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Abstract – The transient diffusion equation is solved, where the diffusion coefficient itself depends 

simultaneously on space and time. A nontrivial analytical solution containing the Whittaker functions is 

reproduced by 15 explicit numerical time integrators, most of which unconditionally preserve the positivity 

of the solutions. The accuracy of the methods is extensively examined, and it is found that these algorithms 

give very good results even in those cases where the standard explicit Runge-Kutta methods are hopeless 

due to the extreme stiffness of the problem. 
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I. INTRODUCTION AND THE STUDIED PROBLEM 
 

We examine the linear partial differential equation (PDE) in one space dimension 
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,
u x t u x t

x t
t x x
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, ( ) ( )00u x,t u x= = ,   

 (1) 
where x, t  are the space and time variable, ( ) ( ): ;u x,t u x,t  is the unknown function meaning 

concentration in the case of particle diffusion and temperature in the case of heat conduction. We consider 
0u  as a given function and ( )x, t   is the diffusion coefficient or diffusivity. The diffusivity has spatial 

and temporal dependence, which is justified by the fact that in several engineering problems, the properties 
of the materials widely change [1] because of natural or artificial inhomogeneities. Some new types of 
analytic solutions were found  [2], [3] and plenty of numerical algorithms [4] were applied for different 
types of diffusion equations. In this work, we assume a specific type of diffusivity function, namely  
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where D is a positive constant. We constructed analytical solutions for this case in our previous paper [5], 
which contain the Whittaker functions, and therefore highly nontrivial. We set 1D =  and with this, we have 
the following form of the solution:  
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The current work can be considered as the continuation of that previous work  [5], where we applied several 
numerical schemes to solve Eq. (1) and the function (2) was used as the reference solution. Now we focus 
on only the positivity preserving methods and include the very recently published CLQ type family [6] 
which will be described later.  

A large number of methods are proposed to solve Eq. (1) and similar kinds of equations [7] [8]. 
Both the common explicit and the implicit methods have at least one serious disadvantage. The widely used 
explicit algorithms, such as the Runge-Kutta types, must be used with a rather short time step size, because 
they become unstable above the so-called mesh Fourier number or CFL (Courant–Friedrichs–Lewy) limit. 
On the other hand, when one uses the implicit methods, a system of algebraic equations is required to be 
solved at each time step. This is nontrivial to be parallelized and, especially in multiple dimensions of space, 
the calculations can be very time-consuming. In real-life problems, explicit algorithms can be more efficient 
even with a short time step size [9]. The explicit and the implicit methods can be combined to obtain semi-
explicit or semi-implicit algorithms [10], [11], [12], [13], but they do not overcome the above-mentioned 
problems.   
 

Moreover, the true solution of the heat or diffusion equation always follows the maximum and 
minimum principles [14] (p. 87) reflecting the Second law of thermodynamics. However, most finite 
difference or finite element methods do not necessarily produce solutions with this property. That is why 
unconditionally positive schemes [15],[16],[17],[18] are investigated by some scholars.  

In this work we collect several explicit methods, most of which fulfil the maximum and minimum 
principles. We test these methods by performing a sweep for the parameter m to explore how the 
performance of the methods is changing with this parameter. We write our own numerical codes in 
MATLAB to perform the numerical simulations. 
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II. THE DISCRETIZATION AND THE NUMERICAL ALGORITHMS 

2.1. The spatial and temporal discretization 

The time variable is discretized uniformly, i.e. 𝑡 ∈ [𝑡0, 𝑡fin], and 0 fin 01nt t nh , n ,...,T , hT t t= + = = − . An 

equidistant spatial grid 0 0jx x j x , j ,..., N , N x L= +  =  =  is constructed on the interval 

0 0Nx x , x x L = +    . We reproduce analytical solution (2), thus that formula will be used to prescribe the 

Dirichlet boundary conditions. 
 

We simultaneously discretize the function α and 𝜕𝑢/𝜕𝑥 in Eq. (1). The central difference formula 
is used to obtain 

,
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If we move from node to cell variables, 𝑢𝑖 will be the approximation of the temperature of the cell i, by its 
value at the center of the cell. Moreover, the diffusivity between two cells will be estimated by its value at 
the border of the appropriate cells. This yields 
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Let us introduce the capacity of the cell as 𝐶𝑖 = 𝛥𝑥. The resistances can be introduced as follows: 
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which depend on time as well. Now we obtain the following system of ordinary differential equations: 
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which has the matrix form 

 
du

Mu
dt

= .      (4) 

The  N N  dimensional system matrix M depends on the time. More details about this manner of 
discretization can be found e.g. in [19].  The matrix M have always negative eigenvalues. The smallest 
(largest) absolute value eigenvalues are denoted by ( )MIN MAX  . Now, the CFL limit can be calculated as 

MAXMAX 2 /h = . It is valid for the Explicit Euler method, but for higher order RK methods, this limit is 

only a little larger. The stiffness ratio of the system can also be calculated as MAX MIN/SR  = .  

 
2.2. The description of the 15 numerical algorithms 
All the tested algorithms are already published before and one can find more details about them (e.g. 
analytical proofs) in the given references. Let us briefly present immediately the formulas which are applied 
for Eq. (3). We introduce the following two quantities:  

1 1
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The term 𝑟𝑖
𝑛 is similar to the usual mesh-ratio 

2

Dh
r

x
=


, which is frequently used in the case of constant 

diffusivity. On the other hand, 𝐴𝑖
𝑛 summarize information about the neighbors of the cell. The methods are 

the following: 
1. The so-called UPFD (unconditionally positive finite difference) scheme has one stage only with the 
formula  

1

1

n n
n i i
i n

i

u A
u

r

+ +
=

+
      (6) 

This method was proposed by Chen-Charpentier and Kojouharov [15] for the more general case of the 
diffusion-advection-reaction equation. 
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2. The constant neighbour (CNe) method [20], [21] is a one-stage method again, which contains the ri 
quantities in the exponents: 

( )1 1
n n
i i

n
n n i
i i n

i

r rA
u u e e

r

− −+ =  + −      (7) 

3. The two-stage CpC method [22] employs the CNe formula two times. The first one is a fractional (halved) 
sized stage, where the substitution 2h h /→  must be performed in (5) and then (7) is applied. These 
predictor values makes possible the calculation of the new values of the A quantities: 

new
pred pred
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At the second stage, these new
iA  values are substituted into (7) in the full-length corrector stage. We stress 

that the resistances are updated only when a new time step starts. This principle will be valid in the case of 
the other multi-stage methods. 
4. The first stage of the linear-neighbor (LNe) algorithm [21] is a full-length predictor time step with the 

CNe formula (7) to calculate the 𝑢𝑖
pred

 values. Using them new 𝐴𝑖
new values are calculated as in (8). The 

corrector step is performed with the formula:  
new new
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5-6. Using the corrector values obtained by (9), we are able to recalculate 𝐴𝑖
new, then repeat (9) to obtain 

the refreshed and usually more accurate corrector values. This three stage-algorithm is called the LNe3 
method [21]. Repeating (8) with the new values and the corrector step (9) again, a 4-stage formula 
abbreviated as LNe4 is obtained.   
7. The CLL method [23] is a modification of LNe3 to achieve third order convergence in time. It uses 

fractional-sized time steps in the first two stages with 1
2

3
h h= . In the first stage, the CNe formula is 

employed with this reduced time step size to calculate new predictor values denoted by C
iu . These are the 

basis of the calculation of the C
iA values such as in Eq. (8). In the second stage, we use formulas similar to 

(9), but with the reduced time step size to obtain the first corrector values:  
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The third, full time step size stage starts with the calculation of the new CL
iA  using the just obtained CL

iu  

values, and then the LNe formula is employed again: 
CL CL
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8. The CCL method [24] is similar to the CLL, but the length of the first fractional time step is only 1 3h h /=

. Apart from this, the first stage is the same as in the CLL method. At the second stage, however, the CNe 

formula is used again with 2
3

h  length to obtain the values denoted by CC
iu . These are used to calculate 

CC
iA  in the third stage, which is a full-time step with the LNe formula (10), but with the CC

iA  quantities 

instead of the CL
iA  ones. 

9.  The two-stage pseudo-implicit (PI) method [25] has a half time step size predictor stage and then a full 
time step size corrector stage. They employ the formulas:  

Stage 1: pred / 2

1 / 2n
i

n n
i i

i

u A
u

r

+
=

+
,       Stage 2:  

( ) new
1 1 / 2

1 / 2

i

i

n
i in

i

r u A
u

r

+ − +
=

+
, 

where 𝐴𝑖
new is calculated as in (8).  

10. The three-stage Constant-Linear-Quadratic neighbour (CLQ) algorithm [6] utilizes the same first and 
second stages as the LNe method. The only difference is that the second stage has to be performed with not 

only a full, but a half time step size as well using the LNe formula. Let us denote the obtained values by L
iu  
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and 
1

2
L

iu , respectively. Using them we can calculate pred,L
iA  and 

1pred,L
2

iA  such as above, and then the 

quantities 
1pred,L pred,L24 3i ii iS A A A= − −   and 

1pred,Lpred,L 22 2i ii iW A A A
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, where iA  is calculated at the 

beginning of the first stage. The final values of u at the end of the time step are calculated by 
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11. The above obtained Q
iu  values can be used to add one more stage, with which we have a four-stage 

method called the CLQ2 method. To make it possible, the midpoint values must be calculated at the third 
stage:  
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Now, in Stage 4, one repeats the calculations of the third stage, but uses 𝐴𝑖
pred,𝑄

, and 𝐴
𝑖

pred,𝑄
1

2 to obtain the 

new values of S and W, etc.  
12-13. The iteration of point 11 may be further repeated. In this manner, we obtain the CLQ3 scheme (5 
stages altogether), as well as the CLQ4 scheme (6 stages altogether) [6].  
 
Let us now focus on the hopscotch schemes, where the odd and even nodes are treated differently. These 
algorithms work properly only if in each step, the latest available u values of the left and right neighbours 
are used. The CNe formula will be applied everywhere to maintain the positivity of the results. 
 
14. OEH-CNe (odd-even hopscotch CNe) method: full-length time steps are made, first for the odd nodes 
only and then for the even nodes. In the next step, and in all of the coming steps, the roles are interchanged: 
first the even and then the odd nodes are treated, then vice versa, etc. 

15. Leapfrog-hopscotch-CNe (LH-CNe, [19]): We start with a half-sized time step for only the nodes, then 
full time steps for the even and odd nodes are coming alternately. A half-sized time step closes the 
calculation for the odd nodes to reach the final time of the simulation. 

The order of convergence is one for the UPFD and the CNe algorithms, two for the PI, LH-CNe, CpC, and 
LNe-LNe5 algorithms, three for the CCL, CLL and CLQ schemes, and four for the CLQ2-4 methods. All 
of them are unconditionally stable for the diffusion equation, thus the CFL restriction does not apply in 
their case, which is exceptional. From the point of view of preserving the positivity, there are three 
categories. In the case of the UPFD, CNe, CpC, LNe, LNe3-4, OEH-CNe, and LH-CNe schemes, it is 
analytically proven that the Maximum and Minimum principles hold for arbitrary mesh, i.e. for arbitrary 

values of the Ci and Ri quantities. This is a consequence of the fact that the new 𝑢𝑖
𝑛+1 values are the convex 

combination of the 𝑢𝑖
𝑛, 𝑢𝑖−1

𝑛 , 𝑢𝑖+1
𝑛  etc. values. For the CLQ-CLQ4 family, this is proven only for the 

simplest, one-dimensional equidistant case, but all numerical experiments support the validity of the 
principle for the general case as well. On the other hand, we know that the CCL, CLL and PI schemes do 
not always fulfil the principle. However, these violation of the principle appears only for extremely large 
time step sizes and for vary stiff cases. Thus, in practice, they can be considered as “almost positivity 
preserving” methods. We will see that the error of the methods is strictly limited even in the case of 
extremely stiff problems. 
 

III. NUMERICAL RESULTS FOR DIFFERENT PARAMETER VALUES 
 

We investigate how the numerical error depends on the time step size h and the parameter m. First, we do 
the simulation with all methods for a very large and fixed h and calculate the usual 𝐿∞ or maximum error 

at  𝑡fin: 
analytic fin num fin

ii
1
max ( ) ( )

i N
Error u t u t

 
= −
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Then this procedure is repeated with smaller time step sizes until very small error values are obtained. We 
used Nh =17 different time step sizes for all the examined methods. Note that some data about the running 
times can be found in our previous papers. In the first experiment, the used parameter values are the 
following: 

0 fin
02 1 0 1 100 0 25 0 01 0 1 0 2m . , . , N , x . , x . , t . , t .= = = =  = = = . The value of c is always set to be a 

normalization constant, i.e. the largest absolute values of the functions are always unity. After this first 
experiment, we changed m to m=20. The errors as a function of the time step size are displayed in Fig. 1 
and 2. for the first and second experiment, respectively. One sees that the accuracy difference between the 
algorithms became much smaller for this large value of m.  

Now, we perform a parameter sweep for m. To be able to characterize the performance of a method 
with one number, we calculate the aggregated maximum error:      

                                   ( )
1

1
AgE( ) log Error( )

Nh

nh

L L
Nh

 

=

=     (11) 

 The average absolute error can also be calculated:  

ref num
1 j fin j fin

0 j

1
Error( ) ( ) ( )

N

L u t u t
N

 

= − , 

and based on this, AgE(𝐿1) is calculated as in (11). The third type of error gives the misplaced energy in 

the case of heat conduction, therefore we call it energy error: 

ref fin num fin

1

Error( ) ( ) ( )j j

j N

jEnergy C u t u t

 

= − . 

The simple average of the three types of errors ( )1AgE AgE( ) AgE( ) AgE( ) / 3L L Energy= + +  will be used to 

assess the overall accuracy of the methods. It is easy to see that if a method has negative and larger absolute 

value AgE, it is more accurate. For the parameter sweep, the  𝑚 ∈ {2.1,  3,  5,  7,  10,  12,  14.5, 17,  20} 

values of the coefficient are used. The AgE values as a function of m are displayed in Fig. 3. Table 1 shows 

the numerical value of these errors as well as SR and hMAX values at the initial and at the final time 

moments. 

 
Figure 1 The maximum error as a function of the time step size for m=2.1 
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Figure 2 The maximum error as a function of the time step size for m=20 

 

  
Figure 3 The AgE values as a function of the parameter m. 
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Table 1 The exponents and the stiffness ratios for the cases, as well as the AgE values for the methods 

 m 2.1 3 5 7 10 12 14.5 17 20 

SR(i) 3.1×105 1.1×106 1.5×107 2.2×108 1.2×1010 1.9×1011 5.6×1012 1.6×1014 9.4×1015 

SR(f) 1.5×105 3.7×105 2.7×106 2×107 4×109 3×109 8.1×1010 3×1012 2.5×1014 

hMAX(i) 3.1×10-6 9.3×10-7 6.4×10-8 4.3×10-9 7.6×10-11 5.1×10-12 1.7×10-13 6×10-15 1×10-16 

hMAX(f) 6.4×10-6 2.6×10-6 3.6×10-7 4.9×10-8 2.4×10-9 3.3×10-10 2.7×10-11 2.2×10-12 1.1×10-13 

UPFD -35.46 -33.94 -33.63 -34.23 -35.22 -35.79 -36.42 -37.01 -37.68 
CNe -37.57 -35.88 -35.10 -35.19 -35.67 -36.09 -36.63 -37.17 -37.81 
CpC -47.36 -44.20 -40.92 -39.53 -39.32 -39.64 -40.16 -40.72 -41.40 
LNe -46.79 -43.67 -40.51 -39.28 -39.23 -39.59 -40.13 -40.71 -41.39 
LNe3 -52.60 -48.94 -44.35 -41.85 -41.41 -41.75 -42.30 -42.88 -43.53 
LNe4 -55.90 -52.09 -47.05 -43.81 -43.04 -43.35 -43.90 -44.45 -45.05 
CLL -54.60 -51.01 -46.58 -43.72 -43.04 -43.34 -43.89 -44.45 -45.04 
CCL -55.01 -51.42 -46.92 -43.96 -43.12 -43.39 -43.92 -44.46 -45.05 
PI -47.92 -45.07 -42.62 -42.06 -42.52 -43.04 -43.71 -44.34 -44.97 
CLQ -53.40 -49.71 -45.05 -42.21 -41.52 -41.81 -42.34 -42.91 -43.55 
CLQ2 -57.41 -53.54 -48.28 -44.58 -43.26 -43.47 -43.97 -44.50 -45.08 
CLQ3 -60.25 -56.25 -50.50 -46.32 -44.67 -44.80 -45.26 -45.71 -46.30 
CLQ4 -62.50 -58.36 -52.40 -47.73 -45.84 -45.91 -46.27 -46.73 -47.26 
OEH-CNe -44.60 -41.23 -37.55 -36.07 -35.98 -36.30 -36.78 -37.29 -37.90 
LH-CNe -49.25 -45.89 -41.96 -39.90 -39.40 -39.68 -40.18 -40.73 -41.40 

 

IV. DISCUSSION AND SUMMARY 
 

The transient diffusion equation has been investigated in which the diffusion coefficient depends on the 
space and time coordinates at the same time. A recent nontrivial analytical solution containing a Whittaker 
function has been used as the reference solution. This solution has a parameter m, and increasing the value 
of m yields increasing stiffness ratio and decreasing CFL limit. For large values of m, the CFL limit is 
extremely small. Moreover, because of the time-dependence of the diffusivity, the CFL limit is changing 
in time, so using the traditional explicit algorithms is very risky, if not impossible.   

The examined 15 explicit numerical algorithms reproduced accurately the reference solution. We 
observed that the difference in the accuracy between the methods are decreasing with increasing m, which 
can be a sign of the order reduction. It reinforces the common experience that higher order methods have 
significant advantages only if the problem is not very stiff, otherwise, lower order methods are enough to 
use. The relative strength of the schemes are only slightly changing with increasing m, with the exception 
of the PI method, since it is remarkably improving and overtakes the LH-CNe, the LNe3 and even the third 
order CLQ method. The other exception is the second-order OEH-CNe method, because its performance is 
seriously declining with increasing m,  and become the same as that of the first-order methods. 
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