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Abstract – Fractional order calculations, which have been around since the 1700s, have become an effective 

method used for better modeling and control of systems in many fields of science and engineering in recent 

years. This system, which gives very successful results in modeling, recently has been frequently used in 

engineering applications such as filter modelling. Filter design, which is an example of these applications, 

is a rich research field with a complete design theory, starting with design conditions and ending with circuit 

implementation. In this context, the differential equations used in modeling the system mostly include 

fractional derivative and integral operators. Physical interpretation of fractional operators is not as easy as 

integer operators. Since the fractional operator is not local and depends on the past values of the function 

as required by the derivative operation, it creates a long memory effect in the system. In this study, two 

different approaches are presented as solutions to the difficulties encountered in modeling fractional order 

systems. The outputs of these approaches used in modeling and analysis of the fractional order system are 

compared and their advantages and disadvantages are stated. 
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I. INTRODUCTION 
 

Differential equations in which the integral or derivative degrees have any real number are called 

fractional order systems. This system is a sub-branch of mathematics and has been used for many years [1]. 

The development of this system has increased in parallel with computer technology. 

The foundations of fractional mathematics were laid in the conversations between L'Hospital and 

Leibniz in the late 17th century [2]. Later, theoretical studies were continued by Euler and Lagrange, and 

systematic studies were put forward by Holmgren, Liouville and Riemann [1-3]. In the 1800s, Boole used 

fractional calculations in the symbolic solution of the differential equation of constant degree, and 

Heaveside used fractional calculations in the solution of electromagnetic field theory problems [4]. 

Fractional calculations have been the subject of many studies in the field of mathematics and have 

affected other fields as well, and many studies on engineering and physics have emerged [5]. Since 

fractional order modeling gives better results than integer modeling in these areas, interest in these areas is 

increasing. 
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This system, which provides very successful results in modeling, has recently been frequently used in 

engineering applications such as filter design. Filter design is a rich field of research in which there is a 

complete and error-free design theory, starting with design conditions and ending with circuit 

implementation. Conventional filter design includes primary, secondary, etc. degrees are limited. Fractional 

order filters were first proposed by Radwan and his team, a system in which one element (resistor, capacitor 

or inductance) is fractional and can be used for all filter designs [6]. General expressions for maximum 

frequency, quality factor, correct phase, half power frequencies have been obtained. 

M. V. Bhat created the fractional order all-pass filter design with a degree between 0<a< 1, using an 

electronic element operational transconductance amplifier (OTA). Unlike the literature, a fractional order 

capacitor (OTA-C) was used in the filter [7]. G. Singh and his colleagues designed a voltage-mode 

fractional-order filter using two fractional-order capacitors and three single-output OTAs. With this 

designed structure, all second-order filter types can be realized [8]. 

X. Qunwei and his colleagues carried out a frequency-based study by designing a fractional and recursive 

active power filter. They preferred recursive control because it is the superior steady state. They applied 

the Lagrange interpolation algorithm to obtain overlapping fractional models [9]. 

D. Kubanek and his colleagues conducted a study on the transfer functions of four bandpass filters with 

fraction orders between 1<α<2. They found the coefficients using numerical least squares optimization, 

which aims to minimize magnitude errors between these transfer functions and the sample functions 

corresponding to the 2nd order Butterworth filter responses [10].  

Anil K. Shukla and his team have developed a fractional-order filter-based algorithm for retinal blood 

vessel cell division. The filter in the study was created with the help of fractional derivative and an 

exponential weight factor. Fractional filter of a local covariance matrix and eigenvalue maps were used to 

develop the retinal vessel segmentation algorithm. The local covariance matrix consists of a quadratic 

image moment [11]. 

J. Nako and his team designed fractional order low-pass and high-pass Butterworth and Chebyshev 

filters using an active circuit element. Their work is carried out using only a single active element, which 

seems to minimize the use of active circuit elements [12]. 

D. Song and colleagues designed an adaptive fractional order Kalman filter to calculate the charge states 

of lithium-ion batteries. First, a model with a fractional-order constant phase element module was created 

to mathematically express the charge state in the lithium battery. Then, state equations were created with 

the help of the augmented vector, and the fractional order Kalman filter was used to calculate the 

coefficients of the equation [13]. 
 

II. MATERIAL AND METHOD 
 

The format of the derivative and integral part of fractional calculations involving fractional derivatives 

or integrals is the commonly known  
𝑑𝑓

𝑑𝑡
, 

𝑑2𝑓

𝑑𝑡2   or  ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
. Likewise, functions have first-order derivatives, 

second-order derivatives, first integrals, and double integrals. With the developing computer technology, it 

is now possible to calculate the 0.5th degree, π, degree derivative and integral of a function. Therefore, 

derivatives and integral fractional calculations with arbitrary degrees of real or complex numbers are 

described. 

Fractional calculation is a branch of mathematics concerned with non-integer derivatives and integrals. 

When it comes down to it, fractional order calculations (non-integer order calculations) also include integer 

order calculations. The fundamental operator of fractional order calculations is  𝐷𝑡𝑎
 𝑟 (a and t are the lower 

and upper limits, r ∊ R ), can  be considered as its generalization to non-integer expression [14]. 

 

𝐷𝑡𝑎
 𝑟   ={

 
𝑑𝑟

𝑑𝑡𝑟                               ∶ 𝑟 > 0         

      1                                 ∶ 𝑟 = 0             

∫ (𝑑𝑡)−𝑟                          ∶ 𝑟 < 0                
𝑡

𝑎

                                                                   (1) 
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Here r denotes the degree of the derivative, t and a denotes the integral limits..  

Filter design with the help of fractional order calculations is different from normal design. Filters are 

generally classified as first, second or n’th order systems and their degrees are integers. Transfer functions, 

which are mathematical expressions of filters, are generally in the form 𝑇(𝑠) =  
𝑁(𝑠)

𝐷(𝑠)
  . Here D(s) and N(s) 

are polynomials raised to the integer power of the Laplace operator, such as s^2 or s^n. However, the 

Laplace equation of s^a, whose degree is not an integer between 0<α<1, is a representative representation 

of a fractional degree system. Conventional continuous time filters are of integer order. However, using 

fractional calculus, filters can also be represented by more general fractional order differential equations. 

Integer filters are just a subset of fractional order filters anyway. 

Conventional filter design is limited to first, second or third order. However, fractional filter design 

allows using rational numbers as degrees. The design of such filters is achieved by generalizing the degree 

domain of conventional filters. According to the generalized theory, three critical points are emphasized:  

1. The half power frequency, X, is the frequency at which the power drops to half the passband 

power.  

 

|F(𝑗𝜔ℎ)| =  
|F(𝑗𝜔𝑔𝑒ç𝑖𝑟𝑚𝑒 𝑏𝑎𝑛𝑑𝚤)|

√2
                                                                                             (2) 

 

The bandwidth of any filter is related to the half power frequency. Here  |F(𝑗𝜔ℎ)| is the transfer 

function of the filter. 

2. The maximum or minimum frequency 𝜔𝑚 is the frequency at which the response magnitude is 

maximum or minimum and is obtained by solving the equation  (
𝑑|F(𝑗𝜔)|

𝑑𝜔
)

𝜔=𝜔𝑚

= 0. 

3. The true phase frequency  𝜔𝑟𝑝 is an imaginary parameter with the frequency of the phase  

∠F(𝜔𝑟𝑝) =  ±
𝜋

2
  and the transfer function F(s).  

 

In fractional order calculations, the solution of derivative and integral operations is not as easy as in 

integer order derivative and integral operations. In other words, it does not have a local operator like integer 

degree derivative and integral operators, but also depends on the past values of the function. It is difficult 

to make applications or model them in real terms with these infinite-dimensional functions. For this reason, 

integer approximation models have been used to analyze and model fractional order calculations more 

easily. 

One of the methods used as the integer approximation model in this study is the Oustaloup method. 

Assuming that the function  𝐹(𝑠) = 𝑠𝑎  is a function with fractional degree α, M zeros and M pole values, 

the integer degree Oustaloup approximation function, 

 

𝐹(𝑠) = 𝐶0 ∏
1+

𝑆

𝜔𝑧𝑛

1+
𝑆

𝜔𝑝𝑛

𝑀
𝑛=1                                                                                                                 (3) 

 

is obtained as. With this method, the given frequency width is divided into small intervals and the function 

is converged for each value. These converged functions are connected in series to form the fractional order 

filter.  

Another approximation method is the Regulated Oustaloup method. This method is designed to ensure 

that the poles and zeros of the filter are in the stable region compared to the previous method. Thus, an 

improvement in the convergence performance of the discrete filter in the desired frequency range was 

achieved. Arranged approximation model for fractional order functions, 
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𝐹(𝑠) = lim
N→∞

L𝑁(𝑠) = lim
𝑁→∞

∏
1+𝑠/𝜔′𝑘

1+𝜔𝑘

𝑁
𝑘=−𝑁                                                                               (4) 

 

is obtained as. 
 

III. RESULTS 
 

In this study  a 4th-order discrete-time fractional order filter is designed in both proposed approaches  

Oustaloup and Regulated Oustaloup. In each approach, the phase and amplitude responses of the fractional 

order filter were compared. Additionally, the convergence errors of both methods are given in Table 1. 
                                   

Table 1.   Convengerce Errors of Recommended Approaches 

 
 
 
 
 
 
 
 

 
 
 

Figure 1. Phase and Amplitude Responses of Recommended Approaches 
 

 
 

IV. DISCUSSION AND CONCLUSION 
 

According to the information obtained as a result of the study, it was seen that the filter designed with 

the Oustaloup method provided good convergence to its function in the low frequency region, but its 

convergence performance decreased as it moved to the high frequency region. It has been observed that the 

fractional order discrete filter designed with the Regulated Oustaloup method has better convergence 

performance at high frequencies.  
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Method                       Convengerce Errors 

Oustaloup                                0,0251 

Regulated Oustaloup                                0,0205 
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