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Abstract- This research paper provides an unusual approach for identifying the Twin Rotor Aerodynamic 

System (TRAS) through the utilization of Koopman operator theory. The TRAS, known for its inherent 

nonlinear dynamics, poses significant challenges in modeling and control due to its complex aerodynamic 

interactions. Traditional modeling techniques often struggle to capture the intricate dynamics accurately. 

In this work, we propose an effective method to identify the TRAS model: the Koopman operator, a potent 

mathematical tool for investigating nonlinear dynamical systems. System identification can be obtained by 

the Koopman operator, which gives an infinite-dimensional linear system by transforming the nonlinear 

dynamics. Through rigorous analysis and simulation studies, we demonstrate the effectiveness and accuracy 

of our proposed approach in capturing the nonlinear behavior of the TRAS. This research contributes to 

advancing our understanding of complex aerodynamic systems and lays the groundwork for developing 

robust control strategies for applications such as unmanned aerial vehicles (UAVs) and rotorcraft. 

Keywords: Koopman Operator, TRAS, Lifting Data, Observables, Gauss RBF. 

 

I. INTRODUCTION 

 The Twin Rotor Aerodynamic System (TRAS) serves as a prominent testbed for studying complex 

nonlinear dynamics in the realm of aerospace engineering. Its unique configuration, comprising two 

counter-rotating propellers mounted on a single platform, presents a challenging yet insightful platform for 

investigating aerodynamic interactions and control methodologies. To create efficient control schemes and 

improve the functionality of different rotorcraft applications, such as unmanned aerial vehicles (UAVs), 

helicopters, and quadcopters, precise modeling and identification of the TRAS dynamics are essential. 

However, the inherent nonlinearities and aerodynamic complexities of the TRAS pose significant hurdles 

in traditional modeling and identification techniques. 

In recent years, the Koopman operator theory has emerged as a promising tool for analyzing 

nonlinear dynamical systems [1]. Named after the mathematician Bernard Koopman, this theory offers a 

powerful framework for representing and understanding the evolution of nonlinear systems in an infinite-
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dimensional space [2]. By transforming the nonlinear dynamics into an equivalent linear framework, the 

Koopman operator enables the analysis and prediction of system behavior with unprecedented accuracy 

and efficiency. This approach has found applications across various domains, including fluid dynamics, 

robotics, and control systems. 

In the context of aerospace engineering, the Koopman operator approach has garnered significant 

interest for its potential in modeling and identifying complex aerodynamic systems. Several researchers 

have explored its utility in characterizing the behavior of aircraft dynamics [3-4]. However, its application 

to the TRAS identification problem remains relatively unexplored. This paper aims to bridge this gap by 

proposing a novel approach for identifying the TRAS model using the Koopman operator framework. 

Through a comprehensive literature review, we highlight the existing methodologies and challenges 

associated with TRAS modeling and identification. Traditional techniques often rely on simplified linear 

or quasi-linear models, which may fail to capture the intricate dynamics accurately. Moreover, the 

nonlinearity and coupling effects inherent in the TRAS further complicate the identification process. Recent 

advancements in system identification techniques, including machine learning and optimization algorithms, 

have shown promise in addressing these challenges [5]. However, their applicability to the TRAS 

identification problem remains to be explored. 

In this paper, we present a systematic approach for identifying the TRAS model based on the theory 

of Koopman operators. We demonstrate the effectiveness of our proposed methodology through rigorous 

analysis and simulation studies. By leveraging the inherent structure of the Koopman operator, we aim to 

capture the nonlinear dynamics of the TRAS accurately and efficiently. This research contributes to 

advancing our understanding of complex aerodynamic systems and lays the groundwork for developing 

robust control strategies for rotorcraft applications. 

The rest of the paper is structured as follows: An overview of the Twin Rotor Aerodynamic System 

is given in Section II. The Koopman operator's theoretical foundation is introduced in Section III. The 

methods used to model TRAS using the Koopman operator is described in depth in Section IV. The 

experimental setup and findings are presented in Section V, and Section VI contains the discussions that 

follow. The paper is finally concluded in Section VII, which also suggests options for future research. 

 

Twin Rotor Aerodynamic System 

The Twin Rotor Aerodynamic System (TRAS) embodies a sophisticated MIMO laboratory 

apparatus, meticulously designed to emulate the intricate dynamics of helicopter models [6]. Its versatile 

functionality enables motion along two principal axes: lateral and longitudinal [7]. Structurally, the TRAS 

consists of a sturdy beam. This beam has two pivotal components essential for its operation: a primary 

propeller and a tail propeller [8]. 

The primary propeller assumes a pivotal role in controlling pitch motion within the system [9]. 

Through precise manipulation, it governs the angular orientation of the TRAS, facilitating changes in its 

pitch angle to achieve desired flight dynamics [9]. The tail propeller serves a crucial role in regulating 

azimuthal motion [10]. By exerting controlled forces, it enables the TRAS to execute smooth rotational 

movements around its vertical axis, thereby enhancing its maneuverability and agility [6]. 

The visual representation of the TRAS in Figure 1 provides a comprehensive depiction of its 

structural layout, offering valuable insights into the spatial arrangement of its components [6].  
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Figure 1. Twin rotor aerodynamic system [11]. 

In summary, the TRAS represents a sophisticated laboratory system meticulously crafted to 

replicate the complex dynamics of helicopter flight [7]. Its integration of multiple inputs and outputs, 

coupled with its ability to execute motion in lateral and longitudinal directions, renders it an invaluable tool 

for aerospace research and development endeavors. 

In the realm of control studies concerning the Twin Rotor Aerodynamic System (TRAS), paramount 

attention is directed towards the precise regulation of azimuth and pitch angles through the computation of 

controlled inputs for both the main and tail propellers [12]. TRAS, characterized by its highly coupled, 

nonlinear, and inherently unstable nature, presents formidable challenges in control design and 

implementation [13]. The nonlinear model of TRAS, as delineated in Equation [11], provides a 

comprehensive representation of its complex dynamics: 

𝜓̈  = (𝑢𝜙 − 𝐽
𝜓2

2
 sin(2𝜙) − 𝐶𝜙𝜙̇ − 𝐾𝑔𝑔) / 𝐽𝜙 

𝜙̈ = (𝑢𝜓 + 𝐽 𝜓̇ 𝜙̇ 𝑆𝑖𝑛 (2𝜙) −𝐾𝜓𝜓 − 𝐶𝜓𝜓̇) /  𝐽𝜓 

Where 

 

𝐽𝜓 = (𝑚𝑚𝑙𝑚
2 + 𝑚𝑡𝑙𝑡

2) 𝐶𝑜𝑠2(𝜙) + 2𝑚𝑐𝜔𝑙𝑐𝜔 𝑠𝑖𝑛2(𝜙) + 𝐽𝑧 

𝐽𝜙 = 𝑚𝑚𝑙𝑚
2 + 𝑚𝑡𝑙𝑡

2  + 2𝑚𝑐𝜔𝑙𝑐𝜔  +𝐽𝑥 

𝐽 = 𝑚𝑚𝑙𝑚
2 + 𝑚𝑡𝑙𝑡

2  − 2𝑚𝑐𝜔𝑙𝑐𝜔 

𝐾𝑔 = (𝑚𝑚𝑙𝑚 − 𝑚𝑡𝑙𝑡) cos(𝜙) + 2𝑚𝑐𝜔𝑙𝑐𝜔sin (𝜙) 

Here, 𝜙 and 𝜓 symbolize the azimuth and pitch angles, correspondingly, while   𝜙̇ and 𝜓̇ depict 

their respective velocities. The system parameters encompass distances of the main rotor and tail rotor from 

the origin 𝑙𝑚 𝑎𝑛𝑑 𝑙𝑡 respectively), alongside the masses of counter weights at the main rotor and tail rotor 

(𝑚𝑚 𝑎𝑛𝑑 𝑚𝑡). Additionally, mcω and lcω denote the mass of the ends levers and the lengths of end levers, 

respectively. For comprehensive parameter values, reference [11] provides detailed information. The state 

vector for TRAS integrates four pivotal variables. According to TRAS, that state vector is as 

𝑥 =  [𝜙 𝜙̇ 𝜓 𝜓̇  ]
𝑇
 

In our study, we incorporate two controlled inputs: yaw input (𝑢1) and pitch input (𝑢2), both 

measured in radians. Additionally, we focus on two outputs: yaw angle (𝜙) and pitch angle (𝜓), measured 

in radians. Upon applying these control inputs, the model generates data for four states. These states are 

simulated using MATLAB Simulink. However, for our analysis, we selectively extract the yaw and pitch 

angles as the outputs of interest. We then proceed to identify these outputs using the Koopman operator 

approach. 

Koopman Operator 

This study uses the notion that every finite-dimensional nonlinear system has an equivalent 

limitless-dimensional linear representation in the space of actual-valued functions of the system's input and 

state. This property is employed in the system identification technique. The flow of trajectories along the 

paths in this space of actual-valued functions is characterized by the (linear) Koopman operator. There is a 
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bijective and well-defined link between the system's finite and infinite dimensions representations [15]. 

This allows us to derive the comparable nonlinear system representation and then use linear regression on 

observed data to approximate the Koopman operator. The model estimation technique described in [16] 

and [17] is summed up in the remaining portion of this section and applied to nonlinear model with known 

control input before being used and verified on an actual, highly complex, coupled, and nonlinear TRAS 

system.  

1. Koopman spectral theory 

A basic introduction to Koopman spectral theory and a numerical approach for approximating the 

𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 are given in this subsection. 

The set of linked ordinary differential equations is taken into consideration in the classical geometric 

theory of dynamical systems. 

𝑥̇ = 𝐹(𝑥, 𝑢)                                                               (1) 

   The input of the system is represented by "u" and u ϵ 𝑅𝑚, and 𝐹 is differentiable continuously in 

"x". The variables(states) of the system is denoted by " 𝑥 " and 𝑥 ϵ 𝑅𝑛. At time t, the solution to (1) is 

indicated by φ(t,𝑥0,u) where u is the applied controlled input at all times from 0 to t(sec), and 𝑥0 is the 

initial. To keep things simple, we refer to this map as the flow map using φ(𝑥0,u) rather than φ(t,𝑥0,u). The 

nonlinear model can be converted into an limitless-dimensional function space  ℱ=𝕃2(X × U) , where 

ℱ=𝕃2( X × U ), is the space of square integrable actual valued functions with domain X × U, and X⊂ R𝑛 

and U⊂ R𝑚 are compacted subsets. We refer to ℱ constituents as observables.  The system's flow in  ℱ is 

defined by the set of 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝒦𝑡: ℱ ⟶ ℱ,  for any t  ≥ 0. This set, by definition, explains how 

the “Observables”  𝒻 ∈  ℱ evolve along the system's path: 

Based on definition: 

                 𝒦𝑡𝒻 =  𝒻 ° 𝜑                                                              (2) 

 

In spite of the nonlinearity of the system (1), 𝒦𝑡 is a linear operator of nonlinear model. Since for 

𝒻1, 𝒻2 𝜖 ℱ𝑛 and 𝜆1 ,𝜆2 𝜖 ℝ 

𝒦𝑡 ( 𝜆1 . 𝒻1 , 𝜆2 . 𝒻2 ) =  𝜆1 (𝒻1 ° φ𝑡) + 𝜆2 (𝒻2° φ𝑡) 

           𝒦𝑡 (𝜆1 . 𝒻1, 𝜆2 . 𝒻2) =  𝜆1 𝒦𝑡𝒻1  +𝜆2 𝒦𝑡𝒻2                                (3) 

                                             

So the 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 gives a linear representation of the system's flow in the lmitless-

dimensional space of observables [18]. 

We introduce the 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟’s infinitesimal generator 𝒜 ∶ ℱ ⟶ ℱ[15, Equation 7.6.5 ],  

which is described in terms of the vector  field "𝐹" as follows because this equation applies for all 

observables. 

              𝒜 =  𝐹 .  ∇𝑥                                                                  (4) 

Thus, 𝒻̇ = 𝒜. 𝒻  infinitesimal generator characterizes the dynamics of the observables along the 

trajectories of the system. Keeping in mind that the 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 describes the flow of observables, 

the relationship between the 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 and its infinitesimal generator can be seen by making 

the following connection: 

 𝒦𝑡 =  𝑒𝒜𝑡 = ∑
𝑡𝑘

𝑘!

∞
𝑘=0 𝒜𝑘                                              (5) 

Knowing the Koopman operator " 𝒦𝑡," the vector field F may be found using equations (4) and (5).  

Algorithm 1 summarizes the three phases that make up this technique. 
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Algorithm 1:   𝐾𝑜𝑜𝑝𝑚𝑎𝑛 Base Model 

Identification 

Input: f(𝑥𝐾; 𝑢𝐾); (𝑥𝐾+1; 𝑢𝐾) g for k = 1; :::; K 

Step 1: Lifting data using (9) 

Step 2: 𝐾𝑜𝑜𝑝𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 approximation, 

                𝒦𝑇𝑠 using (13) 

Step 3: Evaluate Vector Field, F¯ through  

             (17) and (20)                     

Output:  𝐹 
 

II. METHODOLOGY 

This section involves a comprehensive review of lifting techniques employed in system 

identification and nonlinear dynamics. Lifting techniques aim to transform nonlinear systems into higher-

dimensional linear systems, thereby facilitating their analysis and modeling.  

1 Lifting the Date 

The first step in identifying a linear system in observables space is to convert empirical data into a 

format that is compatible with the Koopman-based system identification process. This would theoretically 

require "lifting" state measurements into the limitless-dimensional "ℱ" observables space. However, to be 

implemented, measurements can only be hoisted into a limited-dimensional subspace. ℱ̅ ∈  ℱ is the 

subspace of "ℱ" that is covered by “N” linearly independent basis functions (e.g., exponentials, radials, and 

monomials) {𝜓𝑘} 𝑘=1
𝑁 . Every observable ℱ̅ ⊂  ℱ can be expressed as a linear combination of the 

components of the basis as 

𝒻̅ =  𝛼1𝜓1 + ⋯ +  𝛼𝑁𝜓𝑁                                                    (6) 

It should be noted that 𝒻̅  ∈  ℱ̅ has a vector representation provided by the vector coefficient, 

𝛼 = [𝛼1 ⋯ 𝛼𝑁]𝑇. We introduce the lifting function,  𝜓: ℝ𝑛𝑥ℝ𝑚 ⟶ ℝ𝑁, to express 𝒻  ̅at a given state “𝑥” 

and constant control input “𝑢” : 

𝜓(𝑥, 𝑢) = [𝜓1(𝑥, 𝑢) ⋯ 𝜓𝑁(𝑥, 𝑢)]𝑇                                     (7) 

So, 𝒻(̅𝑥, 𝑢) may be written in a vector form as. 

𝒻(̅𝑥, 𝑢) =   𝛼𝑇𝜓(𝑥, 𝑢)                                                          (8) 

We consider 𝜓(𝑥, 𝑢) as N dimensional "lifted" version of (𝑥, 𝑢), So multiplying 𝜓(𝑥, 𝑢) by the 

observable's vector representation produces the observable's value at (𝑥, 𝑢),  

2. Approximating the Koopman Operator 

In this step in the Koopman-based system identification approach is to choose the Koopman 

operator that best represents the flow of the lifted versions of the measured data points. Theoretically, the 

Koopman- operator has limitless dimensions, but we are able to locate a limited-dimensional approximation 

of it in ℱ̅. Keep in mind that 𝒦𝑇may be expressed as an “N × N” matrix that uses matrix multiplication to 

work with observables: 

                     𝒦𝑇𝛼 = 𝛽                                                               (9) 

Where observables in ℱ̅  have vector representations denoted by 𝛼, 𝛽.Our objective is to determine 

a 𝒦𝑇, that in the 𝕃2-norm sense, as precisely as possible characterizes the activity of the infinite 

dimensional Koopman- operator 𝒦𝑇 on the finite dimensions subspace  ℱ̅  of all observables. 

Consequently, the following must be true in order to precisely replicate the action of 𝒦𝑇 operating on an 

observable in ℱ̅ ⊂  ℱ. 

      (𝒦𝑇𝛼)𝑇𝜓(𝑥, 𝑢) =    𝛼𝑇𝜓(𝜑𝑡(𝑥, 𝑢), 𝑢)                               (10) 
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               Since this is a linear equation, the best approximation of 𝒦𝑇 on ℱ̅ in the sense of the 𝕃2-norm 

may be obtained by solving (12) for 𝒦𝑇 for a given  𝑥 ∈ ℝ𝑛 𝑎𝑛𝑑 𝑢 ∈ ℝ𝑚. 

𝒦𝑇 = (𝜓(𝑥, 𝑢)𝑇) † 𝜓(𝜑𝑡(𝑥, 𝑢), 𝑢) 𝑇                                            (11) 

Where the least-squares pseudoinverse is indicated by the superscript "†". We use K+1 discrete state 

measurements with sampling time Ts to construct an approximate Koopman operator from a set of 

experimental data. We split the data into K "snapshot pairs"{(𝑥𝐾 ,𝑢𝑘); (𝑦𝑘, 𝑢𝑘)} ∈ ℝ(𝑛×𝑚)×2  of the 

following form. 

         𝑦𝑘 = 𝜙𝑇𝑠  (𝑥𝑘, 𝑢𝑘) + 𝜎𝑘                                                     (12) 

𝜎𝑘 represents the measurement noise. For our base of x and u monomials, we select those whose total 

degrees are equal to or less than w, implying 𝑁 = (𝑛 + 𝑚 + 𝑤)!/(𝑛 + 𝑚)! 𝑤! [16, III, Section]. After that, 

we lift every pair of snapshots in accordance with (10) and combine them to create the ensuing K×N 

matrices: 

Ψ𝑥 = [
𝜓(𝑥1, 𝑢1)𝑇

⋮
𝜓(𝑥𝑘, 𝑢𝑘)𝑇

]               Ψ𝑦 = [
𝜓(𝑦1, 𝑢1)𝑇

⋮
𝜓(𝑦𝑘, 𝑢𝑘)𝑇

]                                (13) 

Based on (14), 𝒦Ts is chosen to offer the least squares optimal match to all of the observed data, as 

supplied by 

𝒦̅𝑇𝑠 = Ψ𝑥
†Ψ𝑦                                                               (14) 

 
Figure 2. The identification of a classical nonlinear system takes place directly in the state space. On the other hand, 

the suggested method for identifying the Koopman operator involves lifting the data and linearly identifying the Koopman 

operator. 

3. Obtaining Vector Field 

The nonlinear vector field is identified in the final stage of the Koopman-based system identification 

approach by using the one-to-one correspondence between the infinite and finite dimensions system 

representations. As said earlier, our goal is to find a  ℱ̅ that as accurately as possible characterises the 

behaviour of the vector field F in the sense of the ℒ2 -norm on the finite dimensional subspace  ℱ̅. 

Equation (4) uses the Koopman operator's infinitesimal generator to connect the vector field to it. 

Using the approximation of the Koopman operator, we may invert (6) and get the infinitesimal generator 

𝒜̅ of the set of Koopman operators 𝒦Tsobtained in Section IV: 

𝒜̅ =
1

𝑇𝑠
𝑙𝑜𝑔𝒦Ts ∈ ℝ𝒩×𝒩                                                    (15) 

Where log represents the logarithm of the primary matrix [22, Chapter 11]. Remember that when 

the number of data points is too small, 𝒦Tmay have zero or negative eigenvalue and that the principal 

matrix logarithm is defined only for matrices whose eigenvalues all have non-negative real components 
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[12]. Therefore, if there are not enough data points, this strategy may not work. To fix the problem in this 

case, more system measurements might be made.  

Once 𝒜̅ is known, ℱ̅ can be found using (5). Regarding an observable 𝒻 ∈ ℱ, consider 𝒜 applied. 

According to equation (4), this is equivalent to the inner product of the vector field F and the gradient of  𝒻  

with respect to x: 

𝒜𝒻(𝑥, 𝑢) =
𝜕𝒻(𝑥,𝑢)

𝜕𝑥
𝐹(𝑥, 𝑢)                                                          (16) 

As the projection of 𝒻 onto 𝐹̅, Let 𝛼 ∈ ℝ𝑁be the vector representation of 𝒻 .̅ The finite dimensional 

equivalent of (17) is therefore obtained from (11) by 

        (𝒜̅𝛼)𝑇𝜓(𝑥, 𝑢) = 𝛼𝑇 𝜕𝜓(𝑥,𝑢)

𝜕𝑥
𝐹̅                                                         (17) 

We search for the vector field 𝐹̅ for each batch of observed data such that (18) holds as much as is 

practical given the ℒ2-norm. We choose the least-square solution to (18) across the set of all observed data 

points, which is {(𝑥𝑘, 𝑢𝑘)|𝑘 = 1, … , 𝐾} This solution is given by 

𝐹̅ = [

𝜕𝜓(𝑥1,𝑢1)

𝜕𝑥

⋮
𝜕𝜓(𝑥𝑘,𝑢𝑘)

𝜕𝑥

]

†

[
𝒜̅ 𝑇 … 0

⋮ ⋱ ⋮
0 … 𝒜̅ 𝑇

] [
𝜓(𝑥1, 𝑢1)

⋮
𝜓(𝑥𝑘, 𝑢𝑘)

]                                 (18) 

A more detailed discussion of this procedure can be found in [14], [15]. 

 

Koopman identification of TRAS 

We used the approach described in Section 4 to a continuously nonlinear TRAS model in order to 

illustrate and assess its effectiveness, and we contrasted the outcome with that of many other nonlinear 

identification methods. This section includes a detailed description of the TRAS model, Experimental setup,  

and data Collection used in the system estimation process, and the method used to assess and compare 

performance between models. 

1. Controlled Input 

To produce a sample of the system's behaviour that is typical of the whole operating range, two 

multi sine signal was applied as input. To make the performance best, we reduced the correlation up to 

95%. The one signal applied as a yaw input 𝑢1 and the other applied as a pitch input 𝑢2 in radian. The range 

of control-input into the model u was a set of   -3.1415 - 3.1415 rad (-180 to 180 in degree) for yaw input 

and the control-input into the model u was a set of -1.22173 - 1.22173 rad (-70 to 70 in degree) for pitch 

input. 

𝑢(𝑡) = [𝑢1 𝑢2] rad 
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Figure 3. Under identical initial conditions and control inputs, the Koopman-based model's projected position (blue) is 

superimposed on the measured 𝜙 and 𝜓 angles of the TRAS during a 6-second time window (black, dotted). 

 

1. Data Collection 

For data collection of TRAS, we consider the SIMULINK model of TRAS. The TRAS is highly 

nonlinear model, so I designed PID controller for TRAS to obtain the appropriate data for TRAS. We used 

two multi sine excited signal as input for data collection.  The maximum frequency of 𝑢1 and 𝑢2 are 0.8 

and 0.2 rad/cycle respectively while minimum frequency is 0 rad/cycle. The time period for data collection 

is 500 seconds, and the sampling time is 0.01 sec. As we have four states, so we collect “4 x 50001” data 

point for state, and used “2 x 50001” data point as a control input. We convert this data into “501” sample 

step and “100” trajectories.  

2. Model Comparison 

We derived a state-space model for the Twin Rotor Aerodynamics System (TRAS) utilizing the 

methodology outlined in section 4, which focuses on the identification of systems using the Koopman 

operator. This involved employing a “Gauss radial basis function (RBF)” of maximum degree w = 2 in 

conjunction with the training data gathered. Subsequently, we assessed the model's accuracy by conducting 

simulations and comparing them against each of the validation datasets, as illustrated in Figure 3. 

 

III. RESULT AND DISCUSSION 

Here, we present a comprehensive analysis of the results obtained from the identification of TRAS 

using the Koopman Operator, focusing on the error-to-norm ratio, best-fit ratio, and normalized square 

error metrics for evaluation. 

We first examined the error-to-norm ratio, which provides a measure of the discrepancy between 

model predictions and observed data normalized by the norm of the observed data [15].  
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The following formula defines the error to norm ratio. 

𝐸𝑛𝑟 =
||𝑥−𝑥̂||2

||𝑥||
2

                                                      (19) 

The ℒ2- norm is represented by ||𝑥||
2
, and the states of the system's full-order and approximation 

Koopman models are indicated by x and 𝑥̂. The performance of the estimated Koopman model is better the 

smaller the value of 𝐸𝑛𝑟. Our findings indicate that the error-to-norm ratio remains low across various 

operating conditions, suggesting that the Koopman Operator framework effectively captures the system's 

dynamics. 

Furthermore, we assessed the best-fit ratio, which quantifies the similarity between model 

simulations and validation datasets. According to [20], the optimal best fit ratio is as follows:  

%𝑩𝑭𝑹 =  100% ×  𝒎𝒂𝒙 {
|| 𝒙−𝒙 ̂||

𝟐

|| 𝒙−𝒙 ̅||
𝟐

, 𝟎}                  (20) 

The states of the actual model are denoted by x, the state of approximated model are represented by 

𝒙, and the real model's mean is represented by 𝒙̅.  If the percent best fit ratio is largest and the error to norm 

ratio is smallest, the model approximation is good; if the opposite is true, the approximation is bad and the 

approximation error is big. Our analysis demonstrates that the models derived from the Koopman Operator 

exhibit a high best-fit ratio, indicating a close match between simulated and observed data.  

Additionally, we evaluated the normalized square error to provide a comprehensive assessment of 

model performance. The normalized square error metric accounts for both the magnitude and direction of 

errors, offering a nuanced understanding of the discrepancies between model predictions and actual 

observations. NRMSE values close to zero indicate a good fit between the model and the observed data, 

while higher values suggest larger discrepancies between them. 
 

Table 1. Comparison of estimated TRAS  

Model Error to norm ratio (Enr) % BFR 

Best fit Ratio (%)    𝜙 𝜓 

Koopman 0.933 1.554 93.052 

Polynomial KF 0.971 0.0721 96.94 

Laplacian KF 7.225 8.1435 91.09 

Cauchy KF 7.745 8.362 89.72 

Affine KF 31.23 13.514 87.19 

 

The formula for Normalized Root Mean Square Error (NRMSE) is as follows: 

% 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 × 100%                        (21) 

Where  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑘 − 𝑥̂𝑘)2𝑁𝑡𝑜𝑡𝑎𝑙

𝑘=1

𝑁𝑡𝑜𝑡𝑎𝑙
 

The yaw angle NRMSE is determined to be 4.0589%, while the pitch angle NRMSE is slightly 

higher at 5.5889%. These metrics serve as crucial indicators of the system's ability to accurately predict and 

control its orientation. Our results indicate that the normalized square error remains consistently low, 

highlighting the robustness of the Koopman Operator-based models in representing the TRAS dynamics 

accurately. 

In conclusion, our study demonstrates the efficacy of the Koopman Operator framework for the 

identification of nonlinear Twin Rotor Aerodynamic Systems. Through comprehensive analysis using 

error-to-norm ratio, best-fit ratio, and normalized square error metrics, we have shown that the models 

derived from the Koopman Operator offer accurate representations of TRAS dynamics across various 

operating conditions.  
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IV. CONCLUSION 

We have effectively utilized Koopman operator theory to identify the Twin Rotor Aerodynamic 

System (TRAS) nonlinearly, exhibiting superior performance compared to conventional linear models. 

Unlike other approaches, the Koopman model was excellent at capturing the nonlinear dynamics of TRAS 

and could start simulations from real system conditions without requiring iterative adjustment. 

Computational difficulties arise when using the Koopman method to higher-dimensional systems. 

However, this problem might be mitigated by using past system information, for example, by choosing an 

appropriate foundation for observables. Subsequent research endeavors will center on surmounting these 

obstacles and broadening the Koopman methodology to encompass higher-dimensional TRAS models, 

non-polynomial models, and models including external factors. This demonstrates how Koopman operator 

theory can be used to create precise nonlinear dynamical models for TRAS, which will help with 

customized control plans for TRAS. 
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