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Abstract – In this section, we aim to introduce fractional operators that are applicable to real-world 

scenarios, featuring both singular and nonsingular kernels. Given the extensive scope of fractional calculus, 

which encompasses numerous mathematical and practical domains, we employ precise definitions 

alongside shallow water wave theory models. This study offers numerical solutions for various wave theory 

challenges, including wave height distribution across different depths, coastal engineering, and 

electromagnetic wave phenomena. Numerical analysis and strategic approaches are crucial for obtaining 

highly accurate estimates for barriers. The core of our numerical method lies in linearized wave equations, 

focusing on variables such as particle velocity and surface elevation, derived from Eulerian motion and 

continuity equations under the assumption of small amplitude in consistent water depth. We evaluate the 

precision of discretization methods (e.g., finite difference or finite element techniques) based on step size 

(h), noting that approaches where p > 2 often present higher error rates and are considered advanced. 
 
Keywords – Fractional operator, singular kernel, numerical simulation, water wave, acoustics 

 

I. INTRODUCTION 

Mathematics is essential in addressing both straightforward and complex challenges, playing a significant 

role in areas such as coastal and ocean engineering, as well as in electromagnetism. Numerical methods are 

crucial for solving fractional order differential, integral, and algebraic equations that frequently arise in 

engineering and physics. This work aims to introduce the definitions of fractional calculus and demonstrate 

its application in engineering models. Typically, hydraulic model testing is employed to generate accurate 

wave height distributions in harbors. However, the ability to theoretically analyze all harbor disturbances, 

including wave diffraction, reflection, and refraction, would greatly enhance the study of optimal 

breakwater designs. This paper presents examples of wave height distribution calculations in harbors with 

various geometries, considering both constant and variable water depths. The analysis primarily focuses on 

small amplitude wave propagation in regions with constant water depth, assuming irrotational motion. 

Practical computational methods are discussed, which address challenges in coastal and ocean engineering 

without heavily relying on analytical approximations, leading to highly accurate results. Recently, Berkhoff 

(2022) examined the computation of combined refraction-diffraction effects, which involve mathematical 
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approaches to boundary value problems and the application of fractional differential operators with both 

singular and nonsingular kernels. Additionally, we evaluate the effectiveness of breakwaters in mitigating 

tsunami impacts by analyzing wave height and flow distribution in harbors of various configurations. Our 

numerical analysis and simulations, conducted using MATLAB, provide a flexible method for determining 

wave height distribution around different breakwater configurations, with the option to add vertical walls 

behind them. The motion dynamics are modeled mathematically through differential equations, which are 

typically unsolvable analytically, except in special cases. Thus, we explore asymptotic and approximate 

solutions and perform deterministic or stochastic computer simulations. However, translating continuous 

problems into discrete ones for numerical computation introduces errors. In practical applications, such as 

predicting ocean currents or electromagnetic waves, obtaining an exact solution is often nearly impossible. 

Given this context, fractional calculus will be applied to model shallow water waves, and numerical results 

will be generated. However, we first need to cover some basic definitions related to fractional calculus. 

II. HISTORY OF FRACTIONAL CALCULUS 

Applied mathematics is vital in academia, with scientists frequently utilizing it to solve practical issues. 

This extensive domain includes areas such as differential equations, fractional differential equations, 

mathematical modeling, calculus on time scales, and dynamic systems. Fractional calculus, a significant 

branch, has a rich history marked by contributions from numerous mathematicians. The development of 

integer-order calculus in the 17th century by Sir Isaac Newton and Gottfried Wilhelm Leibniz laid the 

groundwork for later advances. Newton's contributions, in particular, had a profound impact on the 

evolution of calculus. As the field progressed, fractional-order derivatives and integrals began to receive 

considerable attention. Without Newton's foundational work, fractional calculus and related mathematical 

areas might not have achieved their current level of significance. Today, advancements in mathematics and 

technology have expanded the application of applied mathematics across a broad range of scientific fields. 
[1]-[2]-[3]-[4]-[5]-[6]-[7]-[8]-[9]-[10]-[11]-[12]-[13]-[14]-[15]-[16]-[17]-[18]-[19]-[20]-[21]-[22]-[23]-

[25]-[26]-[27]-[28]-[29]-[30]-[31]-[32]-[33]-[34]-[35]-[36]-[37]-[38]-[39]-[40]-[41]-[42]-[43]-[44]-[45]-

[46]-[47]-[48]-[49]-[50]-[51]-[52]-[53]-[54]-[55]-[56]-[57]-[58]-[59]-[60]-[61]-[62]-[63]-[64]. This has 

led to significant research in fractional calculus, both in theoretical and applied settings. Modern fractional 

calculus encompasses various areas, including discrete, local, and non-local fractional calculus, as well as 

conformable and deformable fractional calculus in continuous scenarios. Research has extensively 

examined fractional operators with both singular and non-singular kernels. Additionally, Abdeljawad and 

Baleanu introduced a novel non-local fractional derivative featuring a Mittag-Leffler non-singular kernel 

and integration by parts, contributing to the advancement of the field.in [65]. Jarad, F Abdeljawad, T and 

Baleanu, D also utilized Caputo's modification in their work on generalized fractional derivatives. [66]. 

Additionally, Baleanu, D, Hasanbadi, M., Vaziri, A.M. and Jajarmi, A. developed a new strategy for 

addressing HIV/AIDS transmission using general fractional modeling combined with an optimal control 

approach, [67]. Peter, O.J.,  Shaikh, A.S., Ibrahim, M.O.,  Nisar, K.S., Baleanu, D., Khan, L., and Abioye, 

A.I., used the Atangana-Baleanu fractional operator to analyze and model the dynamics of the Covid-19 

outbreak in Nigeria. [68]. Lastly, fractional analysis was applied to models that include HIV with CD++ T-

cells and the SIRS-SI disease model, [69]-[70]. 

III. DEFINITIONS 

3.1 Grunwald-Letnikov fractional derivatives 

In [71], an approach is explored that aims to unify two concepts traditionally treated separately in calculus: 

the derivative of integer order ρ and ρ-fold integrals. This approach originates from the definition of limits 

in calculus.Let, y = p(t) is a continuous function then the first order derivative, 

𝔜p(t) = lim
h→0

p(t + h) − p(t)

h
 

𝔜2p(t) = 𝔜(𝔜p(t)) = 𝔜{lim
h→0

p(t + h) − p(t)

h
} 
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= lim
h→0

𝔜{p(t + h) − p(t)}

h
            

= lim
h→0

𝔜p(t + h) − 𝔜p(t)

h
             

                                                       = lim
h→0

{
(lim
h→0

p(t + 2h) − p(t + h)
h

) − (lim
h→0

p(t + h) − p(t)
h

)

h
} 

𝔜2p(t) = lim
h→0

p(t + 2h) − p(t + h) − p(t + h) + p(t)

h2
 

= lim
h→0

p(t + 2h) − 2p(t + h) + p(t)

h2
      

𝔜3p(t) = 𝔜(𝔜p(t)) = 𝔜{lim
h→0

p(t + 2h) − 2p(t + h) + p(t)

h2
} 

= lim
h→0

𝔜{p(t + 2h) − 2p(t + h) + p(t)}

h2
 

   = lim
h→0

𝔜p(t + 2h) − 2𝔜p(t + h) + 𝔜p(t)

h2
 

= lim
h→0

{
(lim
h→0

p(t + 3h) − p(t + 2h)
h

) − (lim
h→0

2p(t + 2h) − 2p(t + h)
h

) + (lim
h→0

p(t + h) − p(t)
h

)

h2
} 

= lim
h→0

p(t + 3h) − 3p(t + 2h) + 3p(t + h) − p(t)

h3
 

According to the mathematical induction (see [71]); 

𝔜kp(t) = lim
h→0

1

hk
∑(−1)r (

k

r
) p(t − rh),   k ∈ ℤ

k

r=0

, 

where,  

 

                                                 (
k

r
) =

k(k − 1)(k − 2)… (k − r + 1)

r!
                                                               (3.1) 

and so,  

                        𝔜kp(t) = lim
h→0

1

hk
∑(−1)r

k(k − 1)(k − 2)… (k − r + 1)

r!
p(t − rh),                                     (3.2)

k

r=0

 

In [71], if we assume k is negative values then; 

[
k

r
] =

k(k + 1)… (k + r − 1)

r!
 

So, we have 

(
−k

r
) =

−k(−k − 1)… (−k − r + 1)

r!
= (−1)r [

k

r
] 

𝔜−kp(t) = lim
h→0

1

hk
∑(−1)r [

k

r
] p(t − rh),    k > 0.

k

r=0

 

Theorem 3.1: lim
h→0

ph
(−k)(t)

⏟      
=

nh=t−a

𝔜t
−kp(t).

a

 
  

Proof 3.1: According to the induction theorem, for k = 1 we have (see [71]), 
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                                        ph
−1(t) = h∑p(t − rh)                                                     (3.3)

k

r=0

                                                            
  

In here p(t) is considered is to be continuous function, we show that (see [71]); 

                                          lim
h→0

ph
−1(t) = 𝔜t

−1p(t) = ∫ p(t − s)ds = ∫p(τ)dτ                                         (3.4)

t

a

t−a

0a

 

 

For k = 2 then; 

[
2

r
] =

2.3… (2 + r − 1)

r!
=
2.3… (1 + r)

r!
=
2.3… r(r + 1)

r!
= r + 1 

                                                                            ph
(−2)(t) = h∑(r + 1)hp(t − rh)                                         (3.5)

k

r=0

 

 

                                                                                   ph
(−2)(t) = h∑rhp(t − rh)                                               (3.6)

k+1

r=1

 

For k = 3 then; 

[
3

𝑟
] =

3.4.5… (3 + 𝑟 − 1)

𝑟!
=
3.4.5… (2 + 𝑟)

𝑟!
=
2.3.4.5…𝑟(𝑟 + 1)(𝑟 + 2)

2𝑟!
=
(𝑟 + 1)(𝑟 + 2)

2
 

 

                                                                                   ph
(−3)(t) = ∑

(𝑟 + 1)(𝑟 + 2)

ℎ
hp(t − rh)                       (3.7)

k+2

r=2

 

                                                                                   ph
(−3)(t) = ∑(r + 1)(r + 2)p(t − rh)                            (3.8)

k+2

r=2

 

Integrating the relationship (see [71]); 

d

dt
( 𝔜t

−kp(t)a
 ) =

1

(k − 2)!
∫(t − τ)k−2p(τ)dτ = 𝔜t

−k+1p(t)a
 

t

a

. 

From 𝑎 to 𝑡 we satisfy (see [71]); 

𝔜t
−kp(t)a

 = ∫( 𝔜t
−k+1p(t)a

 )dt

t

a

 

               = It
 ( 𝔜t

−k+1p(t)a
 )a

  

    = Ia
 
t
 ( 𝔜t

−k 𝔜t
 

a
 p(t)a

 ) = Ia
 
t
 𝔜t

 
a
 ( 𝔜t

−k p(t)a
 ) = 𝔜t

−k p(t).a
  

 

𝔜t
−k+1p(t)a

 = ∫( 𝔜t
−k+2p(t)a

 )dt

t

a

 

                    = It
 ( 𝔜t

−k+1+1p(t)a
 )a

  

                        = It
 ( 𝔜t

k+1 𝔜t
 

a
 p(t)a

 )a
     

                  = It
 𝔜t

 
a
 𝔜t

k+1 
a
 p(t)a

   

      = 𝔜t
k+1 p(t)a

 . 
and so, 
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𝔜t
−kp(t)a

 = ∫dt∫( 𝔜t
−k+2 p(t)a

 )dt

t

a

t

a

 

                             = ∫𝑑𝑡∫𝑑𝑡

𝑡

𝑎

∫( 𝔜t
−k+3 p(t)a

 )𝑑𝑡

𝑡

𝑎

𝑡

𝑎

 

                    = ∫dt∫dt

t

a

∫dt

t

a

∫dt

t

a

…∫dt

t

a

t

a⏟                
k−times

 

3.2 Riemann-Liouville fractional operator 

Integro differential expression of Grunwald-Letnikov fractional operator is identified by (see [71]); 

𝔜t
k p(t) = (

d

dt
)
n+1

∫(t − τ)n−kp(τ)dτ,                                (n ≤ k < n + 1)                                        (3.9)

t

a

a
  

Expression (3.9) represents the widely recognized Riemann-Liouville definition of the fractional 

derivative. It can be shown that the Grunwald-Letnikov fractional operator, applicable to fractional order 

derivatives when the function p(t) is k + 1 times continuously differentiable, can also be derived from 

expression (3.9) by repeatedly applying integration by parts and differentiation, as demonstrated in [71]. 

 𝔜t
k p(t) = (

d

dt
)
n+1

∫(t − τ)n−kp(τ)dτ =∑
p(r)(a)(t − a)−k+r

Γ(−k + r + 1)
+ ∫(t − τ)n−kp(n+1)(τ)dτ,    

t

a

n

r=0

 

t

a

a
  

                                                                                 = 𝔜t
k p(t),     (n ≤ k < n + 1),                                     (3.10)a

  

 

 3.3 Caputo fractional operator 

The Caputo fractional derivative and integral have significantly advanced fractional calculus, expanding its 

use in diverse scientific disciplines (see [71]). This operator is particularly useful in domains like 

engineering, finance, seismology, biological modeling, data analytics, electromagnetic theory, physical 

simulations, and chemistry.. In [71], Moreover, the Riemann-Liouville approach often results in initial 

conditions dependent on the limit values of the Riemann-Liouville fractional derivatives at the lower bound 

t = a. 
 

lim
t→a

𝔜t
β−1
p(t) = c1,a

  

lim
t→a

𝔜t
β−2
p(t) = c2,a

  

                                                                     ……………………                                                         (3.11) 

lim
t→a

𝔜t
β−m

p(t) = ck,a
  

where, ck, k = 1,2, … ,m are given constants. Some definitions and certain solutions were given place [72]-

[73]-[74]-[75]. Caputo’s definition is defined by (see [71]); 

                               𝔜t
β
p(t) =

1

Γ(β − k)
∫

p(k)(τ)dτ

(t − τ)β−k+1
,                    (k − 1 < β ≤ k)                             (3.12)

t

a

a
C  

In according to this information, p(t), for β→k the Caputo derivative become a conventional k-th derivative 

of the function p(t), (see [71]). In addition to this,  

lim
β→k

𝔜t
β
p(t) = lim

β→k
(
p(k)(β)(t − a)k−β

Γ(k − β + 1)
) +

1

Γ(k − β + 1)
∫(t − τ)k−βp(k+1)(τ)dτ

t

a

a
C  
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= p(k)(β) + ∫p(k+1)(τ)dτ = p(k)(t),     k = 1,2, …

t

a

         

                                             = p(k)(β) + It
 p(k+1)(τ)dτ = p(k)(t)                                                                 (3.13)a
   

This suggests that, similar to the Grunwald-Letnikov and Riemann-Liouville methods, the Caputo 

approach also provides a way to interpolate between integer-order derivatives [71]. A key benefit of the 

Caputo method is that the initial conditions for fractional differential equations using Caputo derivatives 

align with those for integer-order differential equations, involving the limit values of integer-order 

derivatives of the functions at the lower bound t = a, [71]. To highlight the differences in initial 

conditions between fractional differential equations with Riemann-Liouville and Caputo derivatives, we 

can examine the corresponding Laplace transform formulas for the case where a = 0 [71]. The Laplace 

transform for the Riemann-Liouville fractional derivative is given by [71]. 

                  ∫ e−st{ 𝔜t
β
p(t)0

 }dt = sβF(s) −∑sr
k−1

r=0

∞

0

𝔜t
β−r−1

p(t)0
 |t=0,               (k − 1 ≤ β < k)              (3.14) 

The Laplace transform of the Caputo fractional derivative is done by, (see [71]-[72]); 

 

             ∫ e−st{ 𝔜t
β
p(t)0

 C }dt = sβF(s) −∑sβ−r−1
k−1

r=0

∞

0

p(r)(0),                       (k − 1 < β ≤ k)                   (3.15) 

We applied the Laplace transform technique to both the Riemann-Liouville and Caputo fractional operators.   

IV. TYPES OF WAVES AND WAVE EQUATIONS 

4.1 Types of waves and wave equations 

4.1.1 Transverse Wave 

In physics, transverse waves oscillate perpendicular to their direction of travel [81]. Conversely, 

longitudinal waves oscillate parallel to their direction of movement, particularly when traveling along a 

surface [81]. Both wave types can propagate on surfaces; for example, seismic waves such as S-waves, P-

waves, and Rayleigh waves all occur during an earthquake [81]. Electromagnetic waves, which are 

inherently transverse, do not require a medium for propagation [76]-[77]. The term "transverse" refers to 

waves where the oscillation direction is at right angles to the direction of particle movement in a medium 

or, for electromagnetic waves, perpendicular to the direction of wave propagation [78]-[79]. 
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Here,  

A: Amplitude of the wave. 

k: Wave number, related to the wavelength (λ) by k =
2π

λ
. 

𝝎: Angular frequency, related to the period (T) by 𝜔 =
2𝜋

𝑇
. 

t: Time variable, which changes to animate the wave. 

x: Position along the wave. 

 

 

 

 

 

 

 

 

                                                                                             

 

 

 

 

 

 

•  A: The wave's amplitude. 

•  k: The wave number, which is connected to the wavelength. 

•  ω: The angular frequency. 

•  t: The time variable, which is updated within the loop to animate the wave. 

•  X and Z: 2D grids representing the coordinates along the x and z axes. 

 

4.1.2 Mechanical Waves 

Mechanical waves are disturbances that travel through a material medium, transmitting energy through it. 

Examples of mechanical waves include transverse waves, longitudinal waves, sound waves, and surface 

waves [80]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wave Parameters: 

L: The string's length. 
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T: The tension within the string. 

𝛍: The linear mass density, which is the mass per unit length of the string. 

A: The wave's amplitude. 

f: Frequency of the wave. 

c: The speed of the wave, determined using the formula c = √T μ⁄ . 
𝛌, k, 𝛚: The wavelength, wave number, and angular frequency, respectively. 

 

 

 

4.1.3 Matter Waves 

In quantum physics, the concept of matter waves reveals that matter exhibits wave-like properties at 

scales where they can be observed [82]. For instance, electron beams, similar to light and water waves, can 

experience diffraction [82]. 
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4.1.4 Sound Waves 

In physics, sound describes vibrations that travel as acoustic waves through various media such as 

gases, liquids, or solids [83]. Sound can be understood as:  

(a) Oscillations in pressure, stress, particle displacement, or particle velocity that propagate through 

a medium, influenced by internal forces such as elastic or viscous forces, or a combination of these 

[83].  

       (b)The sensory experience produced by these oscillations. Sound can be viewed as wave motion   

traveling through air or other elastic substances, serving as a stimulus, or as the activation of the auditory 

system that leads to the perception of hearing [83]. 

 

Explanation: 

• Parameters: Establish the physical dimensions and settings for the simulation. 

• Initialization: Create the 2D spatial grid and set up the initial pressure fields. 

• Source Term: Specify a point source situated at the center of the grid. 

• Time-stepping Loop: Update the pressure field with the 2D finite difference method and 

incorporate the source term. 

• Plotting: Display the wave propagation in 2D through a surface plot. 
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4.1.5 Surface Waves 

Surface waves are seismic waves that originate at the Earth's surface and travel more slowly than other 

types of seismic waves. The main types of surface waves studied are Rayleigh and Love waves. Rayleigh 

waves travel along the surface of solids as acoustic waves and can be generated by localized impacts or 

piezoelectric methods. They are often used in non-destructive testing to detect defects and are also 

generated during earthquakes. When Rayleigh waves are confined to specific layers, they are referred to as 

Lamb waves, Rayleigh-Lamb waves, or generalized Rayleigh waves. 

Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves resulting 

from the interaction of shear waves (S-waves) guided by an elastic layer that is bonded to a half-space of 

elastic material, with a vacuum on the opposite side. In seismology, Love waves, also known as Q-waves 

(from the German word “Quer,” meaning lateral), cause horizontal displacement of the Earth's surface 

during earthquakes. Love waves, first mathematically predicted by Augustus Love in 1911, differ from 

other seismic waves such as P-waves and S-waves (body waves) and Rayleigh waves (another type of 

surface wave). While Love waves travel slower than P- and S-waves, they move faster than Rayleigh waves 

and occur when a low-velocity layer is situated above a high-velocity layer or sub-layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s-waves simulation in 2-dimension. 
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s-waves simulation in 3-dimension. 

4.1.6 Ultraviolet 

Ultraviolet (UV) light is electromagnetic radiation with wavelengths ranging from 10 to 400 

nanometers, falling between visible light and X-rays [85]. UV radiation constitutes about 10% of the 

Sun’s total electromagnetic output and can also be generated by electric arcs, Cherenkov radiation, and 

various types of lamps, including mercury-vapor, tanning, and black lights [85]. 

 

 

 

 

 

 

 

 

 

 Wavelength and Frequency: The wavelength is set to 300 nm, which is within the ultraviolet range. 

The frequency is chosen accordingly. 

 Wave Number (k) and Angular Frequency (ω): These are calculated using the wave parameters. 

 Wave Equation: The electric field E(x, t) is computed as a cosine function representing the wave. 
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4.1.7 Progressive waves 

Progressive waves, or traveling waves, are disturbances that carry energy through a medium without 

permanently altering the medium itself. As these waves move, the particles in the medium vibrate around 

their equilibrium positions but do not travel along with the wave [85]-[86]. 

• Energy Transfer: Progressive waves transmit energy from one point to another in the direction of 

wave propagation [85]-[86]. 

• No Permanent Displacement: After the wave passes, the particles return to their original 

positions, leaving the medium essentially unchanged [85]-[86]. 

• Waveform Propagation: The shape of the wave moves through the medium, with each point on 

the wave oscillating, though the phase of oscillation varies along the wave’s direction [85]-[86]. 

• Types: Progressive waves can be either transverse, where vibrations are perpendicular to the 

direction of travel, or longitudinal, where vibrations are parallel to the direction of the wave [85]-

[86]. 

• Wave Equation: The general equation for a progressive wave is [85]-[86]. 

y(x, t) = Asin(kx − ωt + φ) 

where , A is the amplitude, 

k is the wave number, 

ω is the angular frequency, 

φ is the phase constant, 

 x is the position, and 

 t is the time. 
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4.1.8 Longitudinal waves 

Longitudinal waves, also referred to as compressional or pressure waves, involve vibrations of the 

medium’s particles in the same direction as the wave’s travel [87]. This results in movement parallel to the 

wave’s direction [87]. These waves generate alternating regions of compression and rarefaction, hence their 

name, and are also known for their impact on pressure changes [87]. An example is a wave traveling through 

a stretched Slinky toy, where the distance between the coils changes [87]. Common instances of 

longitudinal waves include sound waves, which involve pressure fluctuations and particle movement in 

elastic materials, and seismic P-waves, which occur during earthquakes [87]. 

 

 

 

 

 

 

 

 

4.1.9 Seismic waves 

Seismic waves are mechanical waves that transmit acoustic energy through Earth or other celestial 

bodies [88]. These waves can be initiated by natural phenomena like earthquakes, volcanic activity, 

magma movements, and large-scale landslides, as well as by significant human activities such as 

explosions [88]. Seismologists employ instruments like seismometers, hydrophones (for underwater 

measurements), and accelerometers to analyze these waves [88]. Seismic waves differ from seismic 

noise, which consists of continuous low-amplitude vibrations from various sources [88]. The speed of 

seismic waves is influenced by the medium's density, elasticity, and the specific type of wave. 

Generally, wave velocities increase with depth in the Earth's crust and mantle, but they drop sharply 

when entering the outer core [89]. Earthquakes generate various types of waves, each traveling at 

different speeds [88]. By recording these waves, seismic observatories can help scientists pinpoint the 

earthquake’s epicenter [88]. In geophysics, methods such as seismic wave refraction and reflection are 

vital for probing the Earth's interior, and researchers also generate and measure vibrations to explore 

shallow subsurface structures [88]. 
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•  Grid Size: Defines the 3D space where the wave will propagate. 

•  Time Steps: Sets the number of time steps for the simulation. 

•  Wave Parameters: Defines the wave's amplitude, speed, and the position of the wave source. 

•  3D Grid: A 3D matrix (x, y, z) is created to represent the space through which the wave propagates. 

•  Wave Field Initialization: The wave field is initialized to zero at the start. 

•  Wave Propagation: The loop calculates the distance from the source to each point in the grid and updates 

the wave field using a simple sinusoidal function. 

•  Visualization: The isosurface function is used to create a 3D visualization of the wave at each time step, 

with the drawnow command updating the plot in real time. 

 

 

 

 

 

 

 

 

•  Grid Size: Defines the 2D space where the wave will propagate. 

•  Time Steps: Sets the number of time steps for the simulation. 

•  Wave Parameters: Defines the wave's amplitude, speed, and the position of the wave source. 

•  2D Grid: A 2D matrix (x, y) is created to represent the space through which the wave propagates. 

•  Wave Field Initialization: The wave field is initialized to zero at the start. 

•  Wave Propagation: The loop calculates the distance from the source to each point in the grid and updates 

the wave field using a sinusoidal function. 

•  Visualization: The imagesc function displays the wave field as a color image, with colorbar showing the 

amplitude scale. The pause command creates an animation effect by updating the plot at each time step. 
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4.1.10 Diffraction 

Diffraction refers to the bending or interference of waves as they encounter obstacles or pass through 

openings, allowing them to reach regions that would otherwise be in the shadow of the obstacle or 

aperture [90]. This occurs because the obstacle or opening acts as a new source of the wave [90]. The 

phenomenon of diffraction was first documented by Italian scientist Francesco Maria Grimaldi, who 

accurately described it in 1660, [90]. 

 

 

 

 

 

 

 

 

 

 

•  Grid Size: Defines the 2D space where the wave will propagate. 

•  Time Steps: Sets the number of time steps for the simulation. 

•  Wave Parameters: Defines the wave's amplitude, speed, and the position of the wave source. 

•  2D Grid: A 2D matrix (x, y) is created to represent the space through which the wave propagates. 

•  Wave Field Initialization: The wave field is initialized to zero at the start. 

•  Wave Propagation: The loop calculates the distance from the source to each point in the grid and updates 

the wave field using a sinusoidal function. 

•  Visualization: The imagesc function displays the wave field as a color image, with colorbar showing the 

amplitude scale. The pause command creates an animation effect by updating the plot at each time step. 

 

4.1.11 Light Waves 

Visible light is a form of electromagnetic radiation that is detectable by the human eye [91]. It spans 

wavelengths ranging from 400 to 700 nanometers (nm) and frequencies between 750 and 420 terahertz 

[92]. Positioned between infrared radiation, which has longer wavelengths and lower frequencies, and 

ultraviolet radiation, which has shorter wavelengths and higher frequencies, visible light is part of the larger 

spectrum known as optical radiation [93]-[94]. In physics, the term "light" may also refer to electromagnetic 

radiation across all wavelengths, not just those within the visible range [95]-[96]. This includes gamma 

rays, X-rays, microwaves, and radio waves. The primary characteristics of light include its intensity, 

direction of propagation, frequency or wavelength spectrum, and polarization. In a vacuum, light travels at 

approximately 299,792,458 meters per second, a fundamental constant in natüre [97]. Light exhibits both 
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wave-like and particle-like properties, with photons serving as the massless particles responsible for 

transmitting electromagnetic radiation. The study of light, known as optics, is a vital area in modern physics. 

The Sun is the main natural light source on Earth, with fire historically providing another significant source, 

from ancient fires to modern kerosene lamps. Today, electric lighting has largely replaced firelight as the 

primary means of illumination [91]. 

 

 

 

 

 

 

 

 

 

 

Grid Size and Parameters: Defines the grid size and parameters for the aperture and wavelength. 

2D Grid Creation: Uses meshgrid to create a 2D spatial grid for X and Y coordinates. 

Aperture Definition: Creates a circular aperture in the grid. 

Wave Field Calculation: Simulates wave propagation and diffraction using a sine function. 

Aperture Effect: Applies the aperture effect by zeroing out the wave field outside the aperture. 

Visualization: Uses imagesc to display the wave field as an image. 

4.1.12 Refraction 

In physics, refraction refers to the change in direction of a wave as it transitions from one medium to another 

[98]. This change in direction occurs due to a variation in the wave's speed, which is influenced by the 

properties of the new medium [99]. While light refraction is the most commonly observed example, other 

types of waves, such as sound waves and water waves, also undergo refraction [98]. The degree to which a 

wave is refracted depends on both the change in its speed and the angle at which it originally approached 

the boundary between the two media [98]. 
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4.1.13 Electromagnetic waves 

Electromagnetic (EM) waves consist of oscillating electric and magnetic fields that carry energy and 

momentum through space [100]. These waves are solutions to Maxwell's equations, the core principles of 

electrodynamics [100]. Unlike mechanical waves, EM waves do not require a medium and can propagate 

through a vacuum [100]. One example of an EM wave is the sinusoidal plane wave. Although not all EM 

waves are sinusoidal plane waves, any electromagnetic wave can be represented as a linear combination of 

sinusoidal plane waves moving in different directions [100]. A plane EM wave moving along the x-axis 

can be expressed in the following form [100]. 

E(x, t) = Emax cos(kx − ωt + φ) ,   B(x, t) = Bmax cos(kx − ωt + φ). 

E is the electric field vector, and B is the magnetic field vector of the EM wave [100].  For 

electromagnetic waves E and B are always perpendicular to each other and perpendicular to the direction 

of propagation [100].  The direction of propagation is the direction of E x B [100]. "If an electromagnetic 

wave propagates in the x-direction with the electric field E oriented along the j-axis, then the magnetic field 

B will be along the k-axis, and the cross product j × k results in the unit vector i, [100]. Electromagnetic 

waves are characterized as transverse waves [100]. 
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4.1.14 Ultrasound Waves 

Ultrasound refers to sound waves with frequencies exceeding 20 kilohertz, which is the approximate upper 

limit of human hearing for young, healthy individuals [101]. The principles governing acoustic waves apply 

to all frequency ranges, including ultrasound [102]. Devices that use ultrasound operate within a frequency 

range from 20 kHz to several gigahertz [102]. Ultrasound technology has various applications [102]. It is 

utilized for object detection and distance measurement [102]. In the medical field, ultrasound imaging, also 

known as sonography, is commonly employed. In nondestructive testing, ultrasound helps identify hidden 

defects in products and structures [102]. Additionally, ultrasound is used in industrial processes for tasks 

like cleaning, mixing, and speeding up chemical reactions. Certain animals, including bats and porpoises, 

use ultrasound to navigate and locate prey and obstacles [103]. 

 

 

 

 

 

 

 

 

 

4.1.15 Gamma ray 

Gamma rays, denoted by the symbol γ, represent a highly penetrating type of electromagnetic radiation 

produced during the radioactive decay of atomic nuclei [104]. These rays have the shortest wavelengths in 

the electromagnetic spectrum, typically shorter than X-rays [104]. Gamma rays possess frequencies 

exceeding 30 exahertz (3. 1019 Hz) and wavelengths less than 10 picometers (10−11 m), making their 

photons the most energetic of all electromagnetic radiation [104]. The discovery of gamma radiation is 

attributed to Paul Villard, a French chemist and physicist, who identified it in 1900 while examining 

radiation from radium [104]. Subsequently, in 1903, Ernest Rutherford coined the term "gamma rays" for 

this radiation due to its significant penetrating ability, distinguishing it from the alpha and beta rays 

discovered earlier by Henri Becquerel, which were named in order of increasing penetration strength [104]. 

Gamma rays emitted from radioactive decay typically have energies ranging from a few kiloelectronvolts 

(keV) up to around 8 megaelectronvolts (MeV), which aligns with the energy levels of nuclei with relatively 

long lifetimes [104]. Gamma spectroscopy can analyze this energy spectrum to determine the identity of 

decaying radionuclides [104]. Extremely high-energy gamma rays, with energies between 100 and 1000 

teraelectronvolts (TeV), have been detected from cosmic sources like the Cygnus X-3 microquasar [104]. 

On Earth, gamma rays primarily arise from radioactive decay and secondary radiation due to interactions 

between cosmic rays and the atmosphere [104]. Additionally, rare natural phenomena, such as terrestrial 

gamma-ray flashes, occur when electrons interact with nuclei, producing gamma rays [104]. Artificial 

sources of gamma rays include processes like nuclear fission in reactors and high-energy physics 

experiments, such as the decay of neutral pions and nuclear fusion [104]. Gamma rays are a form of ionizing 



International Journal of Advanced Natural Sciences and Engineering Researches 
 

20 
 

radiation and can be harmful to living organisms [104]. They have the potential to induce DNA mutations, 

increase the risk of cancer and tumors, and cause severe effects like burns and radiation sickness at high 

exposures [104]. Their significant penetrating ability allows them to affect internal organs and bone marrow 

[104]. In contrast to alpha and beta radiation, gamma rays can traverse the body with relative ease, which 

presents a significant challenge for radiation protection [104]. Effective shielding often requires dense 

materials such as lead or concrete [104]. On Earth, the magnetosphere shields most forms of dangerous 

cosmic radiation, though it provides limited protection against gamma rays [104]. 

 

 

 

 

 

 

 

 

 

4.1.16 Microwave 

Microwaves are a type of electromagnetic radiation characterized by wavelengths that are shorter than 

traditional radio waves but longer than infrared radiation [105]. Their wavelength spans approximately 

from one meter to one millimeter, which corresponds to frequency ranges between 300 MHz and 300 

GHz, [105].   

4.1.18 Shallow water wave 

As waves move into shallow water, they start to interact with the ocean floor, which disrupts their free 

orbital motion [107]. The water particles no longer return to their initial positions as they would in deeper 

water. In shallower areas, the waves become taller and more abrupt, eventually forming the characteristic 

sharp-crested shape [106]. Once the wave breaks, it transforms into a wave of translation, leading to 

increased erosion of the seabed [106]. Cnoidal waves are precise periodic solutions to the Korteweg–de 

Vries equation, applicable in shallow water where the wavelength significantly exceeds the water depth 

[106]. 

 

 

 

 



International Journal of Advanced Natural Sciences and Engineering Researches 
 

21 
 

 

 

 

 

 

 

 

 

4.1.19 Wave Equation 

In physics, the wave equation plays a crucial role in providing a mathematical interpretation of wave 

phenomena. Although it is often studied within the reals of theoretical physics and classical mechanics, 

our focus here is on its mathematical formulation. A wave can be described as a function that represents 

the propagation of waves across surfaces, whether in two dimensions or higher. By considering the one-

dimensional case, the wave equation can be derived from Maxwell's equations [108]. For scalar 

functions, then, 

                                        
∂2f

∂x2
=
1

v2
∂2f

∂t2
= 0                                                                                                       (4.1) 

for light wave and c is a light speed. In reference [108], the equations for water waves, air waves, and 

seismic waves describe the properties of most wave phenomena, extending beyond just light waves. In 

many practical scenarios, the velocity of a wave varies with its amplitude, meaning that v =  v(f). This 

relationship can make finding solutions more challenging. Suppose v1(x, t) and v2(x, t) are solutions; 

according to D'Alembert's equation, the wave equation can be expressed with v as the characteristic. 

The characteristic equation [109] is given by x ±  ct = constant, where the ± sign represents the two 

solutions to the quadratic equation [109]. Therefore, a variable transformation can be applied, ξ = x + ct 

for positive solution, γ = x − ct for negative solution, [109], and uξγ = uγξ = 0. The general solution 

of partial differential equation u(ξ, γ) = ψ(ξ) + φ(γ) where φ and ψ are ∁1 functions, [109]. Let’s look 

x, t coordinates, 

u(x, t) = ψ(x + ct) + φ(x + ct) 

u is ∁2if ψ and φ are ∁2. For, 

u(x, 0) = ψ(x) + φ(x) = k(x) and ut(x, 0) = cψ
′(x) − cφ(x) = c{ψ′(x) − φ(x)} = p(x). We can 

integrate the last equation to get (see [109]); 

𝑐𝜓(𝑥) − 𝑐𝜑(𝑥) = ∫𝑝(𝜉)𝑑ξ + 𝑐1,        𝑐1 ∈ ℝ

𝑥

−∞

. 
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and we can solve the system using known equations to obtain [109], 

φ(x) = −
1

2c
(−ck(x) − ( ∫p(ξ)dξ + c1

x

−∞

)) 

ψ(x) = −
1

2c
(−ck(x) + ( ∫p(ξ)dξ + c1

x

−∞

)) 

Now, using [109]; 

u(x, t) = ψ(x + ct) + φ(x − ct) 

accordingto the D’Alembert’s formula becomes, 

u(x, t) = {
k(x + ct) + k(x − ct)

2
} +

1

2c
∫ p(ξ)dξ

x+ct

x−ct

 

u(x, t) =
1

2
{k(x + ct) + k(x − ct)} +

1

2c
Ix+ct
 

x−ct
 p(ξ)dξ                                                                         (4.2) 

The numerical resolution of the wave equation is a significant topic in computational mathematics and 

physics, with diverse applications such as seismic wave analysis and electromagnetic wave simulations. 

The Finite Difference Method (FDM) is a widely used numerical technique for addressing the wave 

equation, known for its straightforwardness and efficiency. Here’s a summary of how FDM is applied 

to the wave equation, along with essential concepts and references for additional study.  

Finite Difference Method for the Wave Equation 

Formulation 

The wave equation in one dimension is given by [109]-[110]-[111]-[112]-[113]-[114]-[115]-[116]-

[117]-[118]-[119]-[120]-[121]-[122], 

vtt = c
2vxx 

To apply the finite difference method, discretize the spatial and temporal domains: 

Spatial Domain: Divide the spatial domain x∈[0, L] into N intervals of length ∆x resulting in a grid of 

points xi = i∆x, where i = 0,1,2, … , N. 

Temporal Domain: Divide the time interval t ∈ [0, T] into M intervals of length ∆t, resulting in time 

steps tn = n∆t, where n = 0,1,… ,M. 

Discretization: We need to apply finite differences to approximate the derivatives: 
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i) Second derivative in time: 

∂2v(xi, t
n)

∂t2
≈
vi
n+1 − 2vi

n + vi
n−1

(∆t)2
 

ii) Second derivative in space:  

                         
∂2v(xi, t

n)

∂x2
≈
vi+1
n − 2vi

n + vi−1
n

(∆x)2
 

Approximatioons substitution is used into the wave equation: 

vi
n+1 − 2vi

n + vi
n−1

(∆t)2
= c2

vi+1
n − 2vi

n + vi−1
n

(∆x)2
 

Rearranging to solve for ui
n+1: 

vi
n+1 = 2vi

n − vi
n−1 + (

c∆t

∆x
)
2

(vi+1
n − 2vi

n + vi
n−1) 

1) Dirichlet Boundary Conditions 

These conditions specify the value of the wave function at the boundaries: 

u(0, t) = U(L, t) = 0 

2) Neumann Boundary Conditions 

These conditions fix the gradient of the wave function at the boundaries: 

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0 

3) Robin Boundary Conditions 

Robin conditions combine Dirichlet and Neumann conditions: 

αu(0, t) + β
∂u

∂x
(0, t) = 0 

αu(L, t) + β
∂u

∂x
(L, t) = 0 

4) Periodic Boundary Conditions 

These assume the wave function is periodic: 

u(0, t) = u(L, t) 
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∂u

∂x
(0, t) =

∂u

∂x
(L, t) 

5) Mixed Boundary Conditions 

u(0, t) = 0 

∂u

∂x
(L, t) = 0. 

Finite Element Method for the Wave Equation 

Finite Element Method (FEM) is a versatile technique for numerically solving the wave equation, 

particularly useful for complex geometries and boundary conditions. 

6) Overview of FEM for the Wave Equation 

1. Formulation 

Transform the wave equation into its weak form by multiplying with a test function and integrating: 

IL,x
 {uttv(x)} + c

2 IL,x
 {uxvx} = 00

 
0
  

We offer a comprehensive analysis of the numerical outcomes obtained from applying the Finite Element 

Method (FEM) to wave equations. To illustrate this, we will explore a specific case. Our focus will be on 

solving a one-dimensional (1D) wave equation using FEM, followed by an interpretation of the results. 

This process includes discretization, solving the equation, and analyzing the results [123]-[124]-[125]-

[126]-[127]-[128].  

Problem definition 

Consider the 1D wave equation (see [129]-[130]-[131]-[132]-[133]-[134]):  

∂2v(x, t)

∂t2
= c2

∂2v(x, t)

∂x2
,     0 ≤ x ≤ L,    t ≥ 0. 

with the following boundary and initial conditions: 

• Boundary conditions: v(0, t) = v(L, t) = 0, (Dirichtlet conditions) 

• Initial conditions: v(x, 0) = f(x) and 
∂v(x,0)

∂t
= g(x) where f(x) represents the initial displacement, 

and g(x) represents the initial velocity. 

Numerical Solution Using Finite Element Method 

1. Discretization 

. Spatial Discretization: The interval [0, L] is divided into N elements, each with a length h =
L

N
. The 

nodes are positioned at xi = i. h, where i = 0,1, …N, ([129]-[130]-[131]-[132]-[133]-[134]).  

. Temporal Discretization: Time is divided into steps of size ∆t. For simplicity, the Newmark-beta 

method is employed for time integration, (see [129]-[130]-[131]-[132]-[133]-[134]).  
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2. Element Matrices 

For each element, the local stiffness matrix Ke and mass matrix Me are calculated. For linear shape 

functions in a 1D element with nodes i and i + 1, (see [129]-[130]-[131]-[132]-[133]-[134]): 

Ke =
c2

h
(
1 −1

−1 1
) 

Me =
h

6
(
2 1
1 2

) 

3. Assembly 

The global stiffness K and mass M matrices are formed by summing contributions from all elements. 

For N nodes, these matrices are of size N × N, (see [129]-[130]-[131]-[132]-[133]-[134]). 

4. Application of Boundary Conditions 

Boundary conditions are enforced by modifying the global matrices accordingly. Since u(0, t) =
u(L, t) = 0, the corresponding rows and columns in the matrices are adjusted, (see [129]-[130]-[131]-

[132]-[133]-[134]).  

5. Time Integration 

Using the Newmark-beta method (with parameters β and γ), the wave equation is solved iteratively 

over time. The displacement at each time step is calculated as, (see [129]-[130]-[131]-[132]-[133]-

[134]): 

vn+1 = vn + ∆tvṅ +
∆t2

2
vn̈ 

where  vn, vṅ, vn̈ are the displacement, velocity, and acceleration at time tn.  

Example and Numerical Results 

Let’s examine a specific example: 

• Domain: L = 1 (unit length) 

• Wave speed: c = 1 (unit wave speed) 

• Initial condition: 𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
= 0 

• Discretization: N = 10 elements, Δt = 0.01 

After assembling the global matrices and applying the initial and boundary conditions, the FEM solution 

progresses over time. The results can be summarized as follows, (see [129]-[130]-[131]-[132]-[133]-[134]): 

• Initial State: At t = 0, the displacement u(x, 0) is a sine wave, with maximum amplitude at x =
0.5 

• Wave Propagation: Over time, the wave propagates toward the boundaries, reflecting off x = 0 

and x = 1 due to the boundary conditions. 
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Time Evolution: 

• t = 0.1: The wave begins to propagate, and the peak displacement shifts slightly toward the 

boundaries. 

• t = 0.2: The wave front approaches the boundaries, and reflections start. 

• t = 0.3: The wave reflects, forming a pattern similar to the initial condition but with the opposite 

phase. 

Final State: At later times, the wave continues oscillating, reflecting between the boundaries with 

gradually decreasing amplitude due to numerical damping, (see [129]-[130]-[131]-[132]-[133]-[134]). 

Error Analysis 

• Mesh Convergence: Increasing the number of elements N improves accuracy, bringing the 

solution closer to the exact wave equation solution. 

• Time Step Sensitivity: Accuracy also depends on the time step Δt. Smaller Δt increases accuracy 

but requires more computational effort. 

Visualization 

• Displacement over Time: Plotting u(x, t) at different time steps shows the wave's propagation 

and reflection. 

• Error Comparison: Comparing the FEM solution with an analytical solution (if available) helps 

assess the method's accuracy. 

The finite element method is an effective and adaptable method for solving the wave equation, particularly 

for problems with complex boundary conditions or irregular geometries. The numerical results demonstrate 

the wave’s propagation and interactions within the domain, providing valuable insights into the system's 

physical behavior, (see [129]-[130]-[131]-[132]-[133]-[134]). 

 

 

 

 

  

 

 

 

4.2 Fractional wave equations 

Now, we show fractional order wave equations according to the above information. But mathematical 

induction method is used to show step to step to introduce detail of fractional version of this equation which 

depends on x and t. First of all, our information was written v(x ∓ ct) and it solves the wave equation. 

According to the information, v(x ∓ ct) and 
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∂u

∂x
= 1 

∂u

∂t
= ±c 

then, chain-rule is necessary to demonstrate, fractional order wave equation with mathematical induction 

method.  
∂v

∂x
=
∂v

∂u

∂u

∂x
 

∂v

∂t
=
∂v

∂u

∂u

∂t
=
∂v

∂u
(±c) 

∂2v

∂x2
=
∂2v

∂u2
,      

∂2v

∂t2
= c2

∂2v

∂u2
 

∂2v

∂t2
= c2

∂2v

∂x2
 

∂3v

∂t3
= c3

∂3v

∂x3
 

. 

. 

. 

                                                                                 
𝜕𝛼𝑣

𝜕𝑡𝛼
= 𝑐𝛼

𝜕𝛼𝑣

𝜕𝑥𝛼
,    0 < 𝛼 < 1,                                                 (4.3) 

 

then (4.3) is fractional order wave equation.  

    4.2.1 Overview of Fractional Wave Equations 

Fractional wave equations extend classical wave models by incorporating fractional derivatives, offering a 

more nuanced approach to describing physical processes, especially those involving memory effects or 

anomalous diffusion. Traditional wave equations rely on integer-order derivatives, which may not fully 

capture the complexity of some systems. Fractional derivatives provide a way to model such systems with 

greater accuracy. A general fractional wave equation can be expressed as [135]-[136]-[137], 

Dt
αu(x, t) = c2∇2u(x, t) + f(x, t), 

where, 

. Dt
α denotes a fractional derivative of order α\alphaα (typically using Caputo or Riemann-Liouville 

definitions). 

. u(x, t) is the wave function. 

. ∇2 represents the Laplacian, describing spatial changes. 

. f(x,t) is an external source term. 

The fractional derivative order α (with 0 < α ≤ 2 ) introduces non-locality, allowing the equation to 

account for the system's history. 
 

Numerical Solution Techniques 

Analytical solutions for fractional wave equations are often complex, making numerical approaches 

essential. Key numerical methods include, (see [135]-[136]-[137]): 

1. Finite Difference Method (FDM): 

o This method approximates derivatives by discretizing time and space. The fractional time 

derivative can be approximated using schemes like the Grünwald-Letnikov or L1, which 

sum contributions from previous time steps, reflecting the system's memory. 

2. Finite Element Method (FEM): 
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o FEM is particularly useful for problems involving irregular domains or complex boundary 

conditions. The domain is divided into elements, and the fractional equation is solved in its 

weak form. This method offers flexibility in handling diverse geometries and varying 

material properties. 

3. Spectral Methods: 

o Spectral methods represent the solution as a series expansion, such as Fourier or 

Chebyshev series. These methods are efficient for smooth problems and can achieve high 

accuracy with fewer grid points. 

4. Time-stepping Schemes: 

o Special schemes, like the L1 method, are needed to handle fractional derivatives. These 

schemes ensure that the numerical solution respects the non-local properties of the 

fractional derivative. 

Applications 

Fractional wave equations are applied in many fields, including, (see [135]-[136]-[137]): 

• Geophysics: Modeling seismic waves in complex media. 

• Engineering: Studying viscoelastic materials that exhibit both elastic and viscous behavior. 

• Medicine: Modeling diffusion in biological tissues, where anomalous diffusion occurs. 

Stability and Convergence 

Ensuring numerical stability and convergence is critical. Stability ensures the solution remains bounded, 

while convergence guarantees that the numerical solution approximates the true solution as the mesh is 

refined. The choice of method, time step, and grid resolution are important factors in achieving stability 

and convergence (see [135]-[136]-[137]). 

    4.3 Finite Difference Method for Fractional Wave Equations 

    1. Discretizing Time and Space 

The Finite Difference Method (FDM) begins by dividing the continuous problem domain into a grid. 

In a one-dimensional setting, the spatial domain is split into small segments of length Δx, and the time 

domain into intervals of length Δt. The wave function u(x, t) is then approximated at discrete grid 

points, ui
n = u(xi, tn) where i and n index the space and time steps, respectively (see [135]-[138]-

[139]). 

    2. Spatial Derivative Approximation 

The second spatial derivative, which is often present in wave equations, is approximated using central 

differences (see [135]-[138]-[139]): 

∂2u

∂x2
|x=xi ≈

ui+1
n − 2ui

n + ui−1
n

(∆x)2
 

This formula uses the values of the wave function at neighboring grid points to estimate the curvature at a 

given point. 
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    3. Fractional Time Derivative Approximation 

The fractional derivative in time, which is the hallmark of fractional wave equations, requires special 

treatment. Two common approximations are (see [135]-[138]-[139]): 

    4. Grünwald-Letnikov Approximation 

Dt
αu(x, tn) ≈

1

(∆t)α
∑ωk

αu(x, tn−k),

n

k=0

 

      where the weights ωk
α are calculated as: 

ωk
α = (−1)𝑘 (

𝛼

𝑘
) 

This method sums contributions from all previous time steps, reflecting the fractional derivative's non-

local nature (see [135]-[138]-[139]). 

L1 Scheme:  

Dt
αu(x, tn) ≈

1

(∆t)α
∑bk

α(u(x, tn−k) − u(x, tn−k−1))

n−1

k=0

 

where the coefficients bk
α are defined as (k + 1)α − kα. The L1 scheme is a popular choice due to its 

balance between computational efficiency and accuracy (see [135]-[138]-[139]). 

5. Formulating the Difference Equation 

By combining the spatial derivative approximation with the fractional time derivative, you form a 

difference equation that represents the fractional wave equation at each grid point: 

1

(∆t)α
∑ωk

αui
n−k = c2

ui+1
n − 2ui

n + ui−1
n

(∆x)2
+ fi

n.

n

k=0

 

This equation can then be solved iteratively, moving step by step through time, using initial conditions 

and appropriate boundary conditions (see [135]-[138]-[139]). 

6. Ensuring Stability and Convergence 

In numerical methods, stability refers to the algorithm's ability to produce bounded solutions over time, 

while convergence ensures that the numerical solution approximates the true solution as the grid is 

refined. When working with fractional wave equations, selecting appropriate time step Δt and space 

step Δx is crucial for maintaining stability and ensuring that the solution converges (see [135]-[138]-

[139]). 

7. Applications 

      The FDM is used to solve fractional wave equations in various fields (see [135]-[138]-[139]): 
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• Geophysics: For modeling seismic wave behavior in complex subsurface environments. 

• Material Science: To understand wave propagation in materials with both elastic and viscous 

properties. 

• Medical Physics: In modeling diffusion processes in tissues, where anomalous diffusion is 

observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Finite Element Method for Fractional Wave Equations 

The Finite Element Method (FEM) is a widely-used numerical technique for solving partial differential 

equations (PDEs), including those involving fractional derivatives. Fractional wave equations describe 

wave phenomena with non-integer order derivatives, capturing complex behaviors like anomalous 

diffusion and wave propagation in heterogeneous media (see [140]-[141]-[142]). 

1. Formulation of the Problem 

• Fractional Wave Equation: Typically, a fractional wave equation can be expressed as: 

Dt
αu(x, t) − c2

∂2u(x, t)

∂x2
= f(x, t) 

where  Dt
α denotes the Caputo fractional derivative of order α, (where 0< α ≤ 2), u(x, t) is the wave 

function, c is the wave speed, and f(x, t) is a source term (see [140]-[141]-[142]). 

• Initial and Boundary Conditions: The problem is defined over a domain Ω with specified initial 

conditions for the wave and its time derivative, as well as boundary conditions along the domain’s 

boundaries Γ (see [140]-[141]-[142]). 

•  
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2. Spatial Discretization 

• Mesh Construction: The spatial domain Ω is divided into smaller subdomains (elements), often 

triangles or quadrilaterals in 2D or tetrahedra in 3D, forming a mesh. 

• Elemental Approximation: Within each element, the solution u(x,t) is approximated by a 

combination of basis functions, which are usually polynomials. 

3. Weak Form of the Equation 

• The fractional wave equation is transformed into its weak form by multiplying by a test function 

v(x) and integrating over the domain: 

∫v(x) (Dt
αu(x, t) − c2

∂2u(x, t)

∂x2
− f(x, t)) dx = 0

 

Ω

 

• Integration by parts is applied to the spatial derivative term to reduce its order, facilitating 

numerical implementation (see [140]-[141]-[142]). 

4. Time Discretization 

• Approximating Fractional Derivatives: The fractional time derivative is discretized using 

methods like the Grünwald-Letnikov or Caputo schemes. The time interval is divided into discrete 

steps, and the fractional derivative is approximated as a sum over previous time steps: 

Dt
αu(x, t) ≈ ∑ωk

α

𝑛

𝑘=0

u(x, tn−k), 

• where ωk
αare the coefficients associated with the chosen scheme (see [140]-[141]-[142]). 

5. Element Assembly 

• Global Stiffness Matrix: The weak form leads to the assembly of a global stiffness matrix 

representing the discretized PDE. Each mesh element contributes a local stiffness matrix, which is 

aggregated to form the global system (see [140]-[141]-[142]). 

• Load Vector: The load vector, representing the source term and boundary conditions, is constructed 

in a similar manner, also incorporating the effects of the fractional derivative (see [140]-[141]-

[142]). 

6. Solving the System of Equations 

• The resulting linear or nonlinear system of equations at each time step can be represented as: 

KUn = Fn 

where K is the global stiffness matrix, Un is the vector of the wave function's nodal values at time step 

n, and Fn is the global load vector (see [140]-[141]-[142]). 
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7. Time Integration and Solution 

• Iterative Time Stepping: The solution progresses through time by solving the system at each time 

step, starting from the initial conditions. Numerical solvers like LU decomposition or iterative 

methods (e.g., Conjugate Gradient) are employed to solve the system (see [140]-[141]-[142]). 

• Ensuring Stability and Convergence: The time step size Δt and mesh resolution must be carefully 

chosen to ensure numerical stability and accuracy (see [140]-[141]-[142]). 

8. Applications and Use Cases 

• Geophysics: FEM is used to model wave propagation in complex geological media (see [140]-

[141]-[142]). 

• Material Science: Studying wave behavior in materials exhibiting memory effects or fractal 

structures (see [140]-[141]-[142]). 

• Biomedical Engineering: Analyzing wave propagation in biological tissues with anomalous 

diffusion characteristics (see [140]-[141]-[142]).  

 

 

 

 

 

 

 

 

 

 

 

4.5 Shallow water waves: Overview and simulation 

 

1. Introduction to Shallow Water Waves 

Shallow water waves are a type of wave that occurs in bodies of water where the depth is small relative to 

the wavelength. These waves are typically characterized by the following properties: 

• Depth Condition: The water depth h is much smaller than the wavelength λ such that h ≪ λ.This 

condition means that the wave is influenced by the bottom surface of the water body. 

• Wave Speed: The speed c of shallow water waves depends on the depth of the water and is given 

by c = √gh, where g is the acceleration due to gravity. 

Shallow water waves are important in various contexts, such as in coastal engineering, where they can 

model tides, tsunamis, and other wave phenomena in oceans and seas. 
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2. Governing Equations 

The primary equations used to describe shallow water waves are the Shallow Water Equations (SWEs). 

These are a set of hyperbolic partial differential equations derived from the conservation of mass and 

momentum. 

3. Continuity Equation: 

∂η

∂t
+
∂

∂x
(hu) = 0 

where: 

• η(x, t) is the free surface elevation, 

• u(x, t) is the velocity of the water in the horizontal direction, 

• h(x, t) = H + η(x, t) is the total water depth, with H being the mean water depth. 

4. Momentum Equation: 

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0. 

These equations are used to model the wave propagation in shallow water bodies, accounting for the 

variations in water height and velocity over time. 

4.6  Numerical Solution of Shallow Water Wave Equations Using the Finite Difference Method (FDM) 

1. Introduction to Shallow Water Wave Equations 

Shallow water wave equations describe the behavior of waves in environments where the depth of the water 

is relatively small compared to the wavelength of the waves. These equations are derived from the 

conservation of mass and momentum and are widely used to simulate natural phenomena such as tides, 

storm surges, and tsunamis. 

The equations typically consist of (see [143]-[144]-[145]-[146]-[147]-[148]): 

• Continuity Equation: Represents the conservation of mass by linking the change in water height 

with the flow velocity. 

• Momentum Equation: Describes the movement of water by balancing forces like pressure 

gradients and gravitational acceleration. 

2. Finite Difference Method (FDM) for Shallow Water Waves 

The Finite Difference Method (FDM) is a numerical technique that approximates the solutions of 

differential equations by discretizing the spatial and temporal domains into a grid. For shallow water wave 

equations, FDM is used to approximate the changes in water height and velocity over time (see [143]-[144]-

[145]-[146]-[147]-[148]). 
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2.1 Discretization 

• Spatial Discretization: The domain is divided into small intervals Δx, where the water surface 

elevation η(x, t) and velocity u(x, t) are computed at discrete points. 

• Temporal Discretization: Time is divided into intervals Δt, with values of η and u updated at 

each step. 

2.2 FDM Scheme 

The finite difference approximations for the shallow water wave equations are applied as follows (see 

[143]-[144]-[145]-[146]-[147]-[148]): 

Continuity Equation: 

∂η

∂t
≈
ηi
n+1 − ηi

n

Δt
 

∂

∂x
(hu) ≈

(hu)i+1
n − (hu)i−1

n

2∆x
 

Momentum Equation: 

∂u

∂t
≈
ui
n+1 − ui

n

∆t
 

u
∂u

∂x
≈ ui

n
ui+1
n − ui−1

n

2∆x
 

g
∂η

∂x
≈ g

ηi+1
n − ηi−1

n

2Δx
 

In this scheme, i represents the spatial grid point, and n represents the time step. The variables η and u are 

iteratively updated to simulate the wave's evolution over time (see [143]-[144]-[145]-[146]-[147]-[148]). 

 

 

 

 

 

 

 

  Figure: Shallow water waves when t = 13s                         Figure: Shallow water waves when t = 20s 
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4.7 Caputo fractional operator on shallow water wave equations 

The shallow water wave equations can be adapted to incorporate fractional calculus, providing a more 

nuanced model for wave behavior that can better capture phenomena such as anomalous diffusion and 

complex dispersion effects [149]-[150]-[151]-[152]. 

1 Fractional Shallow Water Wave Equations 

When fractional calculus is applied to the shallow water equations, the modified equations become [149]-

[150]-[151]-[152]: 

Fractional Continuity Equation: 

Dt
αh +

∂(hu)

∂x
+
∂(hv)

∂y
= 0 

C  

Fractional Momentum Equations: 

Dt
αu + u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= 0 

C  

Dt
αv + u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= 0 

C  

In these equations, the Caputo fractional derivative Dt
α

 
C  introduces memory effects and hereditary 

properties into the wave dynamics (see [149]-[150]-[151]-[152]). 

 

4.8 Numerical model of Caputo fractional shallow water wave equations 

 

Numerical Solution Approach: 

To solve these fractional equations numerically, the following steps are generally involved [149]-[150]-

[151]-[152]: 

Temporal Discretization 

The Caputo fractional derivative is approximated using numerical techniques. A common approach is to 

use a finite difference method for approximating fractional derivatives: 

Dt
αf(t) ≈

1

Γ(n − α)
∑

f (n)(ti)

(t − ti)α−n+1
Δt

k−1

i=0

 
c  

where ti represents previous time steps and Δt is the time step size [149]-[150]-[151]-[152]. 

    Spatial Discretization 

The spatial domain is discretized using a grid, and spatial derivatives are approximated using finite 

difference methods. For example, central differences can be used to approximate spatial derivatives: 

∂h

∂x
≈
hi+1,j − hi−1,j

2∆x
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where hi,j denotes the height at grid point (i, j), and Δx is the grid spacing in the x-direction [149]-[150]-

[151]-[152].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷𝑡=7
0.8 𝑢 +⬚

𝐶 ∂(hu)

∂x
+
∂(hv)

∂y
= 0 

 

h - dt * (u .* hx + v .* hy) 

u = u - dt * (u .* ux + v .* uy + g * hx). 

v = v - dt * (u .* vx + v .* vy + g * hy). 

V. CONCLUSION 

The aim of this paper was to first introduce fractional differential operators and then to use the available 

information to discuss wave types, wave structures, and their mathematical interpretations in physics and 

engineering. Subsequently, by applying fractional derivative and integral operators, we sought to provide 

a different perspective by solving wave equations mathematically and using some numerical methods. 

Finally, we conducted simulations of the results obtained from these numerical values and used the 

fractional Caputo-type differential operators in shallow water wave theory to analyze the time-dependent 

behavior of a shallow water wave, the changes in wavelength over time, and their analyses based on the 

data we had. This study provided a different perspective to our research, especially in the field of 

mathematical modeling, which has become popular in recent times and is being studied by many 

mathematicians and engineers, through the use of various sources and academic websites. 
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