  eigenpair of 3-

SLBTP (1)-(6). If αβ=1, then the inequality  
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λ ≥ {inf 𝑞(𝑥)|𝑥 ∈∪𝑖=1
3 Ω𝑖} 

 

Holds, that is the eigenvalues are bounded from 

below by the number {inf 𝑞(𝑥)|𝑥 ∈∪𝑖=1
3 Ω𝑖}. 

Corollary 8. Let αβ=1. Then the set of eigenvalues 

of  3-SLBTP (1)-(3) is bounded from below. 

 

Corollary 9. Let αβ=1 and 𝜆1  be the first 

eigenvalue.  Then the equality 

 

        𝜆1 = in𝑓
∑ ∫ (|𝓋′|

2
+𝑞|𝓋|2)𝑑𝑥𝛺𝑖

3
𝑖=1

∑ ∫ |𝓋|2𝛺𝑖

3
𝑖=1 𝑑𝑥

                (29) 

 

is true, where the infumum is taken over all 

functions  

 

𝓋 ∈ (⊕i=1
3 C2(Ωi)) ∩ (⊕i=1

3 C1(Ωi)) 

 

satisfying boundary-impuulsive conditions (2)-(6). 

 

EXAMPLE 

Note that the equality (29) can be used to obtain an 

approximate value of the first eigenvalue using the 

test functions  

 

𝓋 ∈ (⊕i=1
3 C2(Ωi)) ∩ (⊕i=1

3 C1(Ωi)). 

Satisfying the boundary-impuulsive conditions (2)-

(6). To show this let us consider the following 

simple special case of the three-interval Sturm-

Liouville boundary impulsive problem consisting 

of the Sturm-Liouville equation 

 

              𝑢′′ + 𝜆𝑢 = 0                                 (30) 
      

defined on three non-intersecting intervals [0,2), 

(2,4) and (4,6], the boundary conditions, given by  

 

u(0) = −u(6),   u′(0) = −u′(6)          (31) 

 

and four additional impulsive conditions, given by 

 

          u(2 − 0) = −u(2 + 0)                 (32) 

               u′(2 − 0) = −u′(2 + 0)             (33) 

           u(4 − 0) = −u(4 + 0)              (34) 

            u′(4 − 0) = −u′(4 + 0)             (35) 

It is easy to verify that the trial function 

 

𝑢(𝑥) =

{
 
 

 
 

         𝑥,               𝑓𝑜𝑟       𝑥𝜖 [0,1)  
−𝑥 + 2, 𝑓𝑜𝑟     𝑥𝜖 [1,2) 

             𝑥 − 2,          𝑓𝑜𝑟      𝑥𝜖 [2,3)           
−𝑥 + 4, 𝑓𝑜𝑟     𝑥𝜖 [3,4)  
    𝑥 − 4, 𝑓𝑜𝑟       𝑥𝜖 [4,5) 
  −𝑥 + 6,     𝑓𝑜𝑟    𝑥𝜖 [5,6] 

 

 

Satisfies the boundary conditions (31) and the 

 mpulsive conditions (32)-(35). 
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