
Uluslararası İleri Doğa

Bilimleri ve Mühendislik

Araştırmaları Dergisi

Sayı 7, S. 5-10, 2, 2023

© Telif hakkı IJANSER’e aittir

Araştırma Makalesi

https://as-proceeding.com/index.php/ijanser

 ISSN: 2980-0811

 International Journal of Advanced

Natural Sciences and Engineering

Researches

Volume 7, pp. 5-10, 2, 2023

Copyright © 2023 IJANSER

Research Article

5

Achieving Loose Coupling and High Quality through Migrating the

Monolithic Applications to Microservices Applications

Ayisha Al-Saidi 1, Zuhoor Al-Khanjari 1

1Department of Computer Science, College of Science, Sultan Qaboos University, Oman, Muscat

1s128554@student.squ.edu.om Email of the corresponding author

ATIF/REFERENCE: Al-Saidi, A. & Al-Khanjari, Z. (2023). Achieving Loose Coupling and High Quality through Migrating

the Monolithic Applications to Microservices Applications. International Journal of Advanced Natural Sciences and

Engineering Researches, 7(2), 5-10.

Abstract – The growing demands for available data in today’s applications from small to complex systems

have increased every day. It has forced large enterprises to look for such modern technologies that can

provide them with more value, benefits, enhancement, and management of the systems. For illustration, it

imposed them to use more manageable architectural design besides a powerful software development

process. That is to meet the needs of continuous development, maintenance, and deployment of the current

applications in order to achieve the main requirements of the end users like high quality, availability,

scalability, performance, and security of the applications. However, those are the main reasons to adopt

Microservices and DevOps in current systems and migrate the Monolithic-based Architecture that has faced

problems with those requirements as it grows over the years into Microservices. This paper aims to propose

a fundamental approach to transfer the existing Monolithic-based Applications to Microservices-based

Applications to achieve high quality and the loose coupling between services for current Applications.

Keywords – Monolithic Architecture, Microservices Architecture (MSA), DevOps, Migration, Quality.

I. INTRODUCTION

In traditional applications which are called

Monolithic Applications, the fundamental

components of the system are developed, packaged,

and deployed as a single unit in the same program

using the same language and framework [1], [2]. To

give a clear understanding, in Java applications, the

whole system is packaged as WAR files or JARs

and deployed in the same application using a server

called Tomcat [1]. Thus, the application is easy to

develop and test during the early stages. However,

as it grows bigger and bigger over years, it becomes

more complicated. For end-to-end testing, the

application can be launched on the browser and can

be validated using Robot-framework (ex. Selenium

lib) [1]. The small applications can be scaled easily

using a load balancer by having multiple runnable

copies. But for complex systems as scalability,

flexibility, maintenance, and time to value are very

crucial factors, and it is very hard to maintain and

get control. In other words, large applications are

difficult to scale up because all components in the

applications are closely coupled and connected as

well as have overlapping responsibilities.

Furthermore, since the structure of the Monolithic

applications is highly coupled, and components

depend on each other, when any failure happened

on one module or component, the overall system

needs to be updated, maintained, and deployed.

Thus, the main bottlenecks and challenges of

Monolithic applications can be pointed out as

scalability, slow development, and difficulty in

maintenance and deployment. In general, all the

aspects of making changes or developing in

https://as-proceeding.com/index.php/ijanser
mailto:1s128554@student.squ.edu.om

6

Monolithic applications get complicated and

impediment over years.

The new architecture of Microservices can be

used to overcome these limitations and bottlenecks

of the Monolithic. This can be done by

decomposing the system into a set of small and

independent services that are called Microservices

that can communicate through passing messages

using RESTful APIs. So, Microservices

Architecture is an approach to software

architectural design which is responsible to build

and deploying distributed applications as small,

independent, and deployable services where each

service can run as a unique process and

communicate with others using lightweight

mechanisms [1]. In addition, each service can be

programmed using different programming

languages and stored through different data storage

technologies [3]. There are several companies, such

as Netflix, Amazon, and The Guardian that have

successfully utilized Microservices in their large-

scale software systems [3]. Moreover, some other

companies are currently refactoring of their back-

end systems to Microservices-based systems to

improve maintainability and scalability [4].

The rest of this paper is structured as follows:

Parts II, III, and IV discuss the main concepts of the

paper which are Monolithic Application,

Microservices Architecture, and DevOps. Part V

analyses and discusses the related works. Part VI

provides the mechanism which is used to transfer

Monolithic applications into Microservices

applications. The last part is the conclusion and

future work of this paper.

II. MONOLITHIC ARCHITECTURE

Monolithic-based architecture is the common and

simplest way to develop and deploy different web

applications as a single unit that contains all the

responsibilities and shares the same database [1],

[2], [5], [6] as shown in Fig 1. Also, those

applications have a big codebase because it

developed as a single package [2], [5].Therefore,

the applications may become too complex as well

as difficult to understand. However, this can slow

down the development of applications and avoid

making updates. As a result, Monolithic

Applications face many challenges to make

changes, scale up, fix errors, and recover from

failures. Moreover, to deploy one update of the

system, the entire application must be deployed as

well, and this can create some difficulties to track

the impacts of the update for the whole application

[5]. In other words, scaling up of Monolithic

Applications is frequently very complicated and

tough because making a single update for any

module or one part of the system requires scaling

and updating the entire application as well as

deploying the whole system [7]. Furthermore, as the

Monolithic Applications grow up and their size

becomes too large during the many years of

development and scaling, it becomes very hard to

maintain and make changes to them, so it is the right

time to migrate to a new architectural style that has

called Microservices in order to overcome these

challenges and get the great benefit and values of

using Microservices [7]. Large companies such as

Amazon, Netflix, LinkedIn, and SoundCloud have

made the migration to Microservice Architecture

because their existing Monolithic Applications

were too tough to scale, maintain, develop, and

deploys [7].

III. MICROSERVICES ARCHITECTURE (MSA)

Microservices which were first described by

Lewis and Fowler [8] are referred to as a set of small

and autonomous services. Each service runs as a

unique process and has a single responsibility inside

the system to serve a specific task and goal.

Moreover, each service can be developed,

maintained, and deployed separately without

affecting other services. Accordingly,

Microservices Architecture in expected to resolve

the main downsides of Monolithic applications

which are related to scalability, flexibility,

maintenance, and continuous delivery of the system

[2]. However, Microservices have high cohesion

and loose coupling, thus it is robust to make changes

and easy to update and maintain , [1], [2], [9]. Since

the services are independent and small, they can be

Fig. 1 Monolithic Architecture

Fig. 3 The Fundamental Process of

Migrating the Monolith Apps into

Microservices based Architecture.

7

scaled up easily as well as achieve continuous

delivery and deployment as required [1], [2], [9]. In

addition, the developers of Microservices can use

different technological stacks in the development

process [1], [10]. They can use different languages,

data stores, and technologies for each microservice

[1], [10]. However, there are some drawbacks to

Microservices Architecture. For illustration,

Microservices required to use more resources and

tools to achieve architectural flexibility which led to

increasing the complexity of the system [10], [11] .

As Monolithic Systems become large and more

complex to deal with, some organizations take the

decision to break their systems by migrating from

Monolithic applications into Microservices

applications [5] for many critical reasons. The main

reasons to obtain Microservices are high

availability, maintenance, flexibility, scalability,

easier infrastructure management, compliance with

the latest security standards, and combined flow of

development and operation, which is called DevOps

[9], [10]. However, Fig. 2 clearly shows the

Microservices Architecture of the application.

IV. DEVOPS

Since the major goals of Microservices are

increasing productivity, availability, scalability,

flexibility, rapid deployment, and delivery,

Microservices emerged with DevOps practices to

create a rapid and automated deployment of

software [10]. However, DevOps is a combination

of some practices and tools that are used to facilitate

the process of development, integration, testing, and

deployment of high-quality software [12], [13]. It

aims to break down the boundaries between the

Development and Operations of the system to

increase the ability to deploy it faster with high

quality. Combining DevOps method and

Microservices can add more benefits and high

levels of efficiency to the application [12]. For

example, building Microservices through DevOps

practices and tools can provide automation

techniques for the application like continuous

delivery and deployment using pipelines. In

addition, they can provide for Microservices

continuous integration, adding new features in a

safe and secure way, and also can recover quickly

from failures [12]. To give a clear example, DevOps

can provide automated security practices for

Microservices like dependency scanning and static

analysis using some valuable tools like Selenium,

Appium, and Cucumber [14], [15]. Those tools help

team members to automate most test cases during

the testing stage.

V. RELATED WORKS

According to IDC (International Data

Corporation), in 2022, about 90% of the newest

applications were expected to be established on

Microservices Architectures [16]. However, the

emergence of Microservices and DevOps can

increase the agility and flexibility of the

applications and enable organizations to rapidly

bring their services and products to the market [16].

It is known that building a new application from

scratch based on Microservices Architecture is very

expensive and time-consuming work to go through.

Instead, the enterprises can reuse and migrate the

existing system into Microservices following

specific approaches or processes. In fact, many

enterprises have been taking the decision to migrate

their existing applications to Microservices

Architectures (MSA). However, adopting such

applications is not a simple task to do since it

requires refactoring the existing Monolithic

Application to migrate the application successfully

[5]. Before taking this decision and starting this

journey of migration, it needs to answer many

questions as well as understand the application

accurately. However, there is some research that

identifies the challenges of refactoring or migrating

from Monolithic Applications to Microservices as

in [7]. This paper makes a step forward by first

discussing the reasons that force companies to

Fig. 2 Microservices Architecture (MSA)

8

migrate from Monolithic to Microservice and then

describes the different challenges that the

enterprises may face during the migration and how

to be solved or avoided before or during using

Microservices. Some challenges are related to:

1. How to handle failures of one or more service.

2. The communication between services.

3. Performance issues.

4. How to handle the orchestration of the

Microservices in the system.

5. Which tools to use in this situation.

In addition, the most important challenge that

needs to be considered and studied well is how to

refactor the Monolithic Applications into

microservices, processes, and tools without

affecting the current system. Also, it needs to define

the process of splitting the existing services into

Microservices.

Other studies have proposed some methods,

processes or approaches to be followed for the

process of migrating Monolithic applications into

Microservices like what included in [9]. This paper

has compared and classified some refactoring

approaches proposed in the academic literature. For

illustration, Escobar, et. al. in [17] have defined a

Microservice diagram to suggest some alternatives

on how to split the existing applications into small

pieces of code and services called Microservices.

Moreover, in the paper of [18], Ahmadvand, et. al.

has defined a conceptual methodology to break

down the Monolithic Apps into Microservices that

mainly aim for reconciled security and scalability

trade-offs. There are some other studies that have

discussed transferring, migrating, decomposing, or

refactoring Monolithic to Microservices like [1],

[16], [19]–[22].

In general, this topic is still not mature yet, and

the migration of Monolithic to Microservices

besides the architectural refactoring is still a trend

and challenging topic those days. Thus, there is a

crucial need for more studies to conduct on this

topic to find applicable solutions to those challenges

because many companies are facing some obstacles

to stepping forward [9]. This paper attempts to

support some sides of this research gap which is

trying to find a fundamental approach to

transferring Monolithic-based Apps to

Microservices-based Apps. This is to achieve high

quality and loose coupling between services with

the help of DevOps practices and tools.

I. TRANSFORM MONOLITHIC APPS INTO

MICROSERVICES

Mainly, the Monolithic can be simple to develop,

deploy, test, maintain, and scale applications while

the size of the codebase is still small and modest.

However, the Monolithic applications that have

grown over years may become more complex and

complicated to deal with. Therefore, making

changes, scaling up, and deploying such

applications can be extremely painful [9].

Consequently, to overcome this gap in the existing

monolithic applications, the various organizations

take the decision to break down their systems into

small and independent services called

Microservices. This new strategy creates other

critical challenges that need to be well addressed to

build successful applications based on

Microservices Architecture. The most important

challenge is how to split the Monolithic into

Microservices. In other words, it is how to transfer

the existing systems into Microservices based

Architecture without the need to build those

Microservices from the scratch. This paper

proposes a fundamental approach that can guide the

enterprises on their first steps towards migrating the

existing Monolithic Applications into

Microservices incrementally using DevOps method

as clearly shown in Fig.3.

Mainly, the migration process and refactoring of

the Monolithic Applications involves upgrading of

the architectural design, updating the code, handling

the data, migrating deployment environment, and

changing the interaction modes [20]. These steps

can be considered as the essential steppingstone

toward transforming any Monolithic Application

into Microservices in an appropriate way. This

means that the services to be transferred into

Microservices with their connections should be

clearly defined and analysed before and after the

migration can eliminate the negative effects that

may occur during migration. To give a clear

illustration, the hidden dependencies among the

modules and services or tight coupling between

services may negatively affect the designed system.

9

Overall, the output of these fundamental steps can

be considered as a migration process for the

Microservices to be followed in the process of

refactoring the existing Monolithic Applications

into Microservices-based Applications using MSA.

Besides that, there is another applicable and

effective migration process for the shared database

to achieve consistency and high-quality

transformation for data which was proposed by

Volynsky et al. in [2]. This paper has defined a

robust framework to migrate the shared database of

the Monolithic Applications into a database-per-

microservice pattern besides using the Saga pattern

for Microservices-based Architecture. These

fundamental steps can provide a successful plan to

start and migrate Monolithic Apps to Microservices

Apps.

VII. CONCLUSIONS

Generally, the process of migrating Monolithic-

based applications into Microservices-based

Architecture is considered a form of application

modernization. It means that enterprises should

move to Microservices by incrementally refactoring

the Monolithic Applications into a set of small

services called Microservices following an accurate

process or approach instead of rewriting the

application from the scratch and wasting time and

effort. This paper concludes that this migration is

not an easy and obvious task to go through.

Therefore, the organizations that make this critical

decision need to be well-aware and clearly

understand what and how to do the migration in an

appropriate way before starting the journey in the

real world to avoid any possible failures during the

migration process. Also, it may require a lot of time

and effort as well as a good experience to overcome

the challenges and achieve the goal successfully.

This paper analysed and proposed an effective

approach of how to migrate Monolithic-based

Applications into Microservices-based

Applications using a powerful fundamental process

to be followed.

ACKNOWLEDGMENT

The authors would like to thank those who

supported them during the period of conducting this

study, particularly the academic and technical

support of the Department of Computer Science,

College of Science at Sultan Qaboos University.

Many thanks to SQU for the scholarship that giving

to support the first author in conducting this study.

REFERENCES

[1] Sarita and S. Sebastian, “Transform Monolith into

Microservices using Docker,” in 2017 International

Conference on Computing, Communication, Control and

Automation (ICCUBEA), Aug. 2017, pp. 1–5. doi:

10.1109/ICCUBEA.2017.8463820.

Fig. 3 The Fundamental Process of Migrating the Monolithic-based Applications into Microservices-based Applications.

10

[2] E. Volynsky, M. Mehmed, and S. Krusche, “Architect: A

Framework for the Migration to Microservices,” in 2022

International Conference on Computing, Electronics &

Communications Engineering (iCCECE), Aug. 2022, pp.

71–76. doi: 10.1109/iCCECE55162.2022.9875096.

[3] F. Tapia, M. Á. Mora, W. Fuertes, J. E. Lascano, and T.

Toulkeridis, “A Container Orchestration Development

that Optimizes the Etherpad Collaborative Editing Tool

through a Novel Management System,” Electronics, vol.

9, no. 5, p. 828, May 2020, doi:

10.3390/electronics9050828.

[4] A. Bucchiarone, N. Dragoni, S. Dustdar, S. Larsen, and

M. Mazzara, “From Monolithic to Microservices: An

Experience Report from the Banking Domain,” IEEE

Software, vol. 35, pp. 50–55, May 2018, doi:

10.1109/MS.2018.2141026.

[5] L. Matlekovic and P. Schneider-Kamp, “From Monolith

to Microservices: Software Architecture for Autonomous

UAV Infrastructure Inspection,” in Embedded Systems

and Applications, Mar. 2022, pp. 253–272. doi:

10.5121/csit.2022.120622.

[6] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating

Towards Microservice Architectures: An Industrial

Survey,” in 2018 IEEE International Conference on

Software Architecture (ICSA), Apr. 2018, pp. 29–2909.

doi: 10.1109/ICSA.2018.00012.

[7] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges

When Moving from Monolith to Microservice

Architecture,” 2018, pp. 32–47. doi: 10.1007/978-3-319-

74433-9_3.

[8] J. Lewis and M. Fowler, “Microservices,”

martinfowler.com, Mar. 25, 2014.

https://martinfowler.com/articles/microservices.html

(accessed Nov. 02, 2022).

[9] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner,

“From Monolith to Microservices: A Classification of

Refactoring Approaches,” vol. 11350, 2019, pp. 128–

141. doi: 10.1007/978-3-030-06019-0_10.

[10] C.-Y. Fan and S.-P. Ma, “Migrating Monolithic Mobile

Application to Microservice Architecture: An

Experiment Report,” in 2017 IEEE International

Conference on AI & Mobile Services (AIMS), Jun. 2017,

pp. 109–112. doi: 10.1109/AIMS.2017.23.

[11] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From

monolithic systems to Microservices: An assessment

framework | Elsevier Enhanced Reader,” vol. 137, no.

106600, Apr. 2021, doi:

https://doi.org/10.1016/j.infsof.2021.106600.

[12] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,

“DevOps,” IEEE Software, vol. 33, no. 3, pp. 94–100,

May 2016, doi: 10.1109/MS.2016.68.

[13] “Microservices and DevOps: Better together,” MuleSoft.

https://www.mulesoft.com/resources/api/microservices-

devops-better-together (accessed Oct. 26, 2022).

[14] A. R. Varma, “Major DevOps Practices To Consider

While Implementing Microservices,” DEVOPS DONE

RIGHT, Jun. 02, 2021.

https://blog.opstree.com/2021/06/02/major-devops-

practices-to-consider-while-implementing-

microservices/ (accessed Feb. 21, 2023).

[15] S. Wickramasinghe, “The Role of Microservices in

DevOps,” BMC Blogs, Aug. 12, 2021.

https://www.bmc.com/blogs/devops-microservices/

(accessed Oct. 20, 2022).

[16] S. Newman, Monolith to microservices: evolutionary

patterns to transform your monolith. O’Reilly Media,

2019.

[17] D. Escobar et al., “Towards the understanding and

evolution of monolithic applications as microservices,”

in 2016 XLII Latin American Computing Conference

(CLEI), Oct. 2016, pp. 1–11. doi:

10.1109/CLEI.2016.7833410.

[18] M. Ahmadvand and A. Ibrahim, “Requirements

Reconciliation for Scalable and Secure Microservice

(De)composition,” in 2016 IEEE 24th International

Requirements Engineering Conference Workshops

(REW), Sep. 2016, pp. 68–73. doi:

10.1109/REW.2016.026.

[19] G. Mazlami, J. Cito, and P. Leitner, “Extraction of

Microservices from Monolithic Software Architectures,”

in 2017 IEEE International Conference on Web Services

(ICWS), Jun. 2017, pp. 524–531. doi:

10.1109/ICWS.2017.61.

[20] R. Belafia, P. Jeanjean, O. Barais, G. Le Guernic, and B.

Combemale, From Monolithic to Microservice

Architecture: The Case of Extensible and Domain-

Specific IDEs. 2021, p. 463. doi: 10.1109/MODELS-

C53483.2021.00070.

[21] M. Barbosa and P. Maia, Towards Identifying

Microservice Candidates from Business Rules

Implemented in Stored Procedures. 2020. doi:

10.1109/ICSA-C50368.2020.00015.

[22] Z. Ren et al., “Migrating Web Applications from

Monolithic Structure to Microservices Architecture,” in

Proceedings of the Tenth Asia-Pacific Symposium on

Internetware, Beijing China, Sep. 2018, pp. 1–10. doi:

10.1145/3275219.3275230.

