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Abstract – The concept of prime numbers has intrigued mathematicians for centuries. The attempt to 

understand prime numbers dates back to ancient times, with great mathematicians like Euclid, who, among 

many other topics, explored integers and prime numbers’ properties. Determining whether a number is 

prime or composite lies at the heart of many mathematical problems, leading to the development of 

primality tests. Since the first primality algorithm, the Sieve of Eratosthenes, the need to verify very large 

prime numbers has driven the development of many efficient tests and algorithms. This article presents an 

overview of some of the most important primality algorithms, as well as corresponding Python programs 

developed by computer science and mathematics students. The cooperation between theoretical 

mathematics and programming has become the premise for progress in the development of tests and helps 

students gain a better understanding of the theoretical problems while also encouraging and guiding them 

in their future research and new discoveries. 
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I. INTRODUCTION 
 

The development of algorithms and computer programming in the 1960s with the creation of the first 

programming languages has contributed a great deal to the study of many mathematical problems. Many 

math conjectures were verified for very large numbers which was impossible before, properties and features 

of integers were studied, patterns, formulas, and relations were discovered more easily, which helped to 

understand concepts and problems that required a lot of time with the old tools [1].  

Some of the unsolved problems of mathematics, such as the Collatz conjecture, the twin prime 

conjecture, and the Mersenne primes, have been easily tested for very large numbers and remained 

conjectures yet; some others have been proved wrong and rejected by simple counterexamples found by 

computer programs; the most famous among them is the Euler conjecture on sums of like powers [2].  

Among many problems in mathematics and number theory, the primality test of a natural number is an 

important mathematical and algorithmic problem. In addition to being a fundamental mathematical 

question, the problem of how to determine whether a given number is prime has tremendous practical 

importance [3]. Whenever someone uses the RSA public-key cryptosystem, they must generate a private 

key consisting of two large prime numbers and a public key consisting of their product [4].  

The most commonly used primality tests are classified essentially into two types, which are deterministic 

and probabilistic [5]. Deterministic methods provide absolute certainty about whether a number is prime or 

not. Some of the most popular tests are the Lukas-Lehmer test, the Trial Division test, the Elliptic Curve 

Primality Test, the AKS Primality Test, etc. The probabilistic tests include the Fermat primality test, the 

Miller-Rabin test, the Euler test, the Solovay-Strassen test, the Frobenius primality test, etc.  

Probabilistic methods can find a potential prime number, meaning the number is highly probable to be 

prime. In the mathematics programs of Albanian universities, the properties of integers, including prime 

numbers, are included in topics of number theory or discrete mathematics [6].  

Many important theorems are presented and proved, such as the infinity of prime numbers with Euclid's 

proof, divisors’ properties, the fundamental theorem of arithmetic, integer properties such as perfect 

numbers, perfect squares, and Pythagorean triples, modular arithmetic, etc., as well as important theorems 

related to prime numbers such as Willson’s theorem, Ferma’s or Mersenne numbers, etc. [7].  

What is missing in such important topics are the corresponding algorithms and the developed programs 

to verify these properties, conjectures, and tests. These important topics are studied only as part of 

theoretical mathematics, with many theorems and proofs, while the related algorithms are missing.  

A brilliant example of the cooperation of theoretical math and algorithms is the AKS primarily test [8]. 

Beyond that, it is unnecessary to emphasize the benefits of combining computer programming with 

theoretical mathematics, especially number theory, for math students [9].  

Integrating coding into math topics fosters students’ creative thinking and problem-solving skills. When 

students are tasked with coding solutions to primary tests, they are not merely memorizing formulas or 

algorithms; rather, they are actively engaging with mathematical concepts and applying logical reasoning 

to solve problems [10].  

Starting in high school, the learning of several programming languages, such as C++, Java, and Java 

Script, helps them to develop programs, see the results of their work immediately and be encouraged by 

their achievements. This makes their performance in high school and university easier [11]. 

Coding empowers students to explore alternative approaches to problem-solving and encourages them 

to think outside the box. As students experiment with different algorithms and coding techniques, they 

develop a deeper understanding of mathematical concepts and gain insights into the various mathematical 

principles [12].  

Additionally, integrating coding into math topics and problems helps bridge the gap between theoretical 

knowledge and practical application. By coding solutions to test questions, students gain a hands-on 

understanding of how mathematical concepts can be applied in real-world scenarios. This experiential 

learning approach not only reinforces their understanding of mathematical principles but also equips them 

with transferable skills that are highly sought after in today's digital age, such as computational thinking, 

data analysis, and algorithmic reasoning [13].  
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Furthermore, the process of writing codes promotes collaboration and teamwork among students. 

Coding projects often require students to work together, share ideas, and troubleshoot problems 

collaboratively. Through peer-to-peer interaction and discussion, students not only reinforce their own 

learning but also benefit from diverse perspectives and approaches to problem-solving, fostering a sense of 

community and collective achievement [14]. 

 

II. MATERIALS AND METHODS 

Determining whether a large number is prime can be computationally intensive, especially as the number 

grows larger. For that reason, many algorithms are created to determine which number is prime in case if 

deterministic tests or probably prime in case of probabilistic test. Some of the most methods to test whether 

a given integer is prime are: 

Deterministic tests:  

The Sieve of Eratosthenes is named after the Greek mathematician and astronomer who developed this 

algorithm around 200 BCE. It is the oldest algorithm for finding all prime numbers up to a given number.  

The Sieve of Eratosthenes works by iteratively marking the multiples of each prime starting from 2 and 

gradually moving to larger primes. The unmarked numbers remaining after this process are prime numbers 

[15].  

The Algorithm: 

1. Create a list of consecutive integers from 2 through the given number n. 

2. Start with the first unmarked number (which is 2) and mark all of its multiples up to the number n. 

3. Find the next unmarked number; this is the next prime. Mark all of its multiples up to the given number 

n. 

4. Repeat step 3 until you have done all numbers up to the square root of the given number n. 

5. The remaining unmarked numbers less or equal to n are prime. 

 

The trial division method is the first and one of the fundamental techniques to determine the primality 

of a number. Dating back to ancient times, this method remains a basic yet crucial tool in number theory 

and cryptography, allowing for the identification of prime numbers through a systematic approach of 

division and analysis. The algorithm for the trial division method can be outlined as follows: 

1. Given a number 𝑛, check if it's less than 2.  If so, it's not prime. 

2. Iterate through all integers 𝑑 from 2 to the square root of 𝑛. 
3. For each 𝑑, check if it divides 𝑛 evenly.  

4. If a divisor is found, the number is declared composite. 

5. If no divisors are found up to the square root of 𝑛, the number is declared prime. 

Despite its simplicity, the trial division method faces significant inefficiency when dealing with 

extremely large numbers. As the candidate number grows, the number of divisions required increases 

exponentially, making it impractical for testing large primes, especially in cryptographic applications where 

such numbers are essential for security [16]. 

 

The Willson’s Theorem test: 

Willson is a deterministic method to check if a positive integer is prime or composite.  

The result was known to Leibniz, but it was only published in 1770 by Waring, who named it after his 

former student John Wilson who had discovered it. The theorem was proved in 1771 by French 

mathematician Joseph-Louis Lagrange. Wilson's theorem is both necessary and sufficient condition for 

primality [17].  

The Wilson's theorem states that any prime 𝑝 divides (𝑝 − 1)!  +  1. 

Theorem. An integer 𝑝 ≥ 2 is prime if and only if    (𝑝 − 1)! ≡ −1(𝑚𝑜𝑑 𝑝).  

Proof 1. If 𝑝 is prime then 𝑝 divides (𝑝 − 1)! + 1. 

Let 𝑝 a prime number. Each of the integers 1,2,3, . . . 𝑝 − 1 has an inverse modulo 𝑝.  

Consider the first and last reminder of (𝑚𝑜𝑑𝑝), which are 1 and (𝑝 − 1) we have: 
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1. (𝑝 − 1) ≡ (𝑝 − 1)(𝑚𝑜𝑑 𝑝) ≡ −1(𝑚𝑜𝑑𝑝).  

We can partition the set 𝑆 = {2, . . . , 𝑝 − 2} into pairs {𝑎, 𝑏} such that 𝑎. 𝑏 ≡ 1(𝑚𝑜𝑑𝑝).  

Then the product of these pairs is 1.2.3. . . (𝑝 − 1) ≡ 1. (−1)(𝑚𝑜𝑑𝑝) ≡ −1(𝑚𝑜𝑑𝑝).  

For example, for 𝑝 = 7, we have  (7 − 1)! ≡ 1.2.3.4.5.6 ≡ (2.4). (3.5). (1.6) ≡ 1.1. (−1)(𝑚𝑜𝑑7) ≡

−1(𝑚𝑜𝑑7)  

Proof 2. If 𝑝 divides (𝑝 + 1)! + 1 then 𝑝 is prime.  

Suppose that 𝑝 is composite. Then 𝑝 has a factor 1 < 𝑑 ≤ 𝑝 − 1.  

Then 𝑑 divides (𝑝 − 1)!, so 𝑑 does not divide (𝑝 − 1)! + 1.  

Therefore 𝑝 does not divide (𝑝 − 1)! + 1.  
For a composite number it is true that: 

A positive integer 𝑛 is composite number if and only if (𝑛 − 1)! ≡ 0(𝑚𝑜𝑑𝑛), except for 𝑛 = 4 for which 

we have (4 − 1)! ≡ 3! ≡ 2(𝑚𝑜𝑑4).  

Wilson's theorem provides an effective deterministic way to check if a given natural number is prime or 

composite. However, while this method is effective for small integers it is limited for large integers as it 

involves computing very large factorials, so it is thus hard to compute them for large 𝑛! even using fast 

computers.  

 

The AKS Primality Test is a deterministic algorithm used to determine if a given number is prime or 

composite. It was developed by three Indian computer scientists—Manindra Agrawal, Neeraj Kayal, and 

Nitin Saxena—in 2002. 

The test's significance lies in its ability to determine primality in polynomial time, challenging the 

common belief that primality testing required exponential time [18- 19].  

The algorithm runs in O((log n)^12) time, making it theoretically efficient for large numbers. However, 

in practice, it's slower than probabilistic tests like the Miller-Rabin test for moderately large numbers due 

to its high constant factors. 

Theorem. Let have an integer 𝑎, and a positive integer𝑛;  𝑎 ∈ 𝑍, 𝑛 ∈ 𝑁, 𝑛 ≥ 2 and 𝑔𝑐𝑑(𝑎, 𝑛) = 1. Then 𝑛 

is prime if and only if (𝑋 + 𝑎)𝑛 = 𝑋𝑛 + 𝑎(𝑚𝑜𝑑𝑛). 
Proof. For 0 < 𝑖 < 𝑛, the coefficient of 𝑥𝑖 is  

((𝑋 + 𝑎)𝑛 − (𝑋𝑛 + 𝑎)) is (
𝑛
𝑖

) 𝑎𝑛−𝑖. 

Suppose 𝑛 is prime. Then is (
𝑛
𝑖

) ≡ 0(𝑚𝑜𝑑 𝑛) and hence all the coefficients are zero.  

Suppose 𝑛 is composite. Consider a prime 𝑞 that is a factor of 𝑛 and let 𝑞𝑘//𝑛. Then 𝑞𝑘 does not divide 

(
𝑛
𝑞) and is coprime to 𝑎𝑛−𝑞 and hence the coefficient of 𝑋𝑞is not zero (𝑚𝑜𝑑 𝑛).  

Thus ((𝑋 + 𝑎)𝑛 − (𝑋𝑛 + 𝑎)) is not identically zero over 𝑍𝑛. 
 

The Algorithm: 

1. Input integer 𝑛 > 1. 
2. If 𝑛 = 𝑎𝑏 for 𝑎 ∈ 𝑁 and 𝑏 > 1, output composite. 

3. Find the smallest 𝑟 such 𝑜𝑟(𝑛) > 𝑙𝑜𝑔2𝑛. 
4. If 1 < (𝑎, 𝑛) < 𝑛 for some 𝑎 < 𝑟, output composite. 

5. For 𝑎 = 1 to ⌊√∅(𝑟) log 𝑛⌋ do 

    If (𝑋 + 𝑎)𝑛 ≠ (𝑋𝑛 + 𝑎), output composite 

6. Output prime; 

 

Probability tests: 

The Fermat primality test, named after French mathematician Pierre de Fermat, is a probabilistic 

algorithm which is used to evaluate whether a given number is likely prime or absolutely composite. 
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Fermat's test offers a fast approach but does not guarantee accuracy for all numbers [20]. The Fermat test 

relies on Fermat's Little Theorem, which states: 

Theorem. If 𝑝 is a prime number and 𝑎 is any positive integer then 𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑𝑝). 

In case 𝑔𝑐𝑑(𝑎, 𝑝) = (𝑎, 𝑝) = 1 we have:  

Theorem. If 𝑝 is a prime number and 𝑎 is any positive integer, 𝑔𝑐𝑑(𝑎, 𝑝) = 1, then we have 𝑎𝑝−1 ≡
1(𝑚𝑜𝑑𝑝). 

Proof. Let 𝑆 = {1,2,3, … , 𝑝 − 1}.  
Let’s consider the set 𝑎. 𝑆 = {1𝑎, 2𝑎, … , (𝑝 − 1)𝑎}, consisting of the product of the elements of 𝑆 with 𝑎. 

This set is simply a permutation of S (taken modulo 𝑝).  In other words, 𝑆 = {1𝑎, 2𝑎, … , (𝑝 − 1)𝑎} (𝑚𝑜𝑑𝑝). 
Clearly none of the 𝑖𝑎 factor for 1 ≤ 𝑖 ≤ 𝑝 − 1 are divisible by 𝑝, so it suffices to show that all the elements 

in 𝑎. 𝑆 are distinct.  

Then the product 1𝑎. 2𝑎 … . (𝑝 − 1)𝑎 ≡ 1.2 … (𝑝 − 1)(𝑚𝑜𝑑𝑝).  

Cancelling the factors 1.2.3 … (𝑝 − 1) from both sides, we have 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝). 
The Algorithm:  

1. For a given positive integer 𝑝,  

2. Pick an integer 𝑎 that  2 ≤ 𝑎 ≤ 𝑝 − 2,  and (𝑎, 𝑝) = 1, and check if it holds or not.  

3. If it doesn't hold, we know that   𝑝 is composite.  

In this case we call the base   a Fermat witness for the compositeness of   𝑝. 

4. If it holds, we say that  𝑝 is probably prime.  

However, there are composite numbers that may incorrectly pass the Fermat primality test for some values 

of 𝑎. These are called Fermat pseudoprimes, and in such case the base 𝑎 is called Fermat liar.  

For 𝑛 = 561, 𝑎 = 2,   we have the Fermat formula  2560 ≡ 1(𝑚𝑜𝑑 561), but  𝑛 = 561 is a composite, 

number, divisible by 3,11,17. 
For 𝑛 = 91, 𝑎 = 3 we have 390 ≡ 1(𝑚𝑜𝑑91), but 91 is also composite, 91 = 13 ∗ 7.  
The reliability of the Fermat test for any integer 𝑛 can be increased by performing multiple iterations with 

different random bases 𝑎. The more iterations are conducted, the higher the confidence in the primality 

evaluation. 

 

Euler primality test is an improvement over the Fermat primality test because it adds another equality 

condition that a prime number must fulfill [21-22]. 

Theorem. If 𝑝 is prime and 𝑎 is an integer, where 𝑝 > 2  and 0 < 𝑎 < 𝑝, then 𝑎
𝑝−1

2 ≡ ±1 (𝑚𝑜𝑑 𝑝).  

Theorem. If 𝑛 is a positive integer and               𝑎
𝑛−1

2 ≢ ±1(𝑚𝑜𝑑 𝑛) where 𝑔𝑐𝑑(𝑛, 𝑎) = 1 then 𝑛 is 

composite. 

Proof. If 𝑎
𝑛−1

2 ≢ ±1(𝑚𝑜𝑑 𝑛)  → 𝑎𝑛−1 ≢ 1(𝑚𝑜𝑑 𝑛) then 𝑛 is composite because of the Fermat’s Little 

Theorem.  

The Algorithm: 

1. For a given positive integer 𝑝,  

2. We pick an integer 𝑎 that  2 ≤ 𝑎 ≤ 𝑝 − 2,  and (𝑎, 𝑝) = 1, and check if the Fermat formula  𝑎
𝑝−1

2 ≡
±1(𝑚𝑜𝑑𝑝) holds or not.  

3. If it doesn't hold, we know that   𝑝 is composite.  

4. If it holds, we say that  𝑝 is probably prime.  

However, there are composite numbers that may incorrectly pass the Euler primality test for some values 

of 𝑎.  

For 𝑛 = 341 and 𝑎 = 2 we have  2
341−1

2 ≡ 2170 ≡ 1(𝑚𝑜𝑑341), but 341 = 11 ∗ 31. 

Every Euler pseudoprime is also a Fermat pseudoprime. 
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The Miller-Rabin primality:  

Miller-Rabin Primality Test is an improvement over Fermat's test, Miller-Rabin is also probabilistic but 

more robust. It repeatedly applies a test based on modular exponentiation to determine if a number is 

composite or probably prime [23]. 

The Miller-Rabin test relies on the properties of modular arithmetic and the behaviour of certain 

mathematical functions to efficiently test the primality of a number. It's based on the fact that for prime 

numbers, certain properties hold true, and if these properties are violated, the number is certainly composite. 

 

The Algorithm: 

1. Select an odd number 𝑛 to test for primality 

and a base 𝑎 such that (1 <  𝑎 <  𝑛). 
2. Express (𝑛 − 1) = 2𝑠 ∗ 𝑑 where 𝑠 is the largest power of 2 that divides (𝑛 − 1) and 𝑑 is an odd number. 

3. Compute 𝑎𝑑(𝑚𝑜𝑑 𝑛) and check if the result is congruent to −1(𝑚𝑜𝑑 𝑛) 𝑜𝑟 1(𝑚𝑜𝑑 𝑛).  

4. If 𝑎𝑑 ≢ ±1(𝑚𝑜𝑑 𝑛) and also, we have      𝑎2𝑟.𝑑 ≢ −1(𝑚𝑜𝑑 𝑛), 0 <= 𝑟 < 𝑠 − 1 then 𝑛 is composite 

and 𝑎 is a witness for the compositeness.  

5. Otherwise, 𝑛 may be prime.  

6. If it does, the number is likely prime.  

7. If it becomes (1) after fewer than (s) iterations or if it never reaches (−1)(𝑚𝑜𝑑 (𝑛)), then (𝑛) is 

composite. 

 

While the Miller-Rabin test can also yield false positives (declaring a composite number as prime), the 

chance of error decreases with more iterations.        Also, by choosing multiple random bases 𝑎 and 

performing the test with each, the probability of misidentifying a composite number as prime diminishes 

significantly. 

However, because of the probabilistic nature it does not guarantee the primality of a number, but rather 

provides a high probability. Rarely, composite numbers can pass the test for some witnesses. 

The effectiveness of the test relies on the choice of witnesses (base 𝑎). Although random selection helps, 

certain sets of witnesses are more effective than others [24]. 

The Miller-Rabin primality test is a powerful and widely used probabilistic algorithm for evaluating the 

primality of large numbers efficiently. While not offering absolute certainty, it provides a high degree of 

confidence, making it an invaluable tool in various fields, especially in cryptography where large prime 

numbers play a crucial role in ensuring security. 
 

III. RESULTS 

The primality tests in Python language are developed by the Computer Science and Mathematics students 

(University “A. Moisiu Durres. Faculty of IT, Albania). 

The sieve of Eratosthenes: For a given integer 𝑛, the following program finds all the multipliers of all 

the numbers from 2 to square root of 𝑛 and delete them.  The remaining numbers are primes. 

The program is:  

# The Sieve of Eratosthenes 

import math 

import datetime 

n=int(input("enter max number, n= ")) 

print(“primes number are:”) 

n1=int(n.5) 

for p in range (2,n+1): 

   for d in range(2,n1): 

        if p>d and p%d==0: 

            p=0 

    if p>0: 
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        print(p,end=",") 

 

RUN 

enter max number, n= 100 

prime number are: 

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, 

 

The trial division test: 

The following Python program verifies all the integers between two given numbers. All the integers that 

have not divisors between 2 and n-1 are prime.  

#Python programming 

print("The trial division test") 

print("Algorithm: count divisors of n, from 2 to sqr(n)") 

print("If number of divisors, nd=0 then n is prime") 

print("If not, nd>0 then n is composite") 

import math 

import datetime 

n1=int(input("enter first number,  (n1>1)=")) 

n2=int(input("enter second number,(n2>n1)=")) 

k=0 

print("nr                n             result") 

print("-------------------------- ------") 

if n1==1: 

    n1=2 

for n in range (n1,n2+1): 

    np=0 

    for d in range (2,int(n(.5))+1): 

        if n%d==0: 

            np=np+1 

            d = d + 1 

    if np==0: 

        k=k+1 

        print(k,"-","\t",n,"  prime") 

    else: 

        k=k+1 

        print(k,"-","\t",n,"  composite") 

 

RUN 

enter first number, (n1>1) =125654 

enter second number, (n2>n1) =125663 

nr           n             result 

---------------------------------- 

1 -   125654   composite 

2 -   125655   composite 

3 -   125656   composite 

4 -   125657   composite 

5 -   125658   composite 
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6 -   125659   prime 

7 -   125660   composite 

8 -   125661   composite 

9 -   125662   composite 

10 -   125663   composite 

For large numbers, small changes are made: 

n1=2^n1+1, n2=2^n2+1. 

For n1=2^53+1, n2=2^53+2, the integers between are: 

nr      n       result 

-------------------------------------------------- 

1 -   9007199254740993   composite 

2 -   9007199254740994   composite 

3 -   9007199254740995   composite 

4 -   9007199254740996   composite 

5 -   9007199254740997   prime 

6 -   9007199254740998   composite 

7 -   9007199254740999   composite 

8 -   9007199254741000   composite 

9 -   9007199254741001   composite 

10 -   9007199254741002   composite 

11 -   9007199254741003   composite 

12 -   9007199254741004   composite 

13 -   9007199254741005   composite 

14 -   9007199254741006   composite 

15 -   9007199254741007   composite 

16 -   9007199254741008   composite 

17 -   9007199254741009   composite 

18 -   9007199254741010   composite 

19 -   9007199254741011   composite 

20 -   9007199254741012   composite 

 

Fermat’s primality test: 

For any positive odd integer 𝑛, we generate all the bases 𝑎, 1 < 𝑎 < 𝑛 − 1 to calculate 𝑎𝑛−1(𝑚𝑜𝑑𝑛). For 

odd composite integers, the test produces correct results for most of the values of base 𝑎.   

However, there are many odd composite integers, for which the test produces false positive result, 

declaring them probably prime.   

The following Python program verifies odd integers 𝑛 with all the values of base a, less than n and 

coprime with 𝑛.  
print("Python programming") 

print("Fermat's Primality test") 

print("Theorem. If p is prime number and a an integer, and 1<a<p-1,(a,p)=1 then a(p-1)=1(mod p)") 

print("Fermat primality test: if a(n-1)#1(mod n) then n is composite, else n is probably prime") 

import datetime 

import math; import cmath; import calendar 

n=int(input("enter integer n to verify if prime or not, n>2; ")) 

print("generate base a, a<n-1, (a,n)=1") 

print() 
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print("a    F=a^(n-1)     r=F(mod n)     n=",n,"is") 

print("---------------------------------------------------") 

for a in range (2,n-1): 

    if math.gcd(n,a)==1: 

        F=pow(a,(n-1)); r=F%n 

        if r!=1: 

            print(a,"    \t",F,"\t       ",r,"    \t", "composite") 

        else: 

            print(a,"    \t",F,"\t       ",r,"    \t", "probably prime") 

print() 

 

RUN 

a   F= a^(n-1)         r= F(mod n)      number 11 is 

---------------------------------------------------------- 

2 - 1024          1       probably prime 

3 - 59049          1       probably prime 

4 - 1048576          1       probably prime 

5 - 9765625          1       probably prime 

6 - 60466176          1       probably prime 

7 - 282475249        1       probably prime 

8 – 1073741824     1       probably prime 

9 - 3486784401      1       probably prime 

 

For odd composite integers: 

For 𝑛 = 15 (composite), and base 𝑎 = 4;  𝑎 = 11  

the result is Fermat pseudoprime.  

 

a   F= a^(n-1)           r= F(mod n)      number 15 is 

------------------------------------------------------------ 

2 - 16384                  4           composite 

4 - 268435456         1           probably prime 

7 – 678223072849           4           composite 

8 - 4398046511104         4           composite 

11 - 379749833583241     1           probably prime 

13 – 3937376385699289  4           composite 

 

For 𝑛 = 25;  𝑎 = 7, we have another Fermat pseudoprime, because number 25 is composite and    𝐹 =

𝑎𝑛−1 = 724 ≡ 1(𝑚𝑜𝑑25). 

For 𝑛 = 33;  𝑎 = 10, 𝑎 = 23 we have another Fermat pseudoprime, 𝑛 = 33 is composite.  

𝐹 = 1032 ≡ 1(𝑚𝑜𝑑33);  𝐹 = 2332 ≡ 1(𝑚𝑜𝑑33)  

For 𝑛 =  35;  𝑎 = 6, 𝑎 = 29 the same result.  

𝐹 = 634 ≡ 1(𝑚𝑜𝑑35);  𝐹 = 2934 ≡ 1(𝑚𝑜𝑑35).  
Other Fermat pseudoprimes are: 

For 𝑛 = 39, 𝑎 = 25;  

For 𝑛 = 45;  𝑎 = 17,19,26,28,37.   

For 𝑛 = 55;  𝑎 = 21,34,  
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Euler primality test: 

For any positive odd integer 𝑛, we generate all the bases 𝑎, 1 < 𝑎 < 𝑛 − 1 to calculate 𝑎
𝑛−1

2 (𝑚𝑜𝑑𝑛).   For 

odd composite integers, the test produces correct results for most of the values of base 𝑎.  However, there 

are many odd composite integers, for which the test produces false positive result by declaring them 

probably prime.  All Euler pseudoprimes are Fermat pseudoprimes.  

The following program in Python verifies if any integer is composite or probably prime. The values of 

base a are less than the given number n and coprime with n. 

print("Python programming") 

print("Primality test: Euler") 

print("Theorem. If p is prime and a an integer,1<a<p-1,(a,p)=1 then a(p-1)/2=+-1(mod p)") 

print("Euler primality test: if a(n-1)#+-1(mod n) then n is composite, else n is probably prime") 

import datetime 

import math; import cmath; import calendar 

n=int(input("enter integer n to verify if prime or not, n>2; ")) 

print("generate base a, a<n-1, (a,n)=1") 

print() 

print("a=      F=a^[(n-1)/2]       r=F%n        n=",n,"is") 

print("---------------------------------------------------") 

for a in range (2,n-1): 

    if math.gcd(n,a)==1: 

        F=pow(a,(n-1)/2); F=int(F); r=int(F%n) 

        if r==(n-1): 

            r=-1 

        if r==1 or r== -1: 

            print(a,"    \t",F,"\t       ",r,"    \t", "prime") 

        else: 

            print(a,"    \t",F,"\t       ",r,"    \t", "composite") 

print() 

 

RUN 

a=      F=a^[(n-1)/2]       r=F%n        n= 17 is 

---------------------------------------------------- 

2       256                 1       prime 

3       6561                -1       prime 

4       65536        1       prime 

5       390625       -1       prime 

6       1679616       -1       prime 

7       5764801       -1       prime 

8       16777216        1       prime 

9       43046721        1       prime 

10       100000000       -1       prime 

11       214358881       -1       prime 

12       429981696       -1       prime 

13       815730721        1       prime 

14       1475789056       -1       prime 

15       2562890625        1       prime 

 

The AKS test: 

For any given natural number n.  

Calculate the coefficients of (𝑥 + 1)𝑛. 

 (𝑥 − 1)𝑛 − (𝑥𝑛 − 1). 
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İf the remaining coefficients are all multiplies of n then n is prime, else is composite. 

The program in Python is:  

print("The AKS test") 

print("Theorem: Number p is prime iff coefficients of (x-1)**p-(x**p-1)") 

print("are all multiplies of p") 

print() 

import math 

import datetime 

p=int(input("Enter first number, p= ")) 

c=math.factorial(p) 

c1 = [1 for i in range(p+1)] 

c2 = [1 for i in range(p+1)] 

k = [1 for i in range(p+1)] 

sc=0 

for i in range (0,p+1): 

    c1[i]=(math.factorial(i)) 

    c2[i]=(math.factorial(p-i)) 

    #print (c,"-",c1[i],"-", c2[i]) 

    k[i]=c//c1[i] 

    k[i]=k[i]//c2[i] 

    k[i]=k[i]*(-1)**(i) 

    #print(k[i]) 

    i=i+1 

print("Coefficients of (x-1)^",p,"are:") 

for i in range(0,p+1): 

    print(k[i],end=", ") 

    i=i+1 

print() 

print("Coefficients of (x-1)^",p,"-(x^",p,"-1) are:") 

for i in range(1,p): 

    print(k[i],end=", ") 

    i=i+1 

print() 

for i in range(1,p): 

    if (k[i]%p)==0: 

        sc=sc+1 

        i=i+1 

print() 

print("Result:") 

if sc==p-1: 

    print("Coefficients are all multiplies of", p, ) 

    print("Number",p," is prime") 

else: 

    print("Some coefficients are not multiples of",p) 

    print("Number",p," is composite") 

print() 

 

RUN 

Enter first number, p= 13 

Coefficients of (x-1)^ 13 are: 

1, -13, 78, -286, 715, -1287, 1716, -1716, 1287, -715, 286, -78, 13, -1,  
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Coefficients of (x-1)^ 13 -(x^ 13 -1) are: 

-13, 78, -286, 715, -1287, 1716, -1716, 1287, -715, 286, -78, 13,  

 

Result: 

Coefficients are all multiplies of 13 

Number 13  is prime 

 

RUN 

Enter first number, p= 14 

Coefficients of (x-1)^ 14 are: 

1, -14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14, 1,  

Coefficients of (x-1)^ 14 -(x^ 14 -1) are: 

-14, 91, -364, 1001, -2002, 3003, -3432, 3003, -2002, 1001, -364, 91, -14,  

 

Result: 

Some coefficients are not multiples of 14 

Number 14 is composite 

 

IV. DISCUSSION 

The tests and algorithms presented in the paper are coded in Python by students of computer science and 

mathematics. Prime numbers, together with many theorems and proofs related to them, as well as some of 

the primality tests such as Ferma’s and Wilson’s, are covered in the courses of number theory and discrete 

mathematics. However, the fact that the students also study several programming languages, such as Java, 

C++, and Python, in their respective courses gave us the idea to develop programs for some of the well-

known tests and algorithms and to apply for a project at our university. The benefit to the students of a 

project that combines mathematics with algorithms and programming is indisputable and offers an excellent 

perspective for students as mathematicians and programmers of the future. It deeply enhances 

understandings of theoretical mathematics concepts, deepens the algorithmic and programming culture, 

fosters critical thinking, fosters collaboration, enhances communication skills, ignites curiosity, builds 

problem-solving skills, and encourages persistence and innovation. 

 

V. CONCLUSION 

Primality testing is not simply a mathematical curiosity; it has wide practical applications. Primality testing 

finds applications in many fields such as computer science, number theory, and even scientific research 

involving pattern recognition, pseudo-random number generation, and optimization problems.  

Cryptography relies heavily on prime numbers for secure encryption and decryption processes. Algorithms 

such as RSA encryption, which forms the backbone of secure online transactions and communication, 

depend on the use of large prime numbers.  

Primality tests are proof of the excellent collaboration and interaction between theoretical mathematics and 

practical applications. From ancient times to today, the quest for efficient primality algorithms has driven 

mathematical innovation.  

As technology advances, so has the advancement and sophistication of priority tests, making them both 

more accurate and more effective. 

The recognition, understanding, and application of primality is a core topic in number theory and computer 

science. For students of Mathematics and Computer Science, working with primality algorithms have a 

significant benefit and importance because: 

Primality testing deepens students' understanding of number theory. It introduces them to fundamental 

concepts like divisors, factors, and prime numbers, fostering a strong mathematical foundation. 

Implementing primality tests challenges students to think algorithmically.  
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Primality testing problems provide an excellent opportunity for students to enhance their problem-solving 

skills. They learn to approach complex mathematical problems methodically and develop strategies for 

efficient solutions. 

Implementing primality tests requires coding skills. Students get hands-on experience with programming 

languages, data structures, and algorithms. This practical application helps them strengthen their coding 

abilities. 

Primality testing involves logical reasoning and critical thinking. Students must understand the properties 

of prime numbers and develop logical arguments to design effective algorithms. 

For students interested in pursuing advanced studies in computer science or related fields, primality testing 

serves as a stepping stone to more complex algorithms and mathematical concepts. 

Primality testing and coding for such tests are valuable for students as they foster mathematical 

understanding, algorithmic thinking, coding skills, and preparation for real-world applications and 

challenges in various domains. 

A great example of collaborating theoretical mathematics and algorithms is the AKS (Agrawal-Kayal-

Saxena) primality test which is a deterministic algorithm developed by three Indian mathematicians, 

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, in 2002. The AKS primality test is significant because 

it provided the first polynomial-time algorithm for determining whether a given number is prime or 

composite, without relying on unproven assumptions like the Riemann hypothesis. The development of the 

AKS test was a significant achievement in computational number theory and algorithm design. It 

demonstrated that deep mathematical insights could lead to practical computational advances, and it opened 

new avenues for research in prime number theory and algorithmic complexity. 
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