
Uluslararası İleri Doğa

Bilimleri ve Mühendislik

Araştırmaları Dergisi

Sayı 8, S. 182-195, 2, 2024

© Telif hakkı IJANSER’e aittir

Araştırma Makalesi

https://as-proceeding.com/index.php/ijanser

 ISSN: 2980-0811

 International Journal of Advanced

Natural Sciences and Engineering

Researches

Volume 8, pp. 182-195, 2, 2024

Copyright © 2024 IJANSER

Research Article

182

A review of primarily tests and algorithms: Engaging students to code for

mathematics

Robert Kosova*1, Fatjona Bushi2, Rinela Kapçiu3, Fabiana Cullhaj4, Anna Maria Kosova5

1* Department of Mathematics, University “A. Moisiu” Durrës. Albania, e-mail robertkosova@uamd.edu.al
2 Department of Computer Science. University “A. Moisiu” Durrës. Albania, email fatjonabushi@gmail.com

3 Department of Computer Science. University “A. Moisiu” Durrës. Albania, rinelakapciu@uamd.edu.al
4 Department of Mathematics, University “A. Moisiu” Durrës. Albania, e-mail, fabianacullhaj@uamd.edu.al

2 Department of Computer Science. University “A. Moisiu” Durrës. Albania, email annamariakosova@studnetsuamd.edu.al

(Received: 29 February 2024, Accepted: 08 March 2024)

(4th International Conference on Innovative Academic Studies ICIAS 2024, March 12-13, 2024)

ATIF/REFERENCE: Kosova, R., Bushi, F., Kapçiu, R. Cullhaj, F. & Kosova, A. M. (2024). A review of primarily tests and

algorithms: Engaging students to code for mathematics. International Journal of Advanced Natural Sciences and Engineering

Researches, 8(2), 182-195.

Abstract – The concept of prime numbers has intrigued mathematicians for centuries. The attempt to

understand prime numbers dates back to ancient times, with great mathematicians like Euclid, who, among

many other topics, explored integers and prime numbers’ properties. Determining whether a number is

prime or composite lies at the heart of many mathematical problems, leading to the development of

primality tests. Since the first primality algorithm, the Sieve of Eratosthenes, the need to verify very large

prime numbers has driven the development of many efficient tests and algorithms. This article presents an

overview of some of the most important primality algorithms, as well as corresponding Python programs

developed by computer science and mathematics students. The cooperation between theoretical

mathematics and programming has become the premise for progress in the development of tests and helps

students gain a better understanding of the theoretical problems while also encouraging and guiding them

in their future research and new discoveries.

Keywords – Prime, Primality, Algorithm, Test, AKS, Ferma- Euler, Divisor, Euclid, Sieve, Eratosthenes.

https://as-proceeding.com/index.php/ijanser
mailto:robertkosova@uamd.edu.al
mailto:fatjonabushi@gmail.com
mailto:rinelakapciu@uamd.edu.al
mailto:fabianacullhaj@uamd.edu.al
mailto:annamariakosova@studnetsuamd.edu.al

International Journal of Advanced Natural Sciences and Engineering Researches

183

I. INTRODUCTION

The development of algorithms and computer programming in the 1960s with the creation of the first

programming languages has contributed a great deal to the study of many mathematical problems. Many

math conjectures were verified for very large numbers which was impossible before, properties and features

of integers were studied, patterns, formulas, and relations were discovered more easily, which helped to

understand concepts and problems that required a lot of time with the old tools [1].

Some of the unsolved problems of mathematics, such as the Collatz conjecture, the twin prime

conjecture, and the Mersenne primes, have been easily tested for very large numbers and remained

conjectures yet; some others have been proved wrong and rejected by simple counterexamples found by

computer programs; the most famous among them is the Euler conjecture on sums of like powers [2].

Among many problems in mathematics and number theory, the primality test of a natural number is an

important mathematical and algorithmic problem. In addition to being a fundamental mathematical

question, the problem of how to determine whether a given number is prime has tremendous practical

importance [3]. Whenever someone uses the RSA public-key cryptosystem, they must generate a private

key consisting of two large prime numbers and a public key consisting of their product [4].

The most commonly used primality tests are classified essentially into two types, which are deterministic

and probabilistic [5]. Deterministic methods provide absolute certainty about whether a number is prime or

not. Some of the most popular tests are the Lukas-Lehmer test, the Trial Division test, the Elliptic Curve

Primality Test, the AKS Primality Test, etc. The probabilistic tests include the Fermat primality test, the

Miller-Rabin test, the Euler test, the Solovay-Strassen test, the Frobenius primality test, etc.

Probabilistic methods can find a potential prime number, meaning the number is highly probable to be

prime. In the mathematics programs of Albanian universities, the properties of integers, including prime

numbers, are included in topics of number theory or discrete mathematics [6].

Many important theorems are presented and proved, such as the infinity of prime numbers with Euclid's

proof, divisors’ properties, the fundamental theorem of arithmetic, integer properties such as perfect

numbers, perfect squares, and Pythagorean triples, modular arithmetic, etc., as well as important theorems

related to prime numbers such as Willson’s theorem, Ferma’s or Mersenne numbers, etc. [7].

What is missing in such important topics are the corresponding algorithms and the developed programs

to verify these properties, conjectures, and tests. These important topics are studied only as part of

theoretical mathematics, with many theorems and proofs, while the related algorithms are missing.

A brilliant example of the cooperation of theoretical math and algorithms is the AKS primarily test [8].

Beyond that, it is unnecessary to emphasize the benefits of combining computer programming with

theoretical mathematics, especially number theory, for math students [9].

Integrating coding into math topics fosters students’ creative thinking and problem-solving skills. When

students are tasked with coding solutions to primary tests, they are not merely memorizing formulas or

algorithms; rather, they are actively engaging with mathematical concepts and applying logical reasoning

to solve problems [10].

Starting in high school, the learning of several programming languages, such as C++, Java, and Java

Script, helps them to develop programs, see the results of their work immediately and be encouraged by

their achievements. This makes their performance in high school and university easier [11].

Coding empowers students to explore alternative approaches to problem-solving and encourages them

to think outside the box. As students experiment with different algorithms and coding techniques, they

develop a deeper understanding of mathematical concepts and gain insights into the various mathematical

principles [12].

Additionally, integrating coding into math topics and problems helps bridge the gap between theoretical

knowledge and practical application. By coding solutions to test questions, students gain a hands-on

understanding of how mathematical concepts can be applied in real-world scenarios. This experiential

learning approach not only reinforces their understanding of mathematical principles but also equips them

with transferable skills that are highly sought after in today's digital age, such as computational thinking,

data analysis, and algorithmic reasoning [13].

International Journal of Advanced Natural Sciences and Engineering Researches

184

Furthermore, the process of writing codes promotes collaboration and teamwork among students.

Coding projects often require students to work together, share ideas, and troubleshoot problems

collaboratively. Through peer-to-peer interaction and discussion, students not only reinforce their own

learning but also benefit from diverse perspectives and approaches to problem-solving, fostering a sense of

community and collective achievement [14].

II. MATERIALS AND METHODS

Determining whether a large number is prime can be computationally intensive, especially as the number

grows larger. For that reason, many algorithms are created to determine which number is prime in case if

deterministic tests or probably prime in case of probabilistic test. Some of the most methods to test whether

a given integer is prime are:

Deterministic tests:

The Sieve of Eratosthenes is named after the Greek mathematician and astronomer who developed this

algorithm around 200 BCE. It is the oldest algorithm for finding all prime numbers up to a given number.

The Sieve of Eratosthenes works by iteratively marking the multiples of each prime starting from 2 and

gradually moving to larger primes. The unmarked numbers remaining after this process are prime numbers

[15].

The Algorithm:

1. Create a list of consecutive integers from 2 through the given number n.

2. Start with the first unmarked number (which is 2) and mark all of its multiples up to the number n.

3. Find the next unmarked number; this is the next prime. Mark all of its multiples up to the given number

n.

4. Repeat step 3 until you have done all numbers up to the square root of the given number n.

5. The remaining unmarked numbers less or equal to n are prime.

The trial division method is the first and one of the fundamental techniques to determine the primality

of a number. Dating back to ancient times, this method remains a basic yet crucial tool in number theory

and cryptography, allowing for the identification of prime numbers through a systematic approach of

division and analysis. The algorithm for the trial division method can be outlined as follows:

1. Given a number 𝑛, check if it's less than 2. If so, it's not prime.

2. Iterate through all integers 𝑑 from 2 to the square root of 𝑛.
3. For each 𝑑, check if it divides 𝑛 evenly.

4. If a divisor is found, the number is declared composite.

5. If no divisors are found up to the square root of 𝑛, the number is declared prime.

Despite its simplicity, the trial division method faces significant inefficiency when dealing with

extremely large numbers. As the candidate number grows, the number of divisions required increases

exponentially, making it impractical for testing large primes, especially in cryptographic applications where

such numbers are essential for security [16].

The Willson’s Theorem test:

Willson is a deterministic method to check if a positive integer is prime or composite.

The result was known to Leibniz, but it was only published in 1770 by Waring, who named it after his

former student John Wilson who had discovered it. The theorem was proved in 1771 by French

mathematician Joseph-Louis Lagrange. Wilson's theorem is both necessary and sufficient condition for

primality [17].

The Wilson's theorem states that any prime 𝑝 divides (𝑝 − 1)! + 1.

Theorem. An integer 𝑝 ≥ 2 is prime if and only if (𝑝 − 1)! ≡ −1(𝑚𝑜𝑑 𝑝).

Proof 1. If 𝑝 is prime then 𝑝 divides (𝑝 − 1)! + 1.

Let 𝑝 a prime number. Each of the integers 1,2,3, . . . 𝑝 − 1 has an inverse modulo 𝑝.

Consider the first and last reminder of (𝑚𝑜𝑑𝑝), which are 1 and (𝑝 − 1) we have:

International Journal of Advanced Natural Sciences and Engineering Researches

185

1. (𝑝 − 1) ≡ (𝑝 − 1)(𝑚𝑜𝑑 𝑝) ≡ −1(𝑚𝑜𝑑𝑝).

We can partition the set 𝑆 = {2, . . . , 𝑝 − 2} into pairs {𝑎, 𝑏} such that 𝑎. 𝑏 ≡ 1(𝑚𝑜𝑑𝑝).

Then the product of these pairs is 1.2.3. . . (𝑝 − 1) ≡ 1. (−1)(𝑚𝑜𝑑𝑝) ≡ −1(𝑚𝑜𝑑𝑝).

For example, for 𝑝 = 7, we have (7 − 1)! ≡ 1.2.3.4.5.6 ≡ (2.4). (3.5). (1.6) ≡ 1.1. (−1)(𝑚𝑜𝑑7) ≡

−1(𝑚𝑜𝑑7)

Proof 2. If 𝑝 divides (𝑝 + 1)! + 1 then 𝑝 is prime.

Suppose that 𝑝 is composite. Then 𝑝 has a factor 1 < 𝑑 ≤ 𝑝 − 1.

Then 𝑑 divides (𝑝 − 1)!, so 𝑑 does not divide (𝑝 − 1)! + 1.

Therefore 𝑝 does not divide (𝑝 − 1)! + 1.
For a composite number it is true that:

A positive integer 𝑛 is composite number if and only if (𝑛 − 1)! ≡ 0(𝑚𝑜𝑑𝑛), except for 𝑛 = 4 for which

we have (4 − 1)! ≡ 3! ≡ 2(𝑚𝑜𝑑4).

Wilson's theorem provides an effective deterministic way to check if a given natural number is prime or

composite. However, while this method is effective for small integers it is limited for large integers as it

involves computing very large factorials, so it is thus hard to compute them for large 𝑛! even using fast

computers.

The AKS Primality Test is a deterministic algorithm used to determine if a given number is prime or

composite. It was developed by three Indian computer scientists—Manindra Agrawal, Neeraj Kayal, and

Nitin Saxena—in 2002.

The test's significance lies in its ability to determine primality in polynomial time, challenging the

common belief that primality testing required exponential time [18- 19].

The algorithm runs in O((log n)^12) time, making it theoretically efficient for large numbers. However,

in practice, it's slower than probabilistic tests like the Miller-Rabin test for moderately large numbers due

to its high constant factors.

Theorem. Let have an integer 𝑎, and a positive integer𝑛; 𝑎 ∈ 𝑍, 𝑛 ∈ 𝑁, 𝑛 ≥ 2 and 𝑔𝑐𝑑(𝑎, 𝑛) = 1. Then 𝑛

is prime if and only if (𝑋 + 𝑎)𝑛 = 𝑋𝑛 + 𝑎(𝑚𝑜𝑑𝑛).
Proof. For 0 < 𝑖 < 𝑛, the coefficient of 𝑥𝑖 is

((𝑋 + 𝑎)𝑛 − (𝑋𝑛 + 𝑎)) is (
𝑛
𝑖

) 𝑎𝑛−𝑖.

Suppose 𝑛 is prime. Then is (
𝑛
𝑖

) ≡ 0(𝑚𝑜𝑑 𝑛) and hence all the coefficients are zero.

Suppose 𝑛 is composite. Consider a prime 𝑞 that is a factor of 𝑛 and let 𝑞𝑘//𝑛. Then 𝑞𝑘 does not divide

(
𝑛
𝑞) and is coprime to 𝑎𝑛−𝑞 and hence the coefficient of 𝑋𝑞is not zero (𝑚𝑜𝑑 𝑛).

Thus ((𝑋 + 𝑎)𝑛 − (𝑋𝑛 + 𝑎)) is not identically zero over 𝑍𝑛.

The Algorithm:

1. Input integer 𝑛 > 1.
2. If 𝑛 = 𝑎𝑏 for 𝑎 ∈ 𝑁 and 𝑏 > 1, output composite.

3. Find the smallest 𝑟 such 𝑜𝑟(𝑛) > 𝑙𝑜𝑔2𝑛.
4. If 1 < (𝑎, 𝑛) < 𝑛 for some 𝑎 < 𝑟, output composite.

5. For 𝑎 = 1 to ⌊√∅(𝑟) log 𝑛⌋ do

 If (𝑋 + 𝑎)𝑛 ≠ (𝑋𝑛 + 𝑎), output composite

6. Output prime;

Probability tests:

The Fermat primality test, named after French mathematician Pierre de Fermat, is a probabilistic

algorithm which is used to evaluate whether a given number is likely prime or absolutely composite.

International Journal of Advanced Natural Sciences and Engineering Researches

186

Fermat's test offers a fast approach but does not guarantee accuracy for all numbers [20]. The Fermat test

relies on Fermat's Little Theorem, which states:

Theorem. If 𝑝 is a prime number and 𝑎 is any positive integer then 𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑𝑝).

In case 𝑔𝑐𝑑(𝑎, 𝑝) = (𝑎, 𝑝) = 1 we have:

Theorem. If 𝑝 is a prime number and 𝑎 is any positive integer, 𝑔𝑐𝑑(𝑎, 𝑝) = 1, then we have 𝑎𝑝−1 ≡
1(𝑚𝑜𝑑𝑝).

Proof. Let 𝑆 = {1,2,3, … , 𝑝 − 1}.
Let’s consider the set 𝑎. 𝑆 = {1𝑎, 2𝑎, … , (𝑝 − 1)𝑎}, consisting of the product of the elements of 𝑆 with 𝑎.

This set is simply a permutation of S (taken modulo 𝑝). In other words, 𝑆 = {1𝑎, 2𝑎, … , (𝑝 − 1)𝑎} (𝑚𝑜𝑑𝑝).
Clearly none of the 𝑖𝑎 factor for 1 ≤ 𝑖 ≤ 𝑝 − 1 are divisible by 𝑝, so it suffices to show that all the elements

in 𝑎. 𝑆 are distinct.

Then the product 1𝑎. 2𝑎 … . (𝑝 − 1)𝑎 ≡ 1.2 … (𝑝 − 1)(𝑚𝑜𝑑𝑝).

Cancelling the factors 1.2.3 … (𝑝 − 1) from both sides, we have 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝).
The Algorithm:

1. For a given positive integer 𝑝,

2. Pick an integer 𝑎 that 2 ≤ 𝑎 ≤ 𝑝 − 2, and (𝑎, 𝑝) = 1, and check if it holds or not.

3. If it doesn't hold, we know that   𝑝 is composite.

In this case we call the base   a Fermat witness for the compositeness of   𝑝.

4. If it holds, we say that  𝑝 is probably prime.

However, there are composite numbers that may incorrectly pass the Fermat primality test for some values

of 𝑎. These are called Fermat pseudoprimes, and in such case the base 𝑎 is called Fermat liar.

For 𝑛 = 561, 𝑎 = 2, we have the Fermat formula 2560 ≡ 1(𝑚𝑜𝑑 561), but 𝑛 = 561 is a composite,

number, divisible by 3,11,17.
For 𝑛 = 91, 𝑎 = 3 we have 390 ≡ 1(𝑚𝑜𝑑91), but 91 is also composite, 91 = 13 ∗ 7.
The reliability of the Fermat test for any integer 𝑛 can be increased by performing multiple iterations with

different random bases 𝑎. The more iterations are conducted, the higher the confidence in the primality

evaluation.

Euler primality test is an improvement over the Fermat primality test because it adds another equality

condition that a prime number must fulfill [21-22].

Theorem. If 𝑝 is prime and 𝑎 is an integer, where 𝑝 > 2 and 0 < 𝑎 < 𝑝, then 𝑎
𝑝−1

2 ≡ ±1 (𝑚𝑜𝑑 𝑝).

Theorem. If 𝑛 is a positive integer and 𝑎
𝑛−1

2 ≢ ±1(𝑚𝑜𝑑 𝑛) where 𝑔𝑐𝑑(𝑛, 𝑎) = 1 then 𝑛 is

composite.

Proof. If 𝑎
𝑛−1

2 ≢ ±1(𝑚𝑜𝑑 𝑛) → 𝑎𝑛−1 ≢ 1(𝑚𝑜𝑑 𝑛) then 𝑛 is composite because of the Fermat’s Little

Theorem.

The Algorithm:

1. For a given positive integer 𝑝,

2. We pick an integer 𝑎 that 2 ≤ 𝑎 ≤ 𝑝 − 2, and (𝑎, 𝑝) = 1, and check if the Fermat formula 𝑎
𝑝−1

2 ≡
±1(𝑚𝑜𝑑𝑝) holds or not.

3. If it doesn't hold, we know that   𝑝 is composite.

4. If it holds, we say that  𝑝 is probably prime.

However, there are composite numbers that may incorrectly pass the Euler primality test for some values

of 𝑎.

For 𝑛 = 341 and 𝑎 = 2 we have 2
341−1

2 ≡ 2170 ≡ 1(𝑚𝑜𝑑341), but 341 = 11 ∗ 31.

Every Euler pseudoprime is also a Fermat pseudoprime.

International Journal of Advanced Natural Sciences and Engineering Researches

187

The Miller-Rabin primality:

Miller-Rabin Primality Test is an improvement over Fermat's test, Miller-Rabin is also probabilistic but

more robust. It repeatedly applies a test based on modular exponentiation to determine if a number is

composite or probably prime [23].

The Miller-Rabin test relies on the properties of modular arithmetic and the behaviour of certain

mathematical functions to efficiently test the primality of a number. It's based on the fact that for prime

numbers, certain properties hold true, and if these properties are violated, the number is certainly composite.

The Algorithm:

1. Select an odd number 𝑛 to test for primality

and a base 𝑎 such that (1 < 𝑎 < 𝑛).
2. Express (𝑛 − 1) = 2𝑠 ∗ 𝑑 where 𝑠 is the largest power of 2 that divides (𝑛 − 1) and 𝑑 is an odd number.

3. Compute 𝑎𝑑(𝑚𝑜𝑑 𝑛) and check if the result is congruent to −1(𝑚𝑜𝑑 𝑛) 𝑜𝑟 1(𝑚𝑜𝑑 𝑛).

4. If 𝑎𝑑 ≢ ±1(𝑚𝑜𝑑 𝑛) and also, we have 𝑎2𝑟.𝑑 ≢ −1(𝑚𝑜𝑑 𝑛), 0 <= 𝑟 < 𝑠 − 1 then 𝑛 is composite

and 𝑎 is a witness for the compositeness.

5. Otherwise, 𝑛 may be prime.

6. If it does, the number is likely prime.

7. If it becomes (1) after fewer than (s) iterations or if it never reaches (−1)(𝑚𝑜𝑑 (𝑛)), then (𝑛) is

composite.

While the Miller-Rabin test can also yield false positives (declaring a composite number as prime), the

chance of error decreases with more iterations. Also, by choosing multiple random bases 𝑎 and

performing the test with each, the probability of misidentifying a composite number as prime diminishes

significantly.

However, because of the probabilistic nature it does not guarantee the primality of a number, but rather

provides a high probability. Rarely, composite numbers can pass the test for some witnesses.

The effectiveness of the test relies on the choice of witnesses (base 𝑎). Although random selection helps,

certain sets of witnesses are more effective than others [24].

The Miller-Rabin primality test is a powerful and widely used probabilistic algorithm for evaluating the

primality of large numbers efficiently. While not offering absolute certainty, it provides a high degree of

confidence, making it an invaluable tool in various fields, especially in cryptography where large prime

numbers play a crucial role in ensuring security.

III. RESULTS

The primality tests in Python language are developed by the Computer Science and Mathematics students

(University “A. Moisiu Durres. Faculty of IT, Albania).

The sieve of Eratosthenes: For a given integer 𝑛, the following program finds all the multipliers of all

the numbers from 2 to square root of 𝑛 and delete them. The remaining numbers are primes.

The program is:

The Sieve of Eratosthenes

import math

import datetime

n=int(input("enter max number, n= "))

print(“primes number are:”)

n1=int(n.5)

for p in range (2,n+1):

 for d in range(2,n1):

 if p>d and p%d==0:

 p=0

 if p>0:

International Journal of Advanced Natural Sciences and Engineering Researches

188

 print(p,end=",")

RUN

enter max number, n= 100

prime number are:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,

The trial division test:

The following Python program verifies all the integers between two given numbers. All the integers that

have not divisors between 2 and n-1 are prime.

#Python programming

print("The trial division test")

print("Algorithm: count divisors of n, from 2 to sqr(n)")

print("If number of divisors, nd=0 then n is prime")

print("If not, nd>0 then n is composite")

import math

import datetime

n1=int(input("enter first number, (n1>1)="))

n2=int(input("enter second number,(n2>n1)="))

k=0

print("nr n result")

print("-------------------------- ------")

if n1==1:

 n1=2

for n in range (n1,n2+1):

 np=0

 for d in range (2,int(n(.5))+1):

 if n%d==0:

 np=np+1

 d = d + 1

 if np==0:

 k=k+1

 print(k,"-","\t",n," prime")

 else:

 k=k+1

 print(k,"-","\t",n," composite")

RUN

enter first number, (n1>1) =125654

enter second number, (n2>n1) =125663

nr n result

1 - 125654 composite

2 - 125655 composite

3 - 125656 composite

4 - 125657 composite

5 - 125658 composite

International Journal of Advanced Natural Sciences and Engineering Researches

189

6 - 125659 prime

7 - 125660 composite

8 - 125661 composite

9 - 125662 composite

10 - 125663 composite

For large numbers, small changes are made:

n1=2^n1+1, n2=2^n2+1.

For n1=2^53+1, n2=2^53+2, the integers between are:

nr n result

--

1 - 9007199254740993 composite

2 - 9007199254740994 composite

3 - 9007199254740995 composite

4 - 9007199254740996 composite

5 - 9007199254740997 prime

6 - 9007199254740998 composite

7 - 9007199254740999 composite

8 - 9007199254741000 composite

9 - 9007199254741001 composite

10 - 9007199254741002 composite

11 - 9007199254741003 composite

12 - 9007199254741004 composite

13 - 9007199254741005 composite

14 - 9007199254741006 composite

15 - 9007199254741007 composite

16 - 9007199254741008 composite

17 - 9007199254741009 composite

18 - 9007199254741010 composite

19 - 9007199254741011 composite

20 - 9007199254741012 composite

Fermat’s primality test:

For any positive odd integer 𝑛, we generate all the bases 𝑎, 1 < 𝑎 < 𝑛 − 1 to calculate 𝑎𝑛−1(𝑚𝑜𝑑𝑛). For

odd composite integers, the test produces correct results for most of the values of base 𝑎.

However, there are many odd composite integers, for which the test produces false positive result,

declaring them probably prime.

The following Python program verifies odd integers 𝑛 with all the values of base a, less than n and

coprime with 𝑛.
print("Python programming")

print("Fermat's Primality test")

print("Theorem. If p is prime number and a an integer, and 1<a<p-1,(a,p)=1 then a(p-1)=1(mod p)")

print("Fermat primality test: if a(n-1)#1(mod n) then n is composite, else n is probably prime")

import datetime

import math; import cmath; import calendar

n=int(input("enter integer n to verify if prime or not, n>2; "))

print("generate base a, a<n-1, (a,n)=1")

print()

International Journal of Advanced Natural Sciences and Engineering Researches

190

print("a F=a^(n-1) r=F(mod n) n=",n,"is")

print("---")

for a in range (2,n-1):

 if math.gcd(n,a)==1:

 F=pow(a,(n-1)); r=F%n

 if r!=1:

 print(a," \t",F,"\t ",r," \t", "composite")

 else:

 print(a," \t",F,"\t ",r," \t", "probably prime")

print()

RUN

a F= a^(n-1) r= F(mod n) number 11 is

--

2 - 1024 1 probably prime

3 - 59049 1 probably prime

4 - 1048576 1 probably prime

5 - 9765625 1 probably prime

6 - 60466176 1 probably prime

7 - 282475249 1 probably prime

8 – 1073741824 1 probably prime

9 - 3486784401 1 probably prime

For odd composite integers:

For 𝑛 = 15 (composite), and base 𝑎 = 4; 𝑎 = 11

the result is Fermat pseudoprime.

a F= a^(n-1) r= F(mod n) number 15 is

--

2 - 16384 4 composite

4 - 268435456 1 probably prime

7 – 678223072849 4 composite

8 - 4398046511104 4 composite

11 - 379749833583241 1 probably prime

13 – 3937376385699289 4 composite

For 𝑛 = 25; 𝑎 = 7, we have another Fermat pseudoprime, because number 25 is composite and 𝐹 =

𝑎𝑛−1 = 724 ≡ 1(𝑚𝑜𝑑25).

For 𝑛 = 33; 𝑎 = 10, 𝑎 = 23 we have another Fermat pseudoprime, 𝑛 = 33 is composite.

𝐹 = 1032 ≡ 1(𝑚𝑜𝑑33); 𝐹 = 2332 ≡ 1(𝑚𝑜𝑑33)

For 𝑛 = 35; 𝑎 = 6, 𝑎 = 29 the same result.

𝐹 = 634 ≡ 1(𝑚𝑜𝑑35); 𝐹 = 2934 ≡ 1(𝑚𝑜𝑑35).
Other Fermat pseudoprimes are:

For 𝑛 = 39, 𝑎 = 25;

For 𝑛 = 45; 𝑎 = 17,19,26,28,37.

For 𝑛 = 55; 𝑎 = 21,34,

International Journal of Advanced Natural Sciences and Engineering Researches

191

Euler primality test:

For any positive odd integer 𝑛, we generate all the bases 𝑎, 1 < 𝑎 < 𝑛 − 1 to calculate 𝑎
𝑛−1

2 (𝑚𝑜𝑑𝑛). For

odd composite integers, the test produces correct results for most of the values of base 𝑎. However, there

are many odd composite integers, for which the test produces false positive result by declaring them

probably prime. All Euler pseudoprimes are Fermat pseudoprimes.

The following program in Python verifies if any integer is composite or probably prime. The values of

base a are less than the given number n and coprime with n.

print("Python programming")

print("Primality test: Euler")

print("Theorem. If p is prime and a an integer,1<a<p-1,(a,p)=1 then a(p-1)/2=+-1(mod p)")

print("Euler primality test: if a(n-1)#+-1(mod n) then n is composite, else n is probably prime")

import datetime

import math; import cmath; import calendar

n=int(input("enter integer n to verify if prime or not, n>2; "))

print("generate base a, a<n-1, (a,n)=1")

print()

print("a= F=a^[(n-1)/2] r=F%n n=",n,"is")

print("---")

for a in range (2,n-1):

 if math.gcd(n,a)==1:

 F=pow(a,(n-1)/2); F=int(F); r=int(F%n)

 if r==(n-1):

 r=-1

 if r==1 or r== -1:

 print(a," \t",F,"\t ",r," \t", "prime")

 else:

 print(a," \t",F,"\t ",r," \t", "composite")

print()

RUN

a= F=a^[(n-1)/2] r=F%n n= 17 is

--

2 256 1 prime

3 6561 -1 prime

4 65536 1 prime

5 390625 -1 prime

6 1679616 -1 prime

7 5764801 -1 prime

8 16777216 1 prime

9 43046721 1 prime

10 100000000 -1 prime

11 214358881 -1 prime

12 429981696 -1 prime

13 815730721 1 prime

14 1475789056 -1 prime

15 2562890625 1 prime

The AKS test:

For any given natural number n.

Calculate the coefficients of (𝑥 + 1)𝑛.

 (𝑥 − 1)𝑛 − (𝑥𝑛 − 1).

International Journal of Advanced Natural Sciences and Engineering Researches

192

İf the remaining coefficients are all multiplies of n then n is prime, else is composite.

The program in Python is:

print("The AKS test")

print("Theorem: Number p is prime iff coefficients of (x-1)**p-(x**p-1)")

print("are all multiplies of p")

print()

import math

import datetime

p=int(input("Enter first number, p= "))

c=math.factorial(p)

c1 = [1 for i in range(p+1)]

c2 = [1 for i in range(p+1)]

k = [1 for i in range(p+1)]

sc=0

for i in range (0,p+1):

 c1[i]=(math.factorial(i))

 c2[i]=(math.factorial(p-i))

 #print (c,"-",c1[i],"-", c2[i])

 k[i]=c//c1[i]

 k[i]=k[i]//c2[i]

 k[i]=k[i]*(-1)**(i)

 #print(k[i])

 i=i+1

print("Coefficients of (x-1)^",p,"are:")

for i in range(0,p+1):

 print(k[i],end=", ")

 i=i+1

print()

print("Coefficients of (x-1)^",p,"-(x^",p,"-1) are:")

for i in range(1,p):

 print(k[i],end=", ")

 i=i+1

print()

for i in range(1,p):

 if (k[i]%p)==0:

 sc=sc+1

 i=i+1

print()

print("Result:")

if sc==p-1:

 print("Coefficients are all multiplies of", p,)

 print("Number",p," is prime")

else:

 print("Some coefficients are not multiples of",p)

 print("Number",p," is composite")

print()

RUN

Enter first number, p= 13

Coefficients of (x-1)^ 13 are:

1, -13, 78, -286, 715, -1287, 1716, -1716, 1287, -715, 286, -78, 13, -1,

International Journal of Advanced Natural Sciences and Engineering Researches

193

Coefficients of (x-1)^ 13 -(x^ 13 -1) are:

-13, 78, -286, 715, -1287, 1716, -1716, 1287, -715, 286, -78, 13,

Result:

Coefficients are all multiplies of 13

Number 13 is prime

RUN

Enter first number, p= 14

Coefficients of (x-1)^ 14 are:

1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1,

Coefficients of (x-1)^ 14 -(x^ 14 -1) are:

-14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14,

Result:

Some coefficients are not multiples of 14

Number 14 is composite

IV. DISCUSSION

The tests and algorithms presented in the paper are coded in Python by students of computer science and

mathematics. Prime numbers, together with many theorems and proofs related to them, as well as some of

the primality tests such as Ferma’s and Wilson’s, are covered in the courses of number theory and discrete

mathematics. However, the fact that the students also study several programming languages, such as Java,

C++, and Python, in their respective courses gave us the idea to develop programs for some of the well-

known tests and algorithms and to apply for a project at our university. The benefit to the students of a

project that combines mathematics with algorithms and programming is indisputable and offers an excellent

perspective for students as mathematicians and programmers of the future. It deeply enhances

understandings of theoretical mathematics concepts, deepens the algorithmic and programming culture,

fosters critical thinking, fosters collaboration, enhances communication skills, ignites curiosity, builds

problem-solving skills, and encourages persistence and innovation.

V. CONCLUSION

Primality testing is not simply a mathematical curiosity; it has wide practical applications. Primality testing

finds applications in many fields such as computer science, number theory, and even scientific research

involving pattern recognition, pseudo-random number generation, and optimization problems.

Cryptography relies heavily on prime numbers for secure encryption and decryption processes. Algorithms

such as RSA encryption, which forms the backbone of secure online transactions and communication,

depend on the use of large prime numbers.

Primality tests are proof of the excellent collaboration and interaction between theoretical mathematics and

practical applications. From ancient times to today, the quest for efficient primality algorithms has driven

mathematical innovation.

As technology advances, so has the advancement and sophistication of priority tests, making them both

more accurate and more effective.

The recognition, understanding, and application of primality is a core topic in number theory and computer

science. For students of Mathematics and Computer Science, working with primality algorithms have a

significant benefit and importance because:

Primality testing deepens students' understanding of number theory. It introduces them to fundamental

concepts like divisors, factors, and prime numbers, fostering a strong mathematical foundation.

Implementing primality tests challenges students to think algorithmically.

International Journal of Advanced Natural Sciences and Engineering Researches

194

Primality testing problems provide an excellent opportunity for students to enhance their problem-solving

skills. They learn to approach complex mathematical problems methodically and develop strategies for

efficient solutions.

Implementing primality tests requires coding skills. Students get hands-on experience with programming

languages, data structures, and algorithms. This practical application helps them strengthen their coding

abilities.

Primality testing involves logical reasoning and critical thinking. Students must understand the properties

of prime numbers and develop logical arguments to design effective algorithms.

For students interested in pursuing advanced studies in computer science or related fields, primality testing

serves as a stepping stone to more complex algorithms and mathematical concepts.

Primality testing and coding for such tests are valuable for students as they foster mathematical

understanding, algorithmic thinking, coding skills, and preparation for real-world applications and

challenges in various domains.

A great example of collaborating theoretical mathematics and algorithms is the AKS (Agrawal-Kayal-

Saxena) primality test which is a deterministic algorithm developed by three Indian mathematicians,

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, in 2002. The AKS primality test is significant because

it provided the first polynomial-time algorithm for determining whether a given number is prime or

composite, without relying on unproven assumptions like the Riemann hypothesis. The development of the

AKS test was a significant achievement in computational number theory and algorithm design. It

demonstrated that deep mathematical insights could lead to practical computational advances, and it opened

new avenues for research in prime number theory and algorithmic complexity.

VI. ACKNOWLEDGMENT

The article was made possible by the sponsorship of University “A. Moisiu” Durres, Albania, through the

project “Developing and creating programs and applications (Windows and Android) for mathematics and

informatics problems during the teaching process to enrich and educate a creative programming culture.”

REFERENCES

[1] McGregor-Dorsey, Z. S. (1999). Methods of primality testing. MIT Undergraduate Journal of Mathematics, 1, 133-141.

[2] Lander, L. J., & Parkin, T. R. (1966). Counterexample to Euler’s conjecture on sums of like powers. Bull. Amer. Math.

Soc, 72(6), 1079.

[3] Duta, C. L., Gheorghe, L., & Tapus, N. (2015, May). Framework for evaluation and comparison of primality testing

algorithms. In 2015 20th International Conference on Control Systems and Computer Science (pp. 483-490). IEEE.

[4] Kuang, R., & Barbeau, M. (2021, September). Indistinguishability and non-deterministic encryption of the quantum safe

multivariate polynomial public key cryptographic system. In 2021 IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE) (pp. 1-5). IEEE.

[5] AbuDaqa, A., Abu-Hassan, A., & Imam, M. (2020). Taxonomy and Practical Evaluation of Primality Testing

Algorithms. arXiv preprint arXiv:2006.08444.

[6] Zaka, O. (2021). A description of some facts and open problems in Discrete-Geometry, related to Coverings.

In Mathematical methods in economy: Research and Practice, Conference, Paris, France (Vol. 25).

[7] Zaka, O. (2022). Computing efficiently the weighted greatest common divisor. arXiv preprint arXiv:2210.07961.

[8] Wehrwein, J. (2022). Primality testing (Doctoral dissertation, Middlebury).

[9] Kosova, R., Kapçiu, R., Hajrulla, S., & Kosova, A. M. (2023). A Review of Mathematical Conjectures: Exploring Engaging

Topics for University Mathematics Students. International Journal of Advanced Natural Sciences and Engineering

Researches (IJANSER), 7(11), 180–186. https://doi.org/10.59287/as-ijanser.581

[10] Kosova, R., Thanasi, T., Mukli, L., & Pëllumbi, L. N. (2016). Traditional mathematics and new methods of teaching

through programming together with students.

[11] Kosova, A. G. R. The Performance of University Students and High School Factors. Statistical Analyses And ANCOVA.

[12] Kosova, R., Kapçiu, R., Hajrulla, S., & Kosova, A. M. (2023). The Collatz Conjecture: Bridging Mathematics and

Computational Exploration with Python. International Journal of Advanced Natural Sciences and Engineering Researches

(IJANSER), 7(11), 328–334. https://doi.org/10.59287/as-ijanser.637

[13] Gjana, A., & Kosova, R. Traditional Class, and Online Class Teaching. Comparing the Students Performance Using

ANCOVA. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 14806-14811.

[14] Hajrulla, S., Demir, T., Bezati, L., & Kosova, R. (2023). The impact of constructive learning applied to the teaching of

numerical methods. CONSTRUCTIVE MATHEMATICS: FOUNDATION AND PRACTICE, 39.

https://doi.org/10.59287/as-ijanser.581
https://doi.org/10.59287/as-ijanser.637

International Journal of Advanced Natural Sciences and Engineering Researches

195

[15] Diab, A. (2021). Development of sieve of Eratosthenes and sieve of Sundaram's proof. arXiv preprint arXiv:2102.06653.

[16] Ganti, I. (2022). Comparing and Reviewing Modern Primality Tests. Journal of Student Research, 11(3).

[17] Valluri, M. R. (2021). Combinatorial primality test. ACM Communications in Computer Algebra, 54(4), 129-133.

[18] Agrawal, M., Kayal, N., & Saxena, N. (2004). PRIMES is in P. Annals of mathematics, 781-793.

[19] Tao, T. (2009). The AKS primality test. Blog post by Terence Tao.

[20] Gradini, E. (2012). Comparison Study of Fermat, Solovay-Strassen and Miller-Rabin Primality Test Using Mathematica

6.0. Visipena, 3(1), 1-10.

[21] Wang, A. (2023). Gauss-Euler Primality Test. arXiv preprint arXiv:2311.07048.

[22] Stüwe, D., & Eberl, M. (2019). Probabilistic primality testing. Archive of Formal Proofs.

[23] Burkhardt, J., Damgård, I., Frederiksen, T. K., Ghosh, S., & Orlandi, C. (2023, November). Improved Distributed RSA

Key Generation Using the Miller-Rabin Test. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (pp. 2501-2515).

[24] Ishmukhametov, S. T., Rubtsova, R. G., & Khusnutdinov, R. R. (2022). A new primality test for natural integers. Russian

Mathematics, 66(2), 70-73.

