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Abstract – Diabetes mellitus is a prevalent chronic disease represented in the body’s un-successful insulin 

effect, that appears in the elevation of the blood’s glucose levels and potential damage to many body 

systems, causing the increasing of mortality rates. Early diagnosis is important for managing this illness, 

and machine learning algorithms play a crucial role employing various methodologies for diabetes 

detection, and in handling imbalanced data in particular. 

Using diverse classification algorithms such as (Logistic Regression, Decision Tree, Random Forest, 

Support Vector Machine, Convolutional Neural Network) for diabetes diagnosis and classification 

demonstrate the dominance of one class and the resulting underrepresentation of the minority class. 

To address this issue, cost-sensitive learning and resampling techniques are investigated in this study.   

The proposed approach aimed to propose robust cost-sensitive classifiers by modifying the objective 

functions of well-known algorithms. Additionally, hybrid approach of our improved Cost-sensitive 

models with well used ensemble techniques like Cost-sensitive XGBoost and Cost-sensitive Random 

Forest, Cost-sensitive Logistic Regression are analyzed to effectively address imbalanced classes.  

To validate proposed models two imbalanced medical datasets (PIMA Indi-an, and BASEDIABET 

datasets) are applied. Obtained results proves the accuracy and sensitivity of diabetes prediction models 

enhancement, by reducing costly classification errors. 
 

Keywords – Classification problem, Imbalanced datasets, Algorithm-level solutions, Ensemble techniques, Cost-sensitive 

learning, diabetes mellitus diagnosis 

 

I. INTRODUCTION 

    In the last few years, diabetes-related diseases have emerged as a leading cause of death in the 

developing world. The interplay of genetics and lifestyle significantly influences personalized treatment, 

causing an elevation in blood sugar levels and increasing long-term health risks’ possibilities [1]. Current 

research is focused on advancing technologies such as continuous glucose monitoring (CGM) [2] and 

artificial pancreas development to uncover novel biomarkers and diagnostic methodologies for early 

diabetes detection, enhancing our understanding of this condition. The field of machine learning is 

becoming increasingly critical in the realm of artificial intelligence, as it employs algorithms trained on 
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data to develop adaptable models capable of handling complex tasks. In the medical field, especially 

concerning diabetes detection, machine learning holds considerable promise 

    However, learning from imbalanced datasets, where one class is dominant and another is 

underrepresented, presents significant challenges. Traditional classifiers face difficulties with such 

imbalances, resulting in skewed datasets and struggles to accurately identify rare cases. This scenario can 

lead to the creation of misleading models and difficulties in distinguishing between small, overlapping 

classes. To address these challenges, several approaches can be employed, including solutions at the 

algorithm level. Cost-sensitive learning is one such algorithm-level solution, involving the modification 

of algorithms or their objective functions to consider the costs associated with misclassification errors [3]. 

This modification allows the algorithm to prioritize correctly classifying the minority class, which is often 

more costly to misclassify than the majority class. Another algorithm-level solution is the use of ensemble 

techniques, which focus on balancing the class distribution to improve model performance. Other 

algorithm-level solutions include modifying classifier methods or optimizing the performance of learning 

algorithms. 

    In this study, we conducted a comprehensive investigation by individually applying various ensemble 

techniques, including RUSBoost (Random Under Sampling Boosting) and Balanced Random Forest and 

XGBoost (eXtreme Gradient Boosting). Additionally, we explored cost-sensitive learning, an approach 

used in machine learning to consider the costs associated with classification errors. The experimentation 

encompassed the utilization of 5 biased classifiers, namely Logistic Regression (LR), Decision Tree (DT), 

Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). Our 

objective was to assess the performance of each technique on these classifiers in the context of addressing 

class imbalance. Subsequently, we proposed the hybridization of some of these techniques (Cost-sensitive 

XGBoost, Cost-sensitive Random Forest, Cost-sensitive Decision Tree), aiming to uncover the most 

effective method for mitigating the challenges associated with imbalanced classes. The study contributes 

valuable insights into the nuanced dynamics of these methods and their combined effectiveness in 

enhancing classification outcomes. 

    Furthermore, we have improved the hyperparameters of the cost-sensitive XGBoost, cost-sensitive 

Random Forest, and cost-sensitive CNN to further enhance their performance and achieve more accurate 

classifications. The empirical investigation was conducted using two datasets related to diabetes disease, 

including the PIMA Indian data diabetes dataset [4] and the DataBase-Diabetes database designed in 

2018 [5]. These datasets hold considerable prominence in diabetes research, with recent studies 

showcasing positive outcomes. 

Our study aims to enhance the accuracy of diabetes diagnosis by addressing class imbalance and 

improving classifier performance. By combining ensemble techniques and cost-sensitive learning, we aim 

to create robust models that can effectively handle imbalanced medical data. This hybrid approach 

leverages the strengths of both methods, resulting in more accurate predictions and overall better 

performance.  

II. RELATED WORK 

Several studies have been conducted to develop tools for diagnosing diabetes. 

In 2006, the study “Performance analysis of cost-sensitive learning methods with application to 

imbalanced medical data” delves deep into the use of cost-sensitive learning for imbalanced medical data 

classification, showcasing its advantages over traditional approaches and proposing novel solutions to 

enhance model performance in this specific context [6]. 

In 2014, the article “Learning to Improve Medical Decision Making from ImbalancedData without a 

Priori Cost” introduces the RankCost boosting algorithm based on cost-sensitive learning for predicting 

imbalanced medical data, maximizing the difference between majority and minority classes [7]. 

In 2020, the article “Cost-Sensitive Classification Algorithm for Imbalanced Data in Medical 

Diagnosis” integrated a naive Bayes algorithm augmented by a tree and the 
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AdaCost cost-sensitive algorithm to handle imbalanced medical data, achieving superior performance 

compared to some state-of-the-art methods [8]. 

In 2018, the article “Predicting Hospital Readmission via Cost-Sensitive Deep Learning” proposed a 

cost-sensitive deep learning approach to predict hospital 

readmission, combining convolutional neural networks with a cost-sensitive MLP classifier to address 

class imbalance during model training [9]. 

Finally, the article "Ibomoiye Domor Mienye, Yanxia Sun, Performance analysis of cost-sensitive 

learning, methods with application to imbalanced medical data, Informatics in Medicine Unlocked, 

Volume 25, 2021,100690, ISSN 2352-9148 “[10]. 

Our study aims to enhance the accuracy of diabetes diagnosis by addressing class imbalance and 

improving classifier performance. By combining ensemble techniques and cost-sensitive learning, the 

researchers, aim to create robust models that can effectively handle imbalanced medical data. This hybrid 

approach leverages the strengths of both methods, resulting in more accurate predictions and overall 

better performance. 

III. MATERIALS AND METHOD 

In our innovative approach, we employed various machine learning models focuses on minimizing 

false negatives, even if it leads to a slight increase in false positives, to prioritize the identification of in-

Divi duals with the disease. While logistic regression and other models may face challenges with 

imbalanced data, techniques like cost-sensitive learning, as employed in this study, can mitigate this issue 

by assigning higher weights to the minority class and generating syn-thetic data points. Implementing 

these techniques enhances model performance for medical diagnosis tasks with imbalanced data and 

varying misclassification costs, resulting in more accurate predictions. 

A. Datasets and Assessment Criteria 

     In biomedical domains, it is common to encounter limited data representing less prevalent cases, while 

specialized domain knowledge is often readily available. For example, in diabetes databases, minority 

data might include rare instances of severe complications or uncommon disease variations, while domain 

expertise encompasses detailed information on risk factors, comorbidities, and optimal treatment 

protocols. This research utilizes two primary datasets: the Pima Indian Diabetes Database (PIDD) [4] and 

the BASEDIABET dataset. The PIDD, a widely used resource in diabetes studies, contains demographic 

and medical records from the Pima Native American community, including data points such as age, 

pregnancy history, blood glucose levels, and blood pressure. The Base-diabete dataset, established in 

2022, includes authentic samples with variables such as age, height, weight, body mass index (BMI), 

glycosylated hemoglobin (HbA1c), and diabetes type, comprising 251 entries. The Base-diabete dataset 

was compiled by Rayane Allouani in 2018 at CHU Ibn Sina Hospital in Annaba, and from the offices of 

Dr. Bouali, Dr. Benaissa, Dr. Amraoui, and the Didouche Mourad polyclinic [5]. After preprocessing the 

databases by eliminating missing values and performing normalization, we partitioned the dataset into 

80% for training and 20% for testing due to the limited number of samples. 

Table 1. Descriptive table of the datasets. 

Datasets Features Samples 
Majorit

y 
Minority 

Pima 9 768 500 268 

BASE-

DIABETE 
7 251 151 99 
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Fig 1. Base-Diabete imbalance Issue 

 

Fig2. Pima Imbalance Issue 

B. Methods 

 

Here, we explore some methods utilized and put into practice in this research. 

 

• RUSBoost (Random Undersampling Boosting) combines random undersampling of the 

majority class with the boosting technique to enhance the performance of a classifier on 

imbalanced datasets. It operates similarly to SMOTEBoost, but with a distinct approach to 

addressing class imbalance. Instead of creating synthetic instances for the minority class, 

RUSBoost focuses on the majority class by undersampling it randomly at each iteration. This 

means that examples from the majority class are removed to balance the classes. Contrary to 

SMOTEBoost, RUSBoost does not need to assign new weights to the instances. It simply 

normalizes the weights of the remaining instances in the new dataset relative to their total weight 

sum. The rest of the procedure follows the same steps as in SMOTEBoost, where new classifiers 

are trained on weighted datasets, and their performance is evaluated on the validation dataset. 

However, it's worth noting that cost-sensitive learning cannot be directly added to RUSBoost 

because it already considers the cost by undersampling the majority class [11]. 
 

• Balanced Random Forest is a variant of Random Forests that is originally designed to 

minimize errors. Two bootstrap ensembles of the same size are constructed: one for the minority 

class and one for the majority class. These two ensembles together form the training set. 

Healthy 
class
65%

Diseased 
class
35%

Healthy 
class
60%

Diseased 
class
40%
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Afterward, the Random Forest algorithm is applied as usual. A bootstrap ensemble is a subset 

created by repeatedly sampling instances with replacement from an original dataset [12]. 
 

• Cost-sensitive learning in binary classification involves minimizing the empirical risk by 

Regularized Empirical Risk Minimization (ERM). The empirical risk (Remp) is calculated as the 

sum of the loss function (L) applied to the model's predictions f(xi) and the true labels (yi) for 

each data point in the training set, divided by the total number of data points N:  
                       

                      𝑅𝑒𝑚𝑝 =  
1

𝑁
 ∑ 𝐿(𝑓(𝑥𝑖), 𝑦𝑖)𝑁

𝐼=1                                (1) 

 

Minimizing the empirical risk helps the model perform well on the training data, but it can lead to 

overfitting. To prevent overfitting, regularization is applied, adding a penalty term Ω(f) to the objective 

function. This discourages overly complex models in favor of simpler ones that are less likely to overfit. 

The combined objective function is:  
                                                             𝑅 = 𝑅𝑒𝑚𝑝 +  λ ∙  Ω(f)                                           (2) 

 

    Here, λ is a hyperparameter that balances minimizing the empirical risk and controlling model 

complexity. This approach helps the model generalize better to unseen data, improving its overall 

performance. 

    Cost-sensitive learning recognizes the real-world consequences of errors and assigns different weights 

or costs to different types of mis classification based on their impact. In medical diagnosis, where 

imbalanced datasets are common, such as in diabetes prediction, the concept of variable misclassification 

costs is crucial. For example, false negatives (missing a case of diabetes) can be more costly than false 

positives (incorrectly predicting diabetes) due to potential treatment delays [13]. 
 

 

• Cost-Sensitive Convolutional Neural Network (CNN)) is a variant of traditional CNNs that 

incorporates the cost associated with classification errors during the model training process. 

This approach allows the model to prioritize correcting the costliest errors, which is particularly 

useful in scenarios where certain mistakes have more severe consequences than others. Cost-

Sensitive CNNs use a modified loss function those weights classification errors according to 

their respective costs. This adjusted loss function directs the learning process, encouraging the 

model to focus on rectifying the most expensive mistakes. The benefits of Cost-Sensitive CNNs 

include improved overall performance by focusing on the costliest errors, reduction of actual 

costs such as financial losses or physical damage by minimizing the most expensive errors, and 

better adaptation to specific problems by allowing for the customization of personalized costs to 

different types of errors. Cost-Sensitive CNNs are particularly useful in fields like medical 

detection, where misclassification can have severe implications for a patient's health, enhancing 

diagnostic accuracy by focusing more on correcting the most critical errors. In our study, we 

have improved the hyperparameters of the cost-sensitive CNN to further enhance its 

performance [14]. 
 

• Cost-sensitive XGBoost is an ensemble algorithm that aggregates machine learning trees 

using the gradient boosting principle. It is widely used in various classification and regression 

tasks, demonstrating strong performance [4], particularly in scenarios with imbalanced class 

distributions. To further enhance its effectiveness, we introduce a modification known as cost-

sensitive XGBoost. This variant focuses more on correctly classifying the minority class by 

adjusting the algorithm's behavior during training. In scikit-learn, this adjustment is achieved 

through a hyperparameter called scale_pos_weight. By default, this parameter is set to 1.0 in 

XGBoost. However, to improve performance, we can set it to the inverse of the class 
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distribution. This scaling factor influences how the algorithm treats errors in the minority class 

during training, encouraging it to prioritize correcting these errors. Additionally, we have 

improved the hyperparameters of the cost-sensitive XGBoost to further enhance its classification 

capabilities. As a result, the model achieves better performance when classifying instances from 

the minority class [15]. 

 

• Cost-sensitive decision tree is tailored for imbalanced classification tasks, a scenario where 

traditional decision tree algorithms may falter due to their bias towards majority class instances. 

Unlike traditional approaches that prioritize sample separation without considering minority 

class importance, cost-sensitive decision trees adjust their split point selection to give priority to 

minority class instances, effectively addressing the class imbalance. This adjustment is achieved 

by computing purity using metrics such as the Gini index or entropy, taking into account the 

class distribution within a group. For example, in CART implementations, the Gini index is 

typically used for purity computation. The algorithm modifies the splitting criteria by assigning 

higher weights to minority class instances and lower weights to majority class instances, which 

is often based on the inverse of class distribution in the dataset. This prioritization ensures that 

the algorithm focuses on minority class instances during node purity calculations, leading to 

enhanced performance on imbalanced datasets [16]. 
 

• Cost-sensitive random forest is a variant of the random forest ensemble learning algorithm, 

designed to address imbalanced classification tasks. It constructs multiple decision trees during 

training and outputs the mode of classes for classification or the mean prediction for regression. 

While random forest helps mitigate overfitting, its performance can be influenced by dataset 

characteristics. To improve its performance on imbalanced datasets, class weights are 

introduced, encouraging the algorithm to prioritize the minority class by assigning weights based 

on the inverse of class distribution. This adjustment enhances random forest's ability to handle 

imbalanced data and improves classification accuracy in such scenarios. Additionally, 

hyperparameters of the cost-sensitive Random Forest have been improved to further optimize its 

performance on imbalanced datasets [17]. 

 

• Cost-sensitive logistic regression Standard logistic regression assumes a balanced class 

distribution, which may not be suitable for imbalanced datasets. To address this issue, a class 

weighting mechanism is introduced in logistic regression. This mechanism adjusts how the 

algorithm updates its coefficients during training, penalizing the model more for errors made on 

minority class samples and less for errors on majority class samples. 

 In standard logistic regression, the log-likelihood function (L(w)) is expressed as: 

 

              𝐿(𝑤) =  
1

𝑁
∑ [𝑦𝑖 ln(𝑃(𝑦𝑖)) + (1 − 𝑦𝑖) ln(1 − 𝑃(𝑦𝑖))]𝑁

𝑖=1                                                                 (3)  

 

Where P(yi) denotes the predicted probability that (y) is true for sample i. 

 In cost-sensitive logistic regression, the modified log likelihood function is represented: 

 

             𝐿(𝑤) =  
1

𝑁
∑ [𝐶𝐹𝑃 𝑦𝑖 ln(𝑃(𝑦𝑖)) + 𝐶𝐹𝑁(1 − 𝑦𝑖)ln (1 − 𝑃(𝑦𝑖)) ]𝑁

𝑖=1                                                 (4) 

 

This modification leads to a type of logistic regression that is well suited for imbalanced classification 

problems, known as cost-sensitive logistic regression [18]. 
 

C. Measures of performance 

In our research, we employ several assessment metrics, including accuracy, precision, recall, F-

measure, and Cohen’s kappa coefficient, to assess the performance of our model. These metrics are 
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derived from the confusion matrix, where TP, TN, FP, and FN denote true positive, true negative, false 

positive, and false negative, respectively. 

TP and TN represent the number of correct positive and negative predictions, while FP indicates 

instances where the model incorrectly predicts a healthy patient as sick, and FN denotes instances where 

the model fails to predict the presence of a disease when it is present. 

 

The mathematical representations of these assessment metrics are as follows: 

Accuracy: Accuracy is the proportion of correct predictions (both true positives and true negatives) out 

of the total number of predictions. It is calculated as: 

                                                                                        (5) 

Precision: Precision measures the proportion of true positive predictions out of all positive predictions 

made by the model. It indicates how many of the predicted positive cases are actually positive. It is 

calculated as: 

                                                                                                                 (6) 

Recall: Recall, also known as sensitivity or true positive rate, measures the proportion of true positive 

predictions out of all actual positive cases. It indicates how well the model identifies positive cases. It is 

calculated as: 

                                                                                                                (7) 

F1-score: The F1-score is the harmonic mean of precision and recall, providing a single metric that 

balances both. It is particularly useful when dealing with imbalanced datasets. It is calculated as: 

                                                                                                           (8) 

Cohen's Kappa Coefficient: Cohen’s kappa coefficient measures the agreement between the model's 

predictions and the actual outcomes, adjusting for the agreement that could occur by chance. It is 

calculated as: 

 

      KPPA = 
(𝑃0−𝑃𝑐)

(1−𝑃𝑐)
                                                                                            (9) 

where P0P_0P0 is the observed agreement and PcP_cPc is the expected agreement by chance. 

These metrics provide a comprehensive evaluation of the model's performance, particularly in handling 

imbalanced datasets and minimizing misclassification errors. 

 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): is a metric that measures a 

classifier's ability to distinguish between classes at various threshold levels. It represents the area under 

the ROC curve, which plots the true positive rate (TPR) against the false positive rate (FPR). The AUC-

ROC score ranges from 0 to 1, with higher values indicating superior classifier performance in 

differentiating between classes. 

                                                        (10) 

IV. RESULTS 

 

The following tables and figures present the results of our experiments evaluating the performance of 

various machine learning techniques for diabetes diagnosis classification. Through rigorous 

experimentation and analysis, these results highlight the effectiveness of different approaches. 
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Table 1. Performance assessment of the algorithms on the PIDD dataset. 

Algorithm Score F1 Accuracy Precision Recall Kappa 

SVM 0.601 0.733 0.645 0.563 0.403 

CSSVM 0.687 0.740 0.602 0.8 0.472 

XgBoost 0.649 0.733 0.612 0.690 0.436 

CSXGBOOS

T 

0.746 0.792 0.758 0.734 0.570 

DT 0.608 0.707 0.583 0.636 0.453 

CSDT 0.644 0.720 0.590 0.709 0.417 

CNN 0.644 0.720 0.590 0.709 0.417 

CSC NN 0.716 0.753 0.607 0.872 0.510 

RF 0.583 0.740 0.65 0.528 0.397 

CSRF 0.697 0.785 0.844 0.660 0.518 

LR 0.647 0.759 0.68 0.618 0.465 

CSLR 0.65 0.727 0.6 0.709 0.429 

RUSBoost 0.651 0.707 0.567 0.763 0.409 

Balanced 

Random 

Forest 

0.673 0.740 0.601 0.765 0.463 

Table 2. Performance assessment of the algorithms on the Base-Diabete dataset. 

Algorithm Score F1 Accuracy Precision Recall Kappa 

SVM 0.944 0.92 0.944 0.944 0.801 

CSSVM 0.944 0.92 0.944 0.944 0.801 

XgBoost 0.958 0.94 0.945 0.972 0.847 

CSXGBOOS
T 

0.969 0.96 1.0 0.941 0.911 

DT 0.898 0.86 0.93 0.861 0.674 

CSDT 0.857 0.8 0.882 0.833 0.524 

CNN 0.857 0.8 0.882 0.833 0.524 

CSC NN 0.914 0.88 0.941 0.888 0.714 

RF 0.96 0.94 0.972 0.947 0.840 

CSRF 0.866 0.84 0.764 0.98 0.675 

LR 0.873 0.82 0.885 0.861 0.563 

CSLR 0.868 0.8 0.825 0.916 0.456 

RUSBoost 0.916 0.88 0.916 0.916 0.702 



International Journal of Advanced Natural Sciences and Engineering Researches 

292 
 

 

 

 

 

Fig 3. Confusion Matrices of Classifiers with and without Cost-Sensitive Learning for Base-Diabete dataset 

Fig4. Visualization of the AUC-ROC for different classifiers, both with and without cost-sensitive learning, on the Base-

Diabete dataset. 

 

 

 

 

Balanced 

Random 

Forest 

0.934 0.92 0.914 0.955 0.831 
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Fig5. Confusion Matrices of Classifiers with and without Cost-Sensitive Learning for PIDD 

 

 

Fig4. Visualization of the AUC-ROC for different classifiers, both with and without cost-sensitive learning, on the PIDD 

dataset. 

V. DISCUSSION 

 

Analysis of Two Tables for Both Datasets: 
 

In analyzing Table 1 for the PIDD dataset, CSSVM, CSXGBOOST, and CSCNN show higher scores in 

F1, Accuracy, Precision, Recall, and Kappa compared to their non-cost-sensitive counterparts. RUSBoost 

and Balanced Random Forest also demonstrate competitive performance, especially in Recall. The 

improved and modified parameters of Cost-Sensitive Random Forest, Cost-Sensitive CNN, and Cost-

Sensitive XGBoost likely contributed to their enhanced performance, reflected in their higher scores. The 
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top two performing algorithms on the PIDD dataset based on accuracy are CSXGBOOST (0.792) and 

CSRF (0.785). 

 

Similarly, for Table 2 on the Base-Diabet dataset, the enhanced parameters of Cost-Sensitive Random 

Forest, Cost-Sensitive CNN, and Cost-Sensitive XGBoost contribute to improved performance. 

CSXGBOOST and RF exhibit the best results, while RUSBoost and Balanced Random Forest also 

perform well with high recall values. Overall, CSXGBOOST and RF stand out as the best-performing 

models on the Base-Diabet dataset. 

 

Analysis of confusion matrices for Both Datasets: 

The analysis of confusion matrices for both the PIDD and Base-Diabet datasets indicates that cost-

sensitive learning significantly enhances model performance. For the Base-Diabet dataset, Cost-Sensitive 

XGBoost is the most effective, maximizing true positives (increasing from 12 to 18) and eliminating false 

negatives. In contrast, other classifiers did not exhibit such notable improvements with the cost-sensitive 

approach. On the PIDD dataset, Random Forest excels in achieving a high number of true positives 

(TP=37), while XGBoost is best at minimizing false positives (FP=24). Despite Random Forest's 

balanced performance between true positives and false positives, there is a need for caution regarding 

false negatives. The analysis reveals that the optimal classifier for cost management varies by criterion: 

Random Forest is best for maximizing true positives, Decision Tree for minimizing false positives, and 

XGBoost for balancing true positives and false positives. The comparison between results with and 

without cost-sensitive learning shows diverse improvements across models, highlighting the importance 

of adapting the method to the specific needs of the classification task. 

 

Analysis of AUC-ROC Curves for Both Datasets: 

The visualization of the AUC-ROC for different classifiers for la base PIDD presents a ranking of 

classifiers with and without Cost-Sensitive (CS) adjustments, highlighting the differing performances of 

each model. Without CS adjustments, the Random Forest classifier achieves an AUC of 0.84, 

demonstrating excellent classification capability, followed by Logistic Regression with an AUC of 0.82, 

XGBoost with an AUC of 0.72, CNN with an AUC of 0.74, SVM with an AUC of 0.70, and Decision 

Tree with an AUC of 0.69. With CS adjustments, the CS Random Forest classifier, with modified 

parameters, achieves an exceptional AUC of 0.90, placing it at the top, followed by XGBoost with an 

AUC of 0.89, the CSCNN with an AUC of 0.83, CS Logistic Regression maintaining an AUC of 0.82, CS 

SVM with an AUC of 0.75, and CS Decision Tree with an AUC of 0.72. Overall, methods with cost-

sensitive adjustments generally show better performance in terms of AUC compared to methods without 

CS adjustments, with XGBoost showing the most significant improvement (+0.17), likely due to 

parameter modifications for the cost-sensitive classifiers. 

 

For the Base-Diabet dataset, XGBoost also showed a remarkable improvement with cost-sensitive 

learning, with its AUC increasing from 0.91 to 0.99, indicating that parameter modifications significantly 

enhanced its performance. Both CNN and Random Forest showed improvements, with CNN's AUC 

increasing from 0.89 to 0.92 and Random Forest's AUC increasing from 0.94 to 0.95, suggesting that 

parameter modifications had a positive impact. However, Decision Tree did not show better results with 

the cost-sensitive approach, with its AUC decreasing from 0.86 to 0.77, indicating that further parameter 

adjustment is needed or that this method is less suitable for this model in this context. Logistic Regression 

showed a minor improvement, with its AUC increasing from 0.82 to 0.83, indicating that it slightly 

benefits from the cost-sensitive approach but may require more tuning for significant gains. 

VI. CONCLUSION 

    In conclusion, this study highlights the importance of machine learning algorithms in early diabetes 

detection and recognizes the challenges posed by imbalanced datasets in medical research. Researchers 

have developed robust cost-sensitive classifiers and integrated them with ensemble methods such as Cost-
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sensitive XGBoost, Cost-sensitive Random Forest, and Cost-sensitive CNN, im-proving their 

hyperparameters to enhance performance and achieve more accurate results. This integrated approach 

shows promise in refining the classification of imbalanced medical data, thereby enhancing diabetes 

mellitus diagnostic methods. The study underscores the significance of innovative techniques for 

managing imbalanced datasets in medicine, offering potential for more precise and dependable 

predictions in healthcare. Future research could explore enriching datasets, investigating additional 

machine learning techniques such as pre-trained and transfer learning models, and incorporating real-time 

data for more dynamic insights into diabetes diagnosis. Pre-trained models, especially those trained on 

extensive healthcare datasets, could be optimized for diabetes diagnosis, potentially improving the 

efficiency and accuracy of the classification pro-cess. Additionally, transfer learning could be examined 

to leverage existing models for diabetes diagnosis, overcoming challenges related to limited data availa-

bility and enhancing the models' generalizability across various healthcare set-tings. 
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