A STUDY ON THE EFFECTS OF ARTIFICIAL INTELLIGENCE ON LEARNING COMPLEX FUNCTIONS THEORY

Hasan BAYRAM ${ }^{1, *}$, Sibel YALÇIN TOKGÖZ ${ }^{1}$
${ }^{1}$ Bursa Uludag University, Faculty of Arts and Sciences, Department of Mathematics, Turkey
*(hbayram@uludag.edu.tr) Email of the corresponding author

(Received: 19 July 2024, Accepted: 24 July 2024)
(4th International Conference on Scientific and Academic Research ICSAR 2024, July 19-20, 2024)
ATIF/REFERENCE: Bayram, H. \& Yalçın Tokgöz, S. (2024). A STUDY ON THE EFFECTS OF ARTIFICIAL INTELLIGENCE ON LEARNING COMPLEX FUNCTIONS THEORY. International Journal of Advanced Natural Sciences and Engineering Researches, 8(6), 248-254.

Abstract

Artificial Intelligence (AI) has rapidly transformed various aspects of our lives, and education is no exception. With its ability to process vast amounts of data, recognize patterns, and make informed decisions, AI is revolutionizing the way we approach learning complex subjects such as mathematics. In this article, we explore the effects of AI on learning complex numbers, a fundamental topic in mathematics that often poses challenges to students. Complex numbers consist of a real part and an imaginary part, expressed in the form $a+b i$, where ' a ' represents the real part, ' b ' represents the imaginary part, and ' i ' represents the imaginary unit $(\sqrt{-1})$. Learning complex numbers involves understanding concepts like addition, subtraction, multiplication, division, and complex plane representation. This topic can be abstract and challenging for students to grasp initially. First of all, let's make a small definition about artificial intelligence: Artificial Intelligence (AI) refers to the field of computer science and technology that focuses on creating intelligent machines capable of performing tasks that typically require human intelligence. AI systems are designed to perceive their environment, reason and learn from the data or experiences, and make informed decisions or take actions to achieve specific goals. AI encompasses a range of techniques and methodologies, including machine learning, natural language processing, computer vision, robotics, and expert systems. These approaches enable AI systems to process and analyze vast amounts of data, recognize patterns, extract meaningful insights, and adapt to new situations or tasks.

Keywords - Artificial Intelligence, Complex Numbers, Harmonic Functions, Graphics, Maple.

I. INTRODUCTION

The ultimate objective of artificial intelligence is to develop machines that can emulate human cognitive abilities, such as understanding, learning, problem-solving, and decision-making. AI has diverse applications across various domains, including healthcare, finance, transportation, education, entertainment, and many others, where it can automate tasks, enhance efficiency, provide personalized experiences, and contribute to scientific advancements.

It's important to note that AI can be classified into two types: narrow AI and general AI. Narrow AI, also known as weak AI, is designed to perform specific tasks within a limited domain, while general AI, also known as strong AI or artificial general intelligence (AGI), aims to exhibit human-level intelligence and versatility across a wide range of tasks and contexts.
The connection between Artificial Intelligence (AI) and mathematics is deep-rooted and essential. Mathematics serves as the foundation for many of the algorithms, models, and techniques used in AI. Here are some key areas where AI and mathematics intersect:
Algorithms and Optimization; AI relies on various algorithms to perform tasks such as machine learning, pattern recognition, and data analysis. These algorithms often involve mathematical concepts like linear algebra, calculus, probability theory, and optimization methods. Mathematics provides the theoretical framework and tools to develop and analyze these algorithms, ensuring their effectiveness and efficiency.
Machine Learning and Statistics; Machine learning, a core component of AI, heavily draws upon statistical techniques. Mathematical concepts such as probability theory, statistical inference, regression analysis, and Bayesian methods are utilized to train models, make predictions, and infer patterns from data. Mathematics provides the formalism to understand the statistical properties of data and the algorithms used to extract knowledge from it.
Neural Networks; Neural networks, a key component of deep learning, are inspired by the structure and functioning of the human brain. They consist of interconnected artificial neurons that process and transmit information. The mathematical foundations of neural networks involve linear algebra, calculus, and graph theory. Mathematics helps in defining the structure of neural networks, determining the weights and biases, and optimizing their performance.
Data Analysis and Visualization; AI systems deal with vast amounts of data, and mathematics provides the tools to analyze, manipulate, and visualize this data. Concepts like data mining, dimensionality reduction, clustering, and statistical modeling are crucial for extracting meaningful insights from complex datasets. Mathematics allows AI practitioners to identify patterns, correlations, and anomalies in data, enabling better decision-making and prediction.
Natural Language Processing; AI technologies related to natural language understanding and generation, such as language models and sentiment analysis, often involve mathematical approaches like probabilistic language models, graph theory for semantic analysis, and statistical methods for language processing. Mathematics helps in building models that capture the complexities of human language and enable AI systems to understand and generate text.
Reinforcement Learning; Reinforcement learning is an AI technique that involves an agent learning to make decisions through trial and error and interactions with an environment. Mathematics, particularly Markov decision processes, dynamic programming, and control theory, provides the formal framework for understanding and optimizing reinforcement learning algorithms. Mathematical optimization methods are used to find optimal policies and value functions.
These are just a few examples showcasing the strong ties between AI and mathematics. Mathematics provides the theoretical underpinnings, algorithms, and techniques that enable AI systems to reason, learn, and make intelligent decisions. The ongoing advancements in AI are often propelled by advancements in mathematical research and vice versa, demonstrating the symbiotic relationship between the two fields.
Now let's give the correlation between univalent functions and artificial intelligence.
The connection between univalent functions and artificial intelligence lies in their shared relevance and application in certain areas of mathematics and computer science, particularly in the field of computational geometry and image processing. While the direct connection may not be apparent, understanding the properties of univalent functions can contribute to the development of algorithms and techniques used in artificial intelligence systems.
Univalent functions, also known as one-to-one or injective functions, are functions that map distinct elements of one set to distinct elements of another set. In complex analysis, univalent functions are studied extensively due to their applications in conformal mapping, where they preserve angles locally.

Conformal mappings find applications in various fields, including physics, engineering, computer graphics, and image processing.
Artificial intelligence, on the other hand, involves the development of algorithms and systems that exhibit intelligent behavior. One area of artificial intelligence where univalent functions find relevance is computational geometry. Computational geometry deals with the design and analysis of efficient algorithms for solving geometric problems. Univalent functions can be used in computational geometry to map complex geometric shapes to simpler, more manageable forms, preserving important geometric properties.
For example, in computer vision tasks such as object recognition and image registration, univalent functions can be employed to perform geometric transformations on images. These transformations can involve mapping complex shapes to simpler ones, preserving angles, distances, or other geometric properties. By utilizing univalent functions, algorithms can manipulate and analyze images more effectively, enabling tasks such as object detection, tracking, and image alignment.
Furthermore, univalent functions can contribute to the development of algorithms for image compression, where preserving the essential information of an image while reducing its size is crucial. By applying conformal mappings using univalent functions, geometric transformations can be employed to simplify complex image structures, leading to more efficient compression algorithms.
In summary, the connection between univalent functions and artificial intelligence lies in their joint application in computational geometry and image processing tasks. Univalent functions, with their properties of preserving angles and geometric properties, can contribute to the development of algorithms used in artificial intelligence systems, enabling tasks such as object recognition, image registration, and image compression. While the connection may be specific to certain areas within artificial intelligence, the understanding and application of univalent functions can enhance the efficiency and effectiveness of computational algorithms in these domains. For the definitions and methods used in this article, you can refer to [1-15].

II. MAIN RESULTS

Now we will look for solutions to some Mathematical problems using the Maple 13 program.
We reached the following definitions using the maple program:
ComplexNumeric - OpenMaple representation of a complex numeric object
Description
The ComplexNumeric class represents a Maple complex numeric object. It contains two Numeric objects one for the real part and one for the imaginary part. ComplexNumeric publicly inherits from Algebraic; therefore, it provides all the member functions from the Algebraic class in addition to those listed here.
Method Summary
Numeric realPart()
Real Part returns the Numeric object that represents the real component of the complex number.
Numeric imaginaryPart()
Imaginary Part returns the Numeric object that represents the imaginary component of the complex number.
complex plane,
n. the complex numbers considered as identified with the infinite two-dimensional space defined by the real and imaginary axes of the Argand diagram; for example,

the point (a, b) of the complex plane represents the complex number $\mathrm{a}+\mathrm{ib}$. Compare extended plane.
Now let's plot an advanced complex function: Plot $|f(z)|$, where $z=r e^{\wedge} i \theta$ and $f(z)=z /\left(e^{\wedge} z-1\right)$, in cylindrical coordinates, with r ranging from 0 to 10 and theta from 0 to 2π.
$>\mathrm{g}:=\operatorname{proc}(\mathrm{z}) \operatorname{local} \mathbf{w} ; \mathbf{w}:=\operatorname{Re}(\mathrm{z}) * \exp (\operatorname{Im}(\mathrm{z}) * \mathbf{I}) ; \mathbf{w / (\operatorname { e x p } (w) - 1)}$ end proc:
$>$ changecoords(complexplot3d(g,0..10+2 $\pi \mathrm{I}$, axes=boxed), cylindrical)

Starting from the basics, let's first code the derivative of a real-defined function:
Now calculate derivative of $y=x^{2}$;
$>\mathrm{f}:=\mathbf{x}->\mathbf{x}^{\wedge} \mathbf{2}$;
$f:=x \rightarrow x^{2}$
$>$ no:=slope $([\mathbf{x}+\mathbf{h}, \mathbf{f}(\mathbf{x}+\mathbf{h})],[\mathbf{x}, \mathbf{f}(\mathbf{x})])$;
no $:=\frac{(x+h)^{2}-x^{2}}{h}$
> sno:=simplify(no);
sno: $=2 x+h$
$>\operatorname{Limit}($ sno,h=0)=limit(sno,h=0);
$\lim _{h \rightarrow 0} 2 x+h=2 x$
$>\operatorname{Diff}(\mathbf{f}(\mathbf{x}), \mathbf{x})=\mathbf{r h s}(\%)$;
$\frac{d}{d x}\left(x^{2}\right)=2 x$
Apart from this, there are programs that show intermediate operations in the solutions of the problems. It is also possible to create a user interface that is used not to write code every time. An example of this is: > with(Maplets[Elements]);
[Action, AlertDialog, Argument, BorderLayout, BoxCell, BoxColumn, BoxLayout, BoxRow, Button, ButtonGroup, CheckBox, CheckBoxMenuItem , CloseWindow, ColorDialog, ComboBox, ConfirmDialog, DropDownBox, Evaluate, FileDialog, Font, GridCell, GridCell2, GridLayout, GridRow, HorizontalGlue , Image, InputDialog, Item, Label, ListBox, Maplet, MathMLEditor, MathMLViewer, Menu, MenuBar, MenuItem, MenuSeparator , MessageDialog , PasswordField, Plotter, PopupMenu , QuestionDialog , RadioButton, RadioButtonMenuItem , Return, ReturnItem, RunDialog, RunWindow, SetOption, Shutdown, Slider, Table, TableHeader , TableItem, TableRow, TextBox, TextField, ToggleButton, ToolBar, ToolBarButton, ToolBarSeparator , VerticalGlue, Window]
>maplet5:=Maplet(Window('title'='derivative",[['"Function:',TextField['Y1']()],["variable:',Tex tField['Y2'](3)],TextBox['TB1']('editable'='false',3..40),[Button('Calculate',Evaluate('TB1'='diff(Y 1,Y2)')),Button('Clear',SetOption('Y1'='"'))]])):
> Maplets[Display](maplet5);

Now let's plot a harmonic function:

$$
\mathrm{v}:=(\mathrm{x}, \mathrm{y})->\left(1 / 4 * \mathrm{y}^{\wedge} 4-3 / 2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 2+2 * \mathrm{y}+1 / 4 * \mathrm{x}^{\wedge} 4\right) ; \quad v:=(x, y) \rightarrow \frac{1}{4} y^{4}-\frac{3}{2} x^{2} y^{2}+2 y+\frac{1}{4} x^{4}
$$

plot3d(v(x,y), $x=-3 \ldots 3, y=-3 \ldots 3$, axes=framed, shading=zhue);

Another example:

$$
>\text { complexplot3d }(\sec (z), z=-2-2 I . .2+2 I, \operatorname{grid}=[10,10])
$$

In the light of the above information, a new subject to be learned can be understood and learned correctly with the effective use of artificial intelligence and computer programs.

In fact, by using this program, it can be checked whether a given complex function is a harmonic function. For this, it is necessary to know the definition of harmonic function and how to use related programs. This leads us to the following question.

An important question: Is it important to know the right information or to know how to reach the right information, today and in the near future?

III. CONCLUSION

Artificial Intelligence is transforming the way students learn complex numbers, offering personalized learning experiences, real-time feedback, interactive visualizations, intelligent tutoring, and data-driven insights. By leveraging AI tools, educators can enhance students' understanding, engagement, and proficiency in this challenging mathematical domain. However, it is vital to strike a balance between AI assistance and fostering students' independent thinking and problem-solving skills. With responsible and ethical integration, AI has the potential to revolutionize mathematics education and empower students to conquer complex subjects with confidence.

REFERENCES

[1] Acharya, B.R.; Factors affecting difficulties in learning mathematics by mathematics learners. Int. J. Elem. Educ. 2017, 6, 8-15.
[2] Bartelet, D.; Ghysels, J.; Groot, W.; Haelermans, C.; Maassen van den Brink, H. The differential effect of basic mathematics skills homework via a web-based intelligent tutoring system across achievement subgroups and mathematics domains: A randomized field experiment. J. Educ. Psychol. 2016, 108, 1-20.
[3] Bennett, R.E.; Sebrechts, M.M. The accuracy of expert-system diagnoses of mathematical problem solutions. Appl. Meas. Educ. 1996, 9, 133-150.
[4] Davadas, S.D.; Lay, Y.F. Factors affecting students' attitude toward mathematics: A structural equation modeling approach. Eurasia J. Math. Sci. Technol. Educ. 2017, 14, 517-529.
[5] Demir, S.; Basol, G. Effectiveness of Computer-Assisted Mathematics Education (CAME) over Academic Achievement: A Meta-Analysis Study. Educ. Sci. Theory Pract. 2014, 14, 2026-2035.
[6] Hwang, G.J.; Tseng, J.C.; Hwang, G.H. Diagnosing student learning problems based on historical assessment records. Innov. Educ. Teach. Int. 2008, 45, 77-89.
[7] Hwang, G.-J.; Tu, Y.-F. Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review. Mathematics 2021, 9, 584. https://doi.org/10.3390/math 9060584
[8] Hwang, G.J.; Xie, H.;Wah, B.W.; Gaševi'c, D. Vision, challenges, roles and research issues of Artificial Intelligence in Education. Comput. Educ. Artif. Intell. 2020, 1, 100001.
[9] Tuomi, I. The Impact of Artificial Intelligence on Learning, Teaching, and Education. Policies for the future, Eds. Cabrera, M., Vuorikari, R \& Punie, Y., EUR 29442 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-97257-7, doi:10.2760/12297, JRC113226.
[10] Voskoglou, M.G.; Salem, A.B.M. Benefits and limitations of the artificial with respect to the traditional learning of Mathematics. Mathematics 2020, 8, 611.
[11] Walkington, C. Using adaptive learning technologies to personalize instruction to student interests: The impact of relevant contexts on performance and learning outcomes. J. Educ. Psychol. 2013, 105, 932-945.
[12] Xin, Y.P.; Tzur, R.; Hord, C.; Liu, J.; Park, J.Y.; Si, L. An intelligent tutor-assisted mathematics intervention program for students with learning difficulties. Learn. Disabil. Q. 2017, 40, 4-16.
[13] Palka, B. P. (1991). An introduction to Complex Function Theory. Springer-Verlag New York, 560p..
[14] Ahlfors, L.V. (1966). Complex Analysis. McGraw-Hill Book Company, 317p.
[15] Conway, J. B. (1973). Functions of Complex Variable. Springer - Verlag, New York, Berlin.

