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Abstract – In this study, appropriate statistical powers for independent/paired samples t-test applications 

are tried to be determined using Monte Carlo simulation method in terms of different sample sizes, effect 

sizes and standard deviations. In the empirical part of this study, based on the Monte Carlo simulation 

method, firstly “independent samples t-test” is performed for testing the averages of real-time reproductive 

rate estimates of the COVID-19 Pandemic data between African and European Continents including 45 

countries. And then “paired samples t-test” is performed for testing the averages of real-time reproductive 

rate estimates of the COVID-19 Pandemic data between December 2021 and January 2022 as the paired 

observations of 31 different countries taken from the European Continent. 

As the principal results and major conclusions of this study, belonging to the independent samples 

t-test results, it is determined that the statistical power decreased as the standard deviation increased. The 

statistical power increased as the effect size widened at a fixed sample size and standard deviation value. 

Belonging to the paired samples t-test results, it is determined that the statistical power decreased as the 

significance level decreased. In addition, statistical powers for the paired samples t-test with fixed sample 

size and effect size are estimated to be higher than for the independent samples t-test. Also, statistical 

powers for the paired samples t-test with fixed sample size and effect size are found higher than for the 

independent samples t-test.  
 

Keywords – Reproductive rate estimate of the COVID-19 pandemic, Monte Carlo simulation, independent/paired samples t-test, 

statistical power, sample size, effect size     

 

1.Introduction 

Statistical power calculation in the hypotheses tests is very important to draw statistically significant 

conclusions from the researches of interest in many fields [1,2]. Statistical power in a hypothesis test is the 

https://as-proceeding.com/index.php/ijanser
mailto:niyit@selcuk.edu.tr
mailto:nbuyukbayram@gmail.com


International Journal of Advanced Natural Sciences and Engineering Researches 

 

246 
 

probability of rejecting the null hypothesis and making correct decision if the null hypothesis is false so the 

alternative hypothesis is true [3]. Statistical power of a hypothesis test depends on the sample size, effect 

size, significance level, and standard deviation as the measure of variability of the interested population 

[4,5]. For more information about the relationships between statistical power, sample size, effect size, 

significance level, and standard deviation, see [6-12]. In hypothesis testing, after stating the null and the 

alternative hypotheses, significance level is determined. Test statistic, critical value, and related p-value is 

computed. And then decision will be made and conclusions will be drawn and interpreted from the empirical 

data [13-15]. 

Statistical power analysis is also vital for independent/paired samples t-tests as with all parametric 

tests. Lan and Lian [16], Kang [17], Dalmaijer et al. [18], Szucs and Ioannidis [19], Serdar et al. [20], 

Cheval et al. [21], Abt et al. [22], Sharma et al. [23], Lenzo et al. [24], Kelley [25] studied statistical power 

analysis in independent/paired samples t-tests in many fields such as human health, biometry, cluster 

analysis, neuroimaging, clinical studies, COVID-19 pandemic, sports science, nursing, healthcare, and 

education. In this study, appropriate statistical powers for independent/paired samples t-test applications 

will be tried to be determined using Monte Carlo simulation method in terms of different sample sizes, 

effect sizes and standard deviations. de Micheaux et al. [26], Muthén and Muthén [27], Onoz and Bayazit 

[28], Myers et al. [29], Kalos and Whitlock [30], Robert et al. [31], and Kroese et al. [32] studied Monte 

Carlo simulation method to determine statistical power of various hypotheses tests based on parametric and 

nonparametric methods.  

Based on the Monte Carlo simulation method, in this study, “independent samples t-test” will be 

performed for testing the averages of real-time reproductive rate estimates of the COVID-19 Pandemic data 

between African and European Continents including 45 countries. Also “paired samples t-test” will be 

performed for testing the averages of real-time reproductive rate estimates of the COVID-19 Pandemic data 

between December 2021 and January 2022 as the paired observations of 31 different countries taken from 

the European Continent. 

 

2.Material and Method 

2.1.Materials 

In this study, “independent samples t-test” for testing the averages of real-time reproductive rate 

estimates of COVID-19 pandemic between African and European Continents has actually been 

investigated. For this aim, in the material part of this study, 45 countries data [33] from African Continent 

and 45 countries data [33] from European Continent as equal sample sizes (nAfrican=nEuropean=45) in January 

2022 given in Table 1 are randomly selected and taken into the study.  
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Table 1. Countries and continents for investigating the real-time reproductive rate estimates of the COVID-19 pandemic by 

independent samples t-test 

Continents Countries 

African Region (AFR) 

Algeria, Angola, Botswana, Burundi, Cameroon, Cape Verde, 

Comoros, Congo, Cote d'Ivoire, Democratic Republic of Congo, 

Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, 
Ghana, Guinea, Guinea-Bissau, Lesotho, Liberia, Libya, 

Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, 

Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and 
Principe, Senegal, Seychelles, Sierra Leone, South Africa, South 

Sudan, Sudan, Togo, Tunisia, Uganda, Zambia, Zimbabwe. 

European Region (EUR) 

Albania, Andorra, Austria, Belarus, Belgium, Bosnia and 

Herzegovina, Bulgaria, Croatia, Cyprus, Czechia, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, 

Ireland, Italy, Kosovo, Latvia, Liechtenstein, Lithuania, 

Luxembourg, Malta, Moldova, Monaco, Montenegro, Netherlands, 
North Macedonia, Norway, Poland, Portugal, Romania, Russia, San 

Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, 

Ukraine, United Kingdom. 

 

Also in this study, “paired samples t-test” for testing the averages of the real-time reproductive rate 

estimates of the COVID-19 pandemic data belonging to the European Continent between December 2021 

and January 2022 has actually been investigated. For this aim, n=31 countries data [33] from the European 

Continent are randomly selected and taken into the study as given in Table 2.   

Table 2. Countries for investigating the European Continent’s real-time reproductive rate estimates of the COVID-19 

Pandemic by paired samples t-test 

Continent Countries 

European Continent 

Albania, Andorra, Belarus, Bosnia and Herzegovina, Bulgaria, 

Croatia, Cyprus, Denmark, Estonia, Finland, France, Greece, 

Iceland, Ireland, Italy, Kosovo, Latvia, Liechtenstein, Lithuania, 
Luxembourg, Monaco, Montenegro, North Macedonia, Norway, 

Portugal, Russia, San Marino, Spain, Sweden, Switzerland, United 

Kingdom. 
 

2.2. Method 

 

In the method part of this study, appropriate statistical powers for independent/paired samples t-test 

applications are tried to be determined using Monte Carlo simulation method in terms of different sample 

sizes, effect sizes and standard deviations. In the empirical part of this study, firstly “independent samples 

t-test” is performed for testing the averages of real-time reproductive rate estimates of COVID-19 Pandemic 

data between African and European Continents including 45 different countries. And then “paired samples 

t-test” is performed for testing the averages of real-time reproductive rate estimates of COVID-19 Pandemic 

data between December 2021 and January 2022 as the paired observations of 31 different countries taken 

from African and European Continents individually. 

 

3.Results and Discussion 

In the simulation part of this section, appropriate statistical powers for independent/paired samples 

t-test applications are tried to be determined using Monte Carlo simulation method in terms of different 

sample sizes, effect sizes and standard deviations. 

For this aim, R-Studio program is used including Stats Package, Power calculations for one and two 

sample t-tests (pwr) library, and also Multivariate normal density and random deviates (mvtnorm) library.  
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In the emprical part of this section, firstly “independent samples t-test” is performed for testing the 

averages of real-time reproductive rate estimates of COVID-19 Pandemic data between African and 

European Continents. And then “paired samples t-test” is performed for testing the averages of real-time 

reproductive rate estimates of COVID-19 Pandemic data between December 2021 and January 2022 as the 

paired observations of 31 different countries taken from African and European Continents individually. 

 

3.1. Results and discussion on determination of statistical powers in terms of different sample sizes, 

effect sizes and standard deviations for independent samples t-test using Monte Carlo Simulation 

Study  

 

In the first simulation part of this study, 15.000 Monte Carlo trials are conducted in R-Studio and 

appropriate statistical powers ( )1−  are calculated for different standard deviations ( ) , sample sizes (n), 

and effect sizes (d) determined by Cohen (1977, 1988) for the independent samples t-test as given in Table 

3. 

 

Table 3. Statistical powers for different standard deviations, sample sizes, and effect sizes in one/two-sided alternative 

hypotheses for independent samples t-test at α=0.05 significance level. 

   Effect Size 

  Sample 

Size 

d=0.2 d=0.5 d=0.8 

  One-Sided Two-Sided One-Sided Two-Sided One-Sided Two-Sided 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

S
. 

d
 =

1
 n= 50 1-β=0.274 1-β=0.180 1-β=0.804  1-β=0.711 1-β=0.982 1-β=0.966 

n= 100 1-β=0.431 1-β=0.315 1-β=0.960 1-β=0.928 1-β=0.999 1-β=0,998 

n= 250 1-β=0.734 1-β=0.629 1-β=0.994 1-β=0.998 1-β=0.999 1-β=0.999 

n=500 1-β=0.926 1-β=0.877 1-β=0.999 1-β=0.999 1-β=0.999 1-β=0.999 

S
.d

 =
1

.5
 n= 50 1-β=0.170 1-β=0.102 1-β=0.528 1-β=0.406 1-β=0.845 1-β=0.760 

n= 100 1-β=0.255 1-β=0.166 1-β=0.770 1-β=0.670 1-β=0.973 1-β=0.950 

n= 250 1-β=0.461 1-β=0.344 1-β=0.971 1-β=0.949 1-β=0.999 1-β=0.999 

n=500 1-β=0.693 1-β=0.584 1-β=0.998 1-β=0.997 1-β=0.999 1-β=0.999 

S
.d

 =
2

 

n= 50 1-β=0.130 1-β=0.075 1-β=0.365 1-β=0.256 1-β=0.655 1-β=0.534 

n= 100 1-β=0.183 1-β=0.112 1-β=0.572 1-β=0.450 1-β=0.877 1-β=0.807 

n= 250 1-β=0.318 1-β=0.216 1-β=0.873 1-β=0.801 1-β=0.993 1-β=0.986 

n=500 1-β=0.499 1-β=0.380 1-β=0.981 1-β=0.964 1-β=0.999 1-β=0.999 

S
.d

 =
2

.5
 n= 50 1-β=0.109 1-β=0.061 1-β=0.273 1-β=0.179 1-β=0.502 1-β=0.381 

n= 100 1-β=0.146 1-β=0.085 1-β=0.432 1-β=0.314 1-β=0.740 1-β=0.638 

n= 250 1-β=0.240 1-β=0.154 1-β=0.734 1-β=0.630 1-β=0.963 1-β=0.935 

n=500 1-β=0.373 1-β=0.264 1-β=0.926 1-β=0.878 1-β=0.998 1-β=0.995 

 

According to Table 3, when the standard deviation is taken as 1.0 = , the effect size is taken as 

d=0.2; for the sample sizes n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.274 and 0.180; 0.431 and 0.315; 0.734 and 0.629; 0.926 and 0.877 

respectively. When 1.0 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative 

hypotheses, the statistical powers ( )1−  are estimated as 0.982 and 0.966; 0.999 and 0.998; 0.999 and 

0.999; 0.999 and 0.999, respectively. When 1.5 = , and d=0.2; for n=50, 100, 250, and 500 in one/two-

sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.170 and 0.102; 0.255 and 

0.166; 0.461 and 0.344; 0.693 and 0.584, respectively. When 1.5 = , and d=0.8; for n=50, 100, 250, and 

500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.845 and 0.760; 
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0.973 and 0.950; 0.999 and 0.999; 0.999 and 0.999, respectively. When 2.0 = , and d=0.2; for n=50, 100, 

250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.130 

and 0.075; 0.183 and 0.112; 0.318 and 0.216; 0.499 and 0.380, respectively. When 2.0 = , and d=0.8; for 

n=50, 100, 250, and 500 in one/two sided alternative hypotheses, the statistical powers ( )1−  are estimated 

as 0.655 and 0.534; 0.877 and 0.807; 0.993 and 0.986; 0.999 and 0.999, respectively. When 2.5 = , and 

d=0.2; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  

are estimated as 0.109 and 0.061; 0.146 and 0.085; 0.240 and 0.154; 0.373 and 0.264, respectively. When 

2.5 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.502 and 0.381; 0.740 and 0.638; 0.963 and 0.935; 0.998 and 0.995, 

respectively.  

3.2. Results and discussion on determination of statistical powers in terms of different sample sizes, 

effect sizes and standard deviations for paired samples t-test using Monte Carlo Simulation Study  

In the second simulation part of this study, 15.000 Monte Carlo trials are conducted in R-Studio and 

appropriate statistical powers ( )1−  are calculated for different standard deviations ( ) , sample sizes (n), 

and effect sizes (d) determined by Cohen (1977, 1988) for the paired samples t-test as given in Table 4. 

 

Table 4. Statistical powers for different standard deviations, sample sizes and effect sizes in one/two-sided alternative 

hypotheses for paired samples t-test at α=0.05 significance level. 

   Effect Size 

  Sample 

Size 

d=0.2 d=0.5 d=0.8 

  One-Sided Two-Sided One-Sided Two-Sided One-Sided Two-Sided 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

S
. 

d
 =

1
 

n= 50 1-β=0.426 1-β=0.308 1-β=0.958  1-β=0.923 1-β=0.994 1-β=0.998 

n= 100 1-β=0.651 1-β=0.536 1-β=0.997 1-β=0.993 1-β=0.999 1-β=0,999 

n= 250 1-β=0.926 1-β=0.876 1-β=0.999 1-β=0.999 1-β=0.999 1-β=0.999 

n=500 1-β=0.993 1-β=0.986 1-β=0.999 1-β=0.999 1-β=0.999 1-β=0.999 

S
.d

 =
1

.5
 

n= 50 1-β=0.252 1-β=0.162 1-β=0.763 1-β=0.658 1-β=0.972 1-β=0.947 

n= 100 1-β=0.396 1-β=0.285 1-β=0.943 1-β=0.901 1-β=0.998 1-β=0.997 

n= 250 1-β=0.692 1-β=0.580 1-β=0.998 1-β=0.997 1-β=0.999 1-β=0.999 

n=500 1-β=0.902 1-β=0.842 1-β=0.999 1-β=0.999 1-β=0.999 1-β=0.999 

S
.d

 =
2

 

n= 50 1-β=0.181 1-β=0.109 1-β=0.562 1-β=0.439 1-β=0.871 1-β=0.796 

n= 100 1-β=0.274 1-β=0.179 1-β=0.805 1-β=0.714 1-β=0.982 1-β=0.966 

n= 250 1-β=0.495 1-β=0.377 1-β=0.982 1-β=0.964 1-β=0.999 1-β=0.997 

n=500 1-β=0.736 1-β=0.631 1-β=0.999 1-β=0.998 1-β=0.999 1-β=0.998 

S
.d

 =
2

.5
 

n= 50 1-β=0.144 1-β=0.084 1-β=0.425 1-β=0.309 1-β=0.734 1-β=0.624 

n= 100 1-β=0.209 1-β=0.130 1-β=0.653 1-β=0.538 1-β=0.929 1-β=0.879 

n= 250 1-β=0.374 1-β=0.262 1-β=0.925 1-β=0.877 1-β=0.998 1-β=0.995 

n=500 1-β=0.581 1-β=0.459 1-β=0.993 1-β=0.986 1-β=0.999 1-β=0.999 

 

According to Table 4, when the standard deviation is taken as 1.0 = , the effect size is taken as 

d=0.2; for the sample sizes n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.426 and 0.308; 0.651 and 0.536; 0.692 and 0.580; 0.902 and 0.842, 

respectively. When 1.0 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative 
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hypotheses, the statistical powers ( )1−  are estimated as 0.994 and 0.998; 0.999 and 0.999; 0.999 and 

0.999; 0.999 and 0.999, respectively. When 1.5 = , and d=0.2; for n=50, 100, 250, and 500 in one/two-

sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.252 and 0.162; 0.396 and 

0.285; 0.692 and 0.580; 0.902 and 0.842, respectively. When 1.5 = , and d=0.8; for n=50, 100, 250, and 

500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.972 and 0.947; 

0.998 and 0.997; 0.999 and 0.999; 0.999 and 0.999, respectively. When 2.0 = , and d=0.2; for n=50, 100, 

250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.181 

and 0.109; 0.274 and 0.179; 0.495 and 0.377; 0.736 and 0.631, respectively. When 2.0 = , and d=0.8; for 

n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated 

as 0.871 and 0.796; 0.982 and 0.966; 0.999 and 0.997; 0.999 and 0.998, respectively. When 2.5 = , and 

d=0.2; for the sample size n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.144 and 0.084; 0.209 and 0.130; 0.374 and 0.262; 0.581 and 0.459, 

respectively.  

When 2.5 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the 

statistical powers ( )1−  are estimated as 0.734 and 0.624; 0.929 and 0.879; 0.998 and 0.995; 0.999 and 

0.999, respectively. For the sample size n=100 in one/two-sided alternative hypotheses, the statistical 

powers are estimated as 0.929 and 0.879, respectively. For the sample size n=250 in one/two-sided 

alternative hypotheses, the statistical powers are estimated as 0.998 and 0.995, respectively. For the sample 

size n=500 in one/two-sided alternative hypotheses, the statistical powers are estimated as 0.999 and 0.999, 

respectively. 

 

3.3. Results and discussion on determination of statistical powers in terms of different sample sizes, 

effect sizes and significance levels for independent samples t-test using Monte Carlo Simulation Study  

 

In the third simulation part of this study, 15.000 Monte Carlo trials are conducted in R-Studio and 

appropriate statistical powers ( )1−  are calculated for different significance levels ( ) , sample sizes (n), 

and effect sizes (d) determined by Cohen (1977, 1988) for the independent samples t-test as given in Table 

5. 
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Table 5. Statistical powers for different significance levels, sample sizes and effect sizes in one/two-sided alternative 

hypotheses for independent samples t-test at 3.0 =  standard deviation. 

 

   Effect Size 

  Sample 

Size 

d=0.2 d=0.5 d=0.8 

  One-Sided Two-Sided One-Sided Two-Sided One-Sided Two-Sided 

S
ig

n
if

ic
a

n
ce

 L
ev

el
 

A
lp

h
a

 =
0

.1
0

 n= 50 1-β=0.175 1-β=0.097 1-β=0.340 1-β=0.219 1-β=0.538 1-β=0.396 

n= 100 1-β=0.215 1-β=0.124 1-β=0.477 1-β=0.342 1-β=0.739 1-β=0,614 

n= 250 1-β=0.308 1-β=0.194 1-β=0.732 1-β=0.609 1-β=0.949 1-β=0.902 

n=500 1-β=0.427 1-β=0.294 1-β=0.908 1-β=0.839 1-β=0.995 1-β=0.989 

A
lp

h
a

 =
0

.0
5

 n= 50 1-β=0.097 1-β=0.053 1-β=0.218 1-β=0.138 1-β=0.396 1-β=0.285 

n= 100 1-β=0.124 1-β=0.071 1-β=0.340 1-β=0.234 1-β=0.615 1-β=0.496 

n= 250 1-β=0.194 1-β=0.120 1-β=0.610 1-β=0.488 1-β=0.903 1-β=0.844 

n=500 1-β=0.295 1-β=0.198 1-β=0.841 1-β=0.762 1-β=0.989 1-β=0.977 

A
lp

h
a

 =
0

.0
1

 n= 50 1-β=0.023 1-β=0.012 1-β=0.073 1-β=0.044 1-β=0.176 1-β=0.120 

n= 100 1-β=0.034 1-β=0.018 1-β=0.139 1-β=0.092 1-β=0.360 1-β=0.275 

n= 250 1-β=0.062 1-β=0.037 1-β=0.353 1-β=0.269 1-β=0.751 1-β=0.675 

n=500 1-β=0.113 1-β=0.073 1-β=0.645 1-β=0.556 1-β=0.955 1-β=0.930 

 

According to Table 5, when the significance level is taken as 0.10 = , the effect size is taken as 

d=0.2; for the sample sizes n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.175 and 0.097; 0.215 and 0.124; 0.308 and 0.194; 0.427 and 0.294, 

respectively. When 0.10 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative 

hypotheses, the statistical powers ( )1−  are estimated as 0.538 and 0.396; 0.739 and 0.614; 0.949 and 

0.902; 0.995 and 0.989, respectively. When 0.05 = , and d=0.2; for n=50, 100, 250, and 500 in one/two-

sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.097 and 0.053; 0.124 and 

0.071; 0.194 and 0.120; 0.295 and 0.198, respectively. When 0.05 = , and d=0.8; for n=50, 100, 250, and 

500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.396 and 0.285; 

0.615 and 0.496; 0.903 and 0.844; 0.989 and 0.977, respectively. When 0.01 = , and d=0.2; for n=50, 

100, 250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 

0.023 and 0.012; 0.034 and 0.018; 0.062 and 0.037; 0.113 and 0.073, respectively. When 0.01 = , and 

d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  

are estimated as 0.176 and 0.120; 0.360 and 0.275; 0.751 and 0.675; 0.955 and 0.930, respectively.  

 

3.4. Results and discussion on determination of statistical powers in terms of different sample sizes, 

effect sizes and significance levels for paired samples t-test using Monte Carlo Simulation Study  

In the fourth simulation part of this study, 15.000 Monte Carlo trials are conducted in R-Studio and 

appropriate statistical powers ( )1−  are calculated for different significance levels ( ) , sample sizes (n), 

and effect sizes (d) determined by Cohen (1977, 1988) for the paired samples t-test as given in Table 6. 

 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

252 
 

Table 6. Statistical powers for different significance levels, sample sizes and effect sizes in one/two-sided alternative 

hypotheses for paired samples t-test at 3.0 =  standard deviation. 

   Effect Size 

  Sample 

Size 

d=0.2 d=0.5 d=0.8 

  One-Sided Two-Sided One-Sided Two-Sided One-Sided Two-Sided 

S
ig

n
if

ic
a

n
ce

 L
ev

el
 A

lp
h

a
 =

0
.1

0
 n= 50 1-β=0.214 1-β=0.124 1-β=0.473 1-β=0.335 1-β=0.735 1-β=0.609 

n= 100 1-β=0.278 1-β=0.172 1-β=0.664 1-β=0.529 1-β=0.910 1-β=0,844 

n= 250 1-β=0.427 1-β=0.292 1-β=0.908 1-β=0.838 1-β=0.995 1-β=0.989 

n=500 1-β=0.602 1-β=0.461 1-β=0.987 1-β=0.972 1-β=0.999 1-β=0.999 

A
lp

h
a

 =
0

.0
5

 n= 50 1-β=0.123 1-β=0.071 1-β=0.334 1-β=0.228 1-β=0.607 1-β=0.483 

n= 100 1-β=0.171 1-β=0.103 1-β=0.528 1-β=0.406 1-β=0.844 1-β=0.762 

n= 250 1-β=0.294 1-β=0.196 1-β=0.837 1-β=0.758 1-β=0.989 1-β=0.977 

n=500 1-β=0.464 1-β=0.347 1-β=0.972 1-β=0.948 1-β=0.999 1-β=0.999 

A
lp

h
a

 =
0

.0
1

 n= 50 1-β=0.032 1-β=0.018 1-β=0.134 1-β=0.087 1-β=0.345 1-β=0.257 

n= 100 1-β=0.051 1-β=0.031 1-β=0.275 1-β=0.201 1-β=0.645 1-β=0.553 

n= 250 1-β=0.112 1-β=0.072 1-β=0.640 1-β=0.550 1-β=0.953 1-β=0.929 

n=500 1-β=0.226 1-β=0.161 1-β=0.903 1-β=0.862 1-β=0.998 1-β=0.996 

 

According to Table 6, when the significance level is taken as 0.10 = , the effect size is taken as 

d=0.2; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  

are estimated as 0.214 and 0.124; 0.278 and 0.172; 0.427 and 0.292; 0.602 and 0.461, respectively. When 

0.10 = , and d=0.8; for n=50, 100, 250, and 500 in one/two-sided alternative hypotheses, the statistical 

powers ( )1−  are estimated as 0.735 and 0.609; 0.910 and 0.844; 0.995 and 0.989; 0.999 and 0.999, 

respectively. When 0.05 = , and d=0.2; for n=50, 100, 250, and 500 in one/two-sided alternative 

hypotheses, the statistical powers ( )1−  are estimated as 0.123 and 0.071; 0.171 and 0.103; 0.294 and 

0.196; 0.464 and 0.347, respectively. When 0.05 = , d=0.8; for n=50, 100, 250, and 500 in one/two-sided 

alternative hypotheses, the statistical powers ( )1−  are estimated as 0.607 and 0.483; 0.844 and 0.762; 

0.989 and 0.977; 0.999 and 0.999, respectively. When 0.01 = , and d=0.2; for n=50, 100, 250, and 500 in 

one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.032 and 0.018; 0.051 

and 0.031; 0.112 and 0.072; 0.226 and 0.161, respectively. When 0.01 = , and d=0.8; for n=50, 100, 250, 

and 500 in one/two-sided alternative hypotheses, the statistical powers ( )1−  are estimated as 0.345 and 

0.257; 0.645 and 0.553; 0.953 and 0.929; 0.998 and 0.996, respectively.  

 

3.5. Results and discussion on the empirical study for real-time reproductive rate estimates of the 

COVID-19 pandemic for independent samples t-test 

 

In the first empirical part of this study, “independent samples t-test” for testing the averages of real-

time reproductive rate estimates of the COVID-19 pandemic between African and European Continents has 

actually been investigated. For this aim, descriptive statistics belonging to 45 countries data [33] from 

African Continent and 45 countries data [33] from European Continent in equal sample sizes 

(nAfrican=nEuropean=45) in January 2022 given in Table 1 are given in Table 7. 
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Table 7. Descriptive statistics for the real-time reproductive rate estimates of the COVID-19 pandemic for both European and 

African Continents. 

Continents Sample Size (n) Min. Median Mean   Sd. Max 

African  45 0.76 1.02 1.064 0.172 1.82 

European  45 0.57 1.23 1.243 0.202 1.83 

 

Before performing independent samples t-test, “independence” assumption is satisfied by taking 45 

different countries from two different continents as African and European given in Table 1. And also 

“normality” and “homogeneity of variance” are the other two important assumptions that must be satisfied 

before performing “independent samples t-test” to the COVID-19 pandemic reproductive rate data of the 

African and European continents. For this aim, hypotheses for checking the second assumption as the 

“normality” of the “independent samples t-test” are given as follows [34]; 

H0: Randomly selected reproduction rate data for the African and European continents come from 

the normally distributed population. 

H1: Randomly selected reproduction rate data for the African and European countries do not come 

from the normally distributed population.  

Table 8. Shapiro-Wilk goodness-of-fit test results for the African and European Continents real-time reproductive rate 

estimates of the COVID-19 Pandemic data. 

Goodness-of-fit test statistics 
Statistics 

value 
df p-value 

1Shapiro – Wilk Test Statistic 0.989 45 0.697 
2Shapiro – Wilk Test Statistic 0.981 45 0.673 

1:for the African Continent; 2: for the European Continent 

Using Shapiro-Wilk goodness-of-fit test, the “normality” assumption has been checked, and the null 

hypothesis given above for both reproduction rate data for the African, and European continents could not 

be rejected at α=0.05 significance level (p1,Shapiro-Wilk=0.697>0.05; p2,Shapiro-Wilk=0.673>0.05). Then it is decided 

that the random samples of the COVID-19 pandemic reproduction rates of the randomly selected countries 

from the African, and European continents come from the normally distrubuted populations at α=0.05 

signifance level. 

As checking the third assumption of the “independent samples t-test”, hypotheses for the 

“homogeneity of variance” assumption are given as follows; 

H0: σ
2 

African = σ2 
European 

H1: σ
2 

African  ≠ σ2 
European 

where σ2 
African and σ2 

European are the population variances of the real-time reproductive rate estimates of the 

COVID-19 pandemic belonging to the African, and European Continents, respectively. 

 
 

 

 

 

 



International Journal of Advanced Natural Sciences and Engineering Researches 

 

254 
 

Table 9. Levene homogeneity of variance test results for the African and European Continents real-time reproductive rate 

estimates of the COVID-19 pandemic data. 

 

Homogeneity of variance test statistic 
Statistic 

value 
df p-value 

Levene Test Statistic 0.177 90 0.675 

 

Using Levene homogeneity of variance test, the “homogeneity of variances” assumption has been 

checked, and the null hypothesis given above for the reproduction rate data for the African, and European 

continents could not be rejected at α=0.05 significance level (p-value=0.675>0.05). Then it is decided that 

the random samples of the COVID-19 pandemic reproduction rates of the randomly selected countries from 

the African, and European continents come from the homogeneous populations at α=0.05 signifance level. 

The main hypotheses of the first part of the empirical study to compare averages of the real-time 

reproductive rate estimates of the COVID-19 pandemic between the African and European Continents by 

“independent samples t-test” are given as follows; 

H0: µAfrican = µEuropean 

H1: µAfrican  < µEuropean 

where in the alternative hypothesis, the main interest in on the average of the real-time reproductive rate 

estimates of the COVID-19 pandemic in the Africa Continent is smaller than the average of the real-time 

reproductive rate estimates of the COVID-19 pandemic in the European Continent in January 2022. 

Because inspite of the inadequate vaccine opportunities and poor health services, the low rate of cases and 

deaths in the Africa than the European countries surprises scientists. So while Africa does not have the 

vaccine opportunities and resources to fight the Covid-19 pandemic like Europe, it has been among the 

"least affected regions of the world" for months in the pandemic reports published by the World Health 

Organization (Njenga et al.; Okonji et al.; Musa et al.; Kong et al.) 

Table 10. Independent samples t-test results for the COVID-19 pandemic reproduction rates data between the African and 

European Continents. 

  

Continents 
t- test 

value 
p-value Effect Size (d) Power (1-β) 

African- European 4.821 <0.00 0.5  0.834 

 

Using “independent samples t-test”, 88,0.9504.821 1.664t test statistic t− =  =  and 

0.000 0.05p value − =  = , the null hypothesis can be rejected at 0.05 =  significance level. Then it is 

decided that, interestingly, the average of the reproduction rates of the randomly selected countries from 

the European continent is statistically higher than the average of the reproduction rates of the randomly 

selected countries from the African continent in January 2022, at the α=0.05 significance level.  

Cohen (1962, 1977, 1988) reported that a statistical power of 0.80 represents a reasonable and 

realistic value in the scientific researches, and accordingly, the 4/1 ratio of 𝛼 and 𝛽 errors is appropriate. 

Then when the optimum medium effect size is choosen as d=0.5, based on Cohen’s studies (1962, 

1977,1988), by using G*Power [35], the statistical power of this one-sided alternative hypothesis given 

above is calculated as 0.834 for independent samples t-test.  
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3.6. Results and discussion on the empirical study for real-time reproductive rate estimates of the 

COVID-19 pandemic for paired samples t-test 

 

Also in the second empirical part of this study, “paired samples t-test” for testing the averages of 

the real-time reproductive rate estimates of the COVID-19 pandemic data belonging to the European 

Continent between December 2021 and January 2022 has actually been investigated. For this aim, 

descriptive statistics belonging to randomly selected n=31 countries data [33] from the European Continent 

for December 2021 and January 2022 are given in Table 11.   

Table 11. Descriptive statistics for the real-time reproductive rate estimates of the COVID-19 pandemic for the European 

Continent. 

Continent Time Periods 
Sample Size 

(n) 
Min. Median Mean   Sd. Max. 

European 
December 2021 31 0.92 1.18 1.194 0.212 1.77 

January 2022 31 0.85 1.32 1.378 0.28 2.07 

 

Before performing paired samples t-test, “independence” assumption is again satisfied by taking 31 

different countries from the European Continent given in Table 2. Here “independence” means that the 

measurements taken of a country do not affect the measurements taken of another country in the European 

Continent. In this test, each paired measurements as December 2021 and January 2022 are obtained from 

the same countries in the European Continent. The hypotheses for testing the “normality” assumption for 

the measured differences between these time periods belonging to the real-time reproductive rate estimates 

of the COVID-19 pandemic for this continent using Shapiro-Willk test is given as follows; 

H0: Measured differences between December 2021 and January 2022 belonging to the real-time 

reproductive rate estimates of the COVID-19 pandemic for the European Continent come from a normally 

distributed population. 

H1: Measured differences between December 2021 and January 2022 belonging to the real-time 

reproductive rate estimates of the COVID-19 pandemic for the European Continent do not come from a 

normally distributed population. 

  
Table 12. Shapiro-Wilk goodness-of-fit test results for the European Continent’s real-time reproductive rate estimates of the 

COVID-19 pandemic between December 2021 and January 2022 

 

Goodness-of-fit test statistic Statistic value df p-value 

1Shapiro – Wilk Statistic 0.985 31 0.928 
             1: Real-time reproductive rate estimates of the COVID-19 pandemic measurements data between December 2021 and January 2022 

By Shapiro-Wilk goodness-of-fit test, the “normality” assumption has been checked, and the null 

hypothesis given above for the real-time reproductive rate estimates of the COVID-19 pandemic 

measurement differences between December 2021 and January 2022 for the European continent could not 

be rejected at α=0.05 significance level (pShapiro-Wilk=0.928>0.05). Then it can be decided that the measured 

differences between December 2021 and January 2022 belonging to the real-time reproductive rate 

estimates of the COVID-19 pandemic for the European Continent come from a normally distributed 

population at α=0.05 significance level. 

The main hypotheses of the second part of the empirical study to is to test the average of the 

measured differences between December 2021 and January 2022 belonging to the real-time reproductive 

rate estimates of the COVID-19 pandemic for the European Continent using “paired samples t-test” are 

given as follows; 

H0: µd,European = 0 
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H1: µd,European  > 0 

where 
31

1

31i

i

d d
=

=  and di= real-time reproductive rate estimates of the COVID-19 pandemic in the 

European Continent between December 2021 and January 2022. µd,European is the mean difference between 

the real-time reproductive rate estimates of the COVID-19 pandemic between December 2021 and January 

2022 belonging to the 31 countries of the European Continent given in Table 2. 

In the alternative hypothesis given above, the main interest in on the mean difference of the real-

time reproductive rate estimates of the COVID-19 pandemic in the European Continent between December 

2021 and January 2022 is greater than zero. 

Table 13. Paired samples t-test results for the real-time reproductive rate estimates of the COVID-19 pandemic measurements 

data of the European Continent between December 2021 and January 2022. 

  

Continent 

Mean difference ± 

Std. deviation of 

mean difference 

t-value p-value Effect Size (d) Power (1-β) 

European -0.184 0.342 -2.996 0.005 0.5 0.879 

 

Using paired samples t-test, 30,0.9502.996 1.697t test statistic t− =  = , and 

0.005 0.05p value − =  = , the null hypothesis can be rejected at 0.05 =  significance level. Then it can 

be decided that the mean difference of the real-time reproductive rate estimates of the COVID-19 pandemic 

between December 2021 and January 2022 belonging to 31 countries in the European Continent is greater 

than zero at the α=0.05 signifance level.  

When the optimum medium effect size is choosen as d=0.5, based on Cohen’s studies (1962, 

1977,1988), by using G*Power [35], the statistical power of this one-sided alternative hypothesis given 

above is calculated as 0.879 for paired samples t-test.  

4.CONCLUSION 

In this study, appropriate statistical powers for independent/paired samples t-test applications are 

tried to be determined using Monte Carlo simulation method in terms of different sample sizes, effect sizes 

and standard deviations. In the empirical part of this study, based on the Monte Carlo simulation method, 

firstly “independent samples t-test” is performed for testing the averages of real-time reproductive rate 

estimates of the COVID-19 Pandemic data between African and European Continents including 45 

countries. And then “paired samples t-test” is performed for testing the averages of real-time reproductive 

rate estimates of the COVID-19 Pandemic data between December 2021 and January 2022 as the paired 

observations of 31 different countries taken from the European Continent. 

As the main conclusions of this study, belonging to the independent samples t-test results, it is 

determined that the statistical power decreased as the standard deviation increased. The statistical power 

increased as the effect size widened at a fixed sample size and standard deviation value. Belonging to the 

paired samples t-test results, it is determined that the statistical power decreased as the significance level 

decreased. In addition, statistical powers for the paired samples t-test with fixed sample size and effect size 

are estimated to be higher than for the independent samples t-test. Also, statistical powers for the paired 

samples t-test with fixed sample size and effect size are found higher than for the independent samples t-

test.  
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